

 Journal Information

 Publisher: Sciresol

 Title: Indian Journal of Science and Technology

 ISSN (electronic): 0974-5645

 ISSN (print):

 Article Information

 Copyright: 2023

 Date received: 18 November 2022

 Date accepted: 28 December 2022

 Publication date: 20 February 2023

 Volume: 16

 Issue: 7

 Page: 468

 DOI: 10.17485/IJST/v16i7.2219

 Funding: None

 Analysis of Research Trends Towards Types of Code
 Clone Detection Techniques

 Kamna Solanki[1]

 Email: kamna.mdurohtak@gmail.com

 Sandeep Dalal[1]

 Associate Professor, Maharshi Dayanand University
 Rohtak
 India

 Corresponding Author: Kamna Solanki

 Abstract

Objective: The key research objectives of this study are: (1.) To compare and contrast the research trend towards the tree, token, text,
 metric, and graph-based code clone detection techniques; (2.) To study the distribution of metric-based code clone detection
 techniques on various online repositories; (3.) To make a statistical analysis of the hybrid techniques available for clone
 detection. The overall objective is to investigate the research trends of code clone detection approaches. Methods: Various repositories like google scholar, IEEE, and ELSEVIER Digital Libraries were systematically examined to attain the
 results in terms of research articles published in various places like conferences, journals, etc. followed by the inclusion
 and exclusion criteria. Findings: (1.) The findings related to objective 1 depicted that 50% of total clone detection techniques are tree and graph-based Code
 Clone Detection techniques followed by 20% of text-based and 30% of token-based code-clone detection techniques (2.) The findings
 related to the second objective depicted that an equal percentage of 46% of research work related to metric-based code clone
 detection techniques has been published in journals and conferences. (3.) The findings related to the third objective showed
 that 43% of hybrid code clone detection techniques are based on machine learning techniques, 24% are based on neural networks,
 and 18% of techniques are data mining based followed by 15% nature inspired based algorithms. Novelty: The study conducted is novel in identifying and exploring those potential code clone detection techniques that are underutilized
 and least explored. The result of research questions will assist researchers to draw inferences regarding usage, application,
 research trends, future needs, and research directions.

 Keywords

 Code Clones, Clone Detection Techniques, Metric Based Clone Detection, Types of Clone Detection Techniques, Software Clones

 Introduction

 Software engineers directly copy and paste a piece of source code from another piece of source code, even with slight changes
 to make them identical or indistinguishable. This process is known as software/code cloning or sometimes code replication.
 Software1, 2. In addition, cloning a vulnerable code can spread the vulnerability in the system as far as the security of the software
 framework is concerned.

 1.1 Code Clone Detection

 Code-clone detection refers to the operation of discovering identical or parallel segments of code in an application. Such
 activity greatly enables software development but also entails bug duplication. There are four main categories of code clones,
 type 1 to type 4, based on their resemblance. When there is a bug in the original code, its duplicate code is expected to
 contain a similar bug, causing the bugs to spread all over the software system, the same as an infection 3. Even though fixing the original bug is feasible, the fixing process generally finds it difficult to treat all the code fragments
 cloned from the original code. To deal with issues, code clone detection-based bug detection techniques have been broadly
 considered and have yielded high-quality results. Therefore, code clone detection is very important as an underlying analysis
 technique to maintain the quality of software 1, 2, 3.

 1.2 Code Clone Detection Process

 The main element of code clone detection frameworks is the code clone detector. Its main objective is to obtain copy-paste
 or duplicate source code and process the crucial steps of clone detection. Pre-processing code is the first step in clone
 detection removing all redundant or inappropriate fragments of the source code, including whitespace and comments 1, 2. The next process of conversion involves converting the source code obtained from the pre-processing stage into the respective
 intermediary depiction for additional comparison. The detection matching step identifies similar source code fragments by
 comparing the source code units with the target files through a special comparison algorithm. This step generates output in
 the form of a list of clone pairs or cloned classes. Formatting aims to format the list of clone pairs achieved from the earlier
 step depending on the comparison algorithm into a fresh clone pair list corresponding to the real source code. Post-processing,
 also known as filtering/manual analysis, is an optional step in most code clone detection frameworks. This step filters out
 false positives or missed clones based on reanalysis by human experts or automatic heuristics. Clone results examined and
 established by earlier detection steps can be reported to the framework for more actions, for example correcting or deleting
 the source code 2.

 1.3 Code Clone Detection Techniques

 The pipeline of code clone detection techniques includes five methods: textual methods, token-based methods, syntactical methods,
 semantic methods, and learning methods. The first method compares two code segments utilizing text/strings/lexemes and finds
 clones only when the two code fragments are almost similar in the context of text content. The token-based methods bifurcate
 all source code lines into a series of tokens throughout the lexical analytic step of the compiler. Next, all tokens are reconverted
 into token series lines 3. The token series rows are matched to locate and inform duplicate codes. There are two types of syntactical methods: tree-supported
 methods and metric-supported methods. Tree-based methods explore similar regions to compare sub-trees through the extraction
 of the AST. These identical regions form a code clone. The metric-supported clone detection methods generate separate vectors
 for every code piece, using metrics collected from the source code 3, 4. The areas with identical codes are discovered by comparing such vectors. A semantic method traces two pieces of code performing
 a similar computation but with differently designed code. Semantic code-clone detection includes a variety of approaches;
 However, one of the major ways is using graph-supported methods. Learning methods in the code-clone detection domain often
 differ greatly. The learning methods depend on machine learning or other learning schemes to detect code clones.

 1.4 Related Work

 Researchers have conducted diverse studies and presented several code clone detection techniques for improving the process
 of detecting code cloning 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20. There are distinct domains for these techniques. Diverse techniques for clone detection are reviewed in this section 4, 5, 6, 7, 8, 9, 10, 11, 12.

 Yuan, et al. reviewed a new graph representation technique based on intermediate code for detecting functional code clones.
 Subsequently, the Softmax classification algorithm for detecting the functional code clone pairs. The bigCloneBench dataset
 was employed for quantifying the presented technique. the results of the experiments depicted the supremacy of the presented
 technique over others and its F1 score was computed at 33.49% 4. Bandi, et al. presented a review that focused on formulating a device called Clone Swarm for detecting the clones in a project
 and effectively illustrating the information. This device was capable of mining any open-sourced GIT repository. GitHub was
 presented to provide the source code for the formulated device 5. Xu, et al. conducted a study in which an enhanced SCCD-GAN was suggested to detect the semantic code clone based on a graph
 representation form of programs. This algorithm consisted of GAN (Graph Attention Network) for computing the similarity of
 code pairs. This algorithm offered a lower FPR (false positive rate) in contrast to the traditional techniques. Moreover,
 this algorithm offered higher precision 6. Guo, et al. reviewed a complex network in the process of detecting software clones and a technique was projected based on
 this network to detect a clone code. This technique was adaptable for investigating similar sub-networks so that the clones
 were detected. The publicly available code was detected using the projected technique and its re-utilization was done in software
 to analyze the security 7. Wang and Liu conducted a study in which a new ICCV (image-based clone code detection and visualization) method was introduced
 based on image processing. Initially, the comments, whitespace, etc. were eliminated to pre-process the source code. Subsequently,
 this method was implemented to transform the processed source code into pictures and normalize these images. Eventually, the
 information related to the clone code was detected and visualized using the Jaccard distance and perceptual hash algorithm.
 The experimental outcomes demonstrated the introduced method yielded an accuracy of 100% for detecting type-1, 88% for type-2,
 and 60% for type-3 clone code 8.

 Bowman et al. emphasized developing a method recognized as VGRAPH to recognize vulnerable code clones. This method had robustness
 for modifying the code. Furthermore, a matching algorithm was put forward based on 3 graph-based elements which had the potential
 for detecting the code cloning, and the precision obtained from the developed method was counted at 98% and recall was 97%
 9. Othman and Kaya aimed to implement the technique of detecting the clone by recognizing the clone code and replacing it with
 a single call to the function. In this, the function was utilized to simulate the behavior of one instance of the clone group.
 The refactoring IDE was overviewed in this research. The process to detect the clone and diverse aspects of cloning were presented.
 The XML format was executed to generate the source 10. Matsushima and Inoue conducted a study in which a technique was established to compare and visualize the results after detecting
 the outcomes on the clone pairs. This technique assisted the developers in contrasting the results and diverse metrics. The
 results of the comparative analysis revealed that the established technique performed well with the implementation of two
 tools: CCFinderX and NiCad 11.

 Li, et al. recommended a mechanism based on a method based on EET (event embedding tree) and GAT (Graph Attention Network)
 for detecting the code clone. A program control flow graph was utilized to capture every statement's execution attributes
 and extract the context association of diverse statements in the control flow. The experimental outcomes proved that the recommended
 mechanism performed more effectively as compared to other techniques while detecting the clone of Type-3 and Type-4 12.

 Research Methodology

 This article aims to analyze various research which is done in the field of code clone detection. The code clone detection
 techniques are analyzed systemically by following certain processes. The search process follows various steps which are represented
 in Figure 1.

 Figure 1

 Research Method

[image: https://s3-us-west-2.amazonaws.com/typeset-prod-media-server/7d6d1e4c-9997-445d-ad0e-1e3ec5f0efbdimage1.png]

 The research method steps are described which were used for the systemic review. The first step is to define the research
 question based on which the search criteria will be finalized. When the search criteria will be defined in the next step search
 repository will be finalized. The popular search repositories are ACM, Springer, IEEE, and Science Direct. The data will be
 searched from the search repositories which will be followed by the inclusion and exclusion criteria. The inclusion and exclusion
 criteria will be selected based on the years and techniques. The data will be included or excluded based on the search criteria.
 When the data get finalized then the data will be compiled for the conclusion.

 2.1 Research Questions

 The aim is to design research questions to review the papers based on certain criteria:

 RQ 1: What percentage of the techniques designed so far are based on text-based, token-based, tree-based, and graph techniques?

 RQ 2: What percentage of Metric Based techniques are available on different sources?

 RQ 3: Do some hybrid techniques available for code clone detection?

 2.2 Search Process

 The search process describes various steps which are a source of information, search criteria, and study selection. Each step
 is described below in detail:

 2.2.1 Source of Information

 The source of information is from the various repositories which are available online like google scholar and Science Direct.
 Google Scholar provides various types of research articles that are available at various conferences and journals. Google
 Scholar contains various repositories like ACM Digital library (https://dl.acm.org), IEEE Explore (https://ieeexplore.ieee.org),
 Elsevier (https://www.elsevier.com), Springer (https://www.springer.com/in).

 2.2.2 Search Criteria

 The search criteria started from the search string which is code clone detection techniques from google scholar. The search
 results showed 2,56,000 available articles on Google scholar. The search criteria were narrowed down to the starting year
 as 2010 and the ending year as 2020. The total number of available articles is 66000 which are available on google scholar.
 The search strings were modified from code clone detection to code clone detection using text-based techniques. The research
 results showed 16400 articles that were published on google scholar. The next search string used was code clone detection
 using token-based techniques and the number of articles that are available on google scholar will be 18300. The 19200 articles
 are searched for google scholar when the search string was modified to code clone detection using tree-based techniques. The
 graph-based techniques show 16400 articles that are available on code clone detection. The metric-based techniques show impressive
 results of 19500 articles which are available on google scholar. Figure 2 shows the graphical representation of the available articles.

 Figure 2

 Number of Articles Available on Google Scholar

[image: https://s3-us-west-2.amazonaws.com/typeset-prod-media-server/7d6d1e4c-9997-445d-ad0e-1e3ec5f0efbdimage2.png]

 2.2.3 Comparative Analysis

 The various code clone detection techniques are compared based on the various parameters. The code clone detection techniques
 are broadly classified into text-based, token Based, Graph based, and metric-based techniques. The techniques are compared
 in terms of accuracy, precision, recall, robustness, and scalability as shown in table 1. The parameters of the comparison
 are described below:

 1. Accuracy: - The accuracy directly describes how accurately the clone will be detected from the code. The accuracy of the model will
 be increased when the false positive values get reduced at the time of detection

 2. Precision: - The technique should be considered good when the precision value of the model is high. The model is good and the value
 of precision is increased when the false positive value is high.

 3. Recall: - The recall value should be high when the clones are detected accurately. The recall value gets increased when the false
 positive values will be recalled from the model.

 4. Scalability: - The model must be scalable and accurate. The model will be scalable when the model is tested over the large code it gave
 the same performance as when tested on small code

 5. Robustness: - The code clone is of various types like type-1, type-2, etc. The model will be robust and can detect the maximum number
 of clone types.

 Table 1

 Comparative Analysis of Techniques

 	

 Technique Type

 	

 Accuracy

 	

 Precision

 	

 Recall

 	

 Scalability

 	

 Robustness

 	

 Text-Based

 	

 High

 	

 High

 	

 High

 	

 Less Scalable

 	

 High Robustness

 	

 Token-Based

 	

 Minimum

 	

 Moderate

 	

 Moderate

 	

 Scalable

 	

 Medium Robustness

 	

 Tree-Based

 	

 Minimum

 	

 Medium

 	

 Moderate

 	

 High Scalable

 	

 Low Robustness

 	

 Graph-Based

 	

 High

 	

 Medium

 	

 High

 	

 Scalable

 	

 High Robustness

 	

 Metric Based

 	

 High

 	

 High

 	

 High

 	

 High Scalable

 	

 Medium Robustness

 2.2.4 Study Criteria

 The study criteria are based on the articles which are available on google scholar. The research articles are searched on
 the type of techniques which are text-based, token-based, tree-based, graph-based, and metric-based techniques. The text-based
 techniques which are approx. 12 articles are selected for the review for code clone detection. A total of 8 articles are selected
 from the token-based techniques. The tree-based and graph-based techniques articles are 10 and 15 respectively selected for
 the analysis. The 20 research articles are selected which are based on metric-based techniques.

 Result and Discussion

 This study conducted a systematic review and analysis of code clone detection techniques. The systematic review is generated
 based on the research questions. The result of each question was deeply analyzed to draw some inferences regarding usage,
 application, research trends, future needs, and research directions.

 3.1 What percentage of the techniques designed so far are based on text-based, token-based, tree-based, and graph techniques?
 (Research Question 1)

 The papers which are downloaded from different sources are categorized according to techniques which are text-based, token-based,
 tree-based, and graph-based techniques. Text-based techniques are less available compared to token-based techniques. The tree
 and graph-based techniques are very popular for code clone detection. Approx. 20 percent of articles are available on text-based
 techniques for code clone detection. 30 percent of articles are available on token-based techniques for code clone detection.
 The rest 50 percent of the articles are available on the tree-based and graph-based techniques. The major part of the available
 articles is based on tree-graph-based techniques as shown in Figure 3.

 Figure 3

 Percentage of Data Available

[image: https://s3-us-west-2.amazonaws.com/typeset-prod-media-server/7d6d1e4c-9997-445d-ad0e-1e3ec5f0efbdimage3.png]

 3.2 What percentage of Metric Based techniques are available on different sources? (Research Question 2)

 The percentage of data sharing is shown in Figure 4 below. Books contribute only 8% of study and research material available on Metric Based code clone detection while conferences
 and journals share an approximately equal share of 46 percent each.

 Figure 4

 Percentage of Data on Metric-Based Techniques

[image: https://s3-us-west-2.amazonaws.com/typeset-prod-media-server/7d6d1e4c-9997-445d-ad0e-1e3ec5f0efbdimage4.png]

 Data Collection from various sources like Google Scholar, Science Direct, and other sources was conducted four times over
 15 months and the percentage of papers from various sources was analyzed and has been represented in Figure 5 below.

 Figure 5

 5: Percentage Distribution of Publication Sources of Metric Based Clone Detection Techniques

[image: https://s3-us-west-2.amazonaws.com/typeset-prod-media-server/7d6d1e4c-9997-445d-ad0e-1e3ec5f0efbdimage5.png]

 3.3 Do some hybrid techniques are available for code clone detection? (Research Question 3)

 Recently, many researchers are implementing new combinations of techniques for code clone detection. The hybrid techniques
 which are available for code clone detection are based on Neural networks, machine learning, and data mining-based techniques.
 Another major set of hybrid techniques is based on nature-inspired techniques for code clone detection. Many other approaches,
 such as image similarity, attention networks, attentive graph embedding, program slicing-based approaches, pairwise feature
 fusion, etc., were encountered during the search process. Various repositories were searched and analyzed to find the pattern
 and inclination of research development of different hybrid techniques for code clone detection as shown in Figure 6 below.

 Figure 6

 Percentage Distribution of Types of Hybrid Clone Detection Techniques

[image: https://s3-us-west-2.amazonaws.com/typeset-prod-media-server/7d6d1e4c-9997-445d-ad0e-1e3ec5f0efbdimage6.png]

 Conclusion

 Code clones can be defined using diverse ways such as reusing code that the developers utilized the most. Such changes are
 considered to modify and enhance the performance of a software system, resulting in code cloning. The various types of techniques
 for code clone detection are compared in terms of accuracy, precision, recall, scalability, and robustness. The main findings
 related to research objective 1 depicted that 50% of total clone detection techniques are tree and graph-based Code Clone
 Detection techniques followed by 20% of text-based and 30% of token-based code-clone detection techniques. The second objective
 was achieved by exploring the fact that an equal percentage of 46% of research work related to metric-based code clone detection
 techniques has been published in journals and conferences. The rest of the 8% of metric-based clone detection techniques have
 been published in books. The findings related to the third objective exhibited that 43% of hybrid code clone detection techniques
 are based on machine learning techniques, 24% are based on neural networks, and 18% of techniques are data mining based followed
 by 15% nature inspired based algorithms. After analysis, it is analyzed that the metric-based technique is the most reliable
 technique for code clone detection. The main conclusion drawn lies in the fact that there is an urgent need to develop clone
 detection techniques that can detect all four types of clones together. Most of the available techniques can capture only
 a single type of code clone detection. In this paper, the scientific area of code cloning is examined from a macroscopic standpoint.
 The results and information in this study can be used as a reference for future research to further examine each sub-research
 field.

 References

 1

 Shobha, G, Rana, A, Kansal, V & Tanwar, S, (2021). Code Clone Detection—A Systematic Review. In: Hassanien, A E, Bhattacharyya, S, Chakrabati, S & Bhattacharya, A
 (Eds.), Emerging Technologies in Data Mining and Information Security. Springer. (Vol. 1300, pp. 645–655)

 2

 Saini, Neha, Singh, Sukhdip & Suman, , (2018). Code Clones: Detection and Management. Procedia Computer Science, 132, 718–727.

 3

 Yuan, Dawei, Fang, Sen, Zhang, Tao, Xu, Zhou & Luo, Xiapu, (2022). Java Code Clone Detection by Exploiting Semantic and Syntax Information From Intermediate Code-Based Graph. IEEE Transactions on Reliability, 1–16.

 4

 Bandi, Venkat, Roy, Chanchal K & Gutwin, Carl, (2020). Clone Swarm: A Cloud Based Code-Clone Analysis Tool. 2020 IEEE 14th International Workshop on Software Clones (IWSC), 52–56.

 5

 Xu, Kun & Liu, Yan, (2021). SCCD-GAN: An Enhanced Semantic Code Clone Detection Model Using GAN. 2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE), 16–22.

 6

 Guo, Haoran, Ai, Jun & Shi, Tao, (2019). A Clone Code Detection Method Based on Software Complex Network. 2019 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), 120–121.

 7

 Wang, Yafang & Liu, Dongsheng, (2019). Image-Based Clone Code Detection and Visualization. 2019 International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM), 168–175.

 8

 Bowman, Benjamin & Huang, H Howie, (2020). VGRAPH: A Robust Vulnerable Code Clone Detection System Using Code Property Triplets. 2020 IEEE European Symposium on Security and Privacy (EuroS&P), 53–69.

 9

 Othman, Zhala Sarkawt & Kaya, Mehmet, (2019). Refactoring Code Clone Detection. 2019 7th International Symposium on Digital Forensics and Security (ISDFS), 1–6.

 10

 Matsushima, Kazuki & Inoue, Katsuro, (2020). Comparison and Visualization of Code Clone Detection Results. 2020 IEEE 14th International Workshop on Software Clones (IWSC), 45–51.

 11

 Li, Bingzhuo, Ye, Chunyang, Guan, Shouyang & Zhou, Hui, (2020). Semantic Code Clone Detection Via Event Embedding Tree and GAT Network. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS), 382–393.

 12

 Kumar, Ajad, Yadav, Rashmi & Kumar, Kuldeep, (2021). A Systematic Review of Semantic Clone Detection Techniques in Software Systems. IOP Conference Series: Materials Science and Engineering, 1022(012074).

 13

 Elkhail, Abdulrahman Abu, Svacina, Jan & Cerny, Tomas, (2019). Intelligent token-based code clone detection system for large scale source code. In: Proceedings of the Conference
 on Research in Adaptive and Convergent Systems. New York, NY, USA. ACM. (pp. 256–260)

 14

 Khazaal, Y M & Hammo, A Y, (2022). Survey on Software code clone detection. Technium: Romanian Journal of Applied Sciences and Technology, 4(3), 28–36.

 15

 Tronicek, Z, (2022). Indexing source code and clone detection. Information and Software Technology.

 16

 Jo, Young-Bin, Lee, Jihyun & Yoo, Cheol-Jung, (2021). Two-Pass Technique for Clone Detection and Type Classification Using Tree-Based Convolution Neural Network. Applied Sciences, 11(14), 6613.

 17

 Runwal, Ashish N & Waghmare, A D, (2017). Code Clone Detection based on Logical Similarity: A Review. IJSRSET, 5, 148–151.

 18

 Khazaal, Yasir Mohammed & Hammo, Asma’a Y, (1920). Survey on Software code clone detection. Technium: Romanian Journal of Applied Sciences and Technology, 4(3), 28–36.

 19

 Ain, Qurat Ul, Butt, Wasi Haider, Anwar, Muhammad Waseem, Azam, Farooque & Maqbool, Bilal, (2019). A Systematic Review on Code Clone Detection. IEEE Access, 7, 86121–86144.

 20

 Zhang, X, Wang, T, Yu, Y, Zhang, Y, Zhong, Y & Wang, H, (2022). The Development and Prospect of Code Clone. Arxiv.

 EPUB/nav.xhtml

 		
 Content

