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Abstract
Objectives: In this present framework, heat transfer of the thermal radiation
effect on natural convection around a vertical permeable flat surface immersed
in a saturated porous medium has been investigated by considering the
thermal radiation effect.Methods:The governing partial differential equations
of the considered problem are converted to the nonlinear ordinary differential
equations over the infinite domain with the aid of similarity transformations.
In order to analyze the thermal radiation, the Müntz − Legendre wavelet
operational matrix method has been considered to solve the corresponding
nonlinear ordinary differential equation. Findings:To check the efficiency of the
proposed strategy, the third-order nonlinear boundary value problem having
the exact solution is considered a test problem. Also, the obtained findings are
compared with the findings of the Haar wavelet operational matrix method.
Novelty: The three physical parameters of temperature exponent λ thermal
radiation Rd , and Injection/suction fm on vertical velocity and temperature
profiles are demonstrated and discussed graphically. Also, the comparison
of the Müntz−Legendre wavelet operational matrix method results with Haar
wavelet operational matrix method results ensure that the solutions obtained
by Müntz−Haar wavelet operational matrix method results.
Keywords:Muntz-legendre wavelet; Operational matrix; Natural convection;
Thermal radiation; Saturated porous medium; Suction/Injection

1 Introduction
Heat transfer in convection saturated porous medium have been initiated increasing
interest in studying their significance in many applications in geophysical and
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engineering such as thermal insulation, drying of porous solids, geothermal reservoirs, enhanced oil recovery, cooling of nuclear
reactors, packed-bed catalytic reactors, under ground energy transport, etc. (1). The study of heat transfer in a free convective
vertical flat plate immersed in a porous medium with an internal heat generation problem is solved by Cortell R with the aid
of the Fourth-order Runge-Kutta algorithm (2). This work is extended on the previous work of the authors Driss Achemlal et
al. who have investigated the effect of heat source and thermal radiation flux around a vertical plate immersed in a porous
medium by using the fifth-order Runge-Kutta scheme associated with the shooting technique (3). And also the authors Talha
Anwar et al. have analyzed the effect of thermal radiation on convective heat transfer across a porous moving vertical plate (4).
The authors Nourhan et al. have studied the influence of wall heat flux on the thermal radiation on natural convection fluid
flow along a vertical cone immersed in a saturated porous media (5). Recently, many researchers have seemed regarding the
interplay of vertical plates immersed in a saturated porous medium with convection flows by solving the numerical techniques.
The authors Mahdy et al. and Jha B K et al. have studied the effect of the presence or absence of internal heat generation and
thermal radiation (6–8). The authors Roja P et al. and Jha B K et al. have investigated some related porous medium cases with
thermal radiation and also discussed velocity and temperature profiles (9,10). Our proposed third-order nonlinear problem with
corresponding boundary conditions is numerically solved by using a newly modified Müntz−Legendre wavelet operational
matrix method (MLWOMM). Because we selected problems that are not applied to wavelet-based numerical methods. So we
concentrate on those nonlinear problems to solve them by applying MLWOMM. It obtained good results and more accurate
solutions.

In recent years, MLWOMM is one of the most widely used wavelet methods for calculating numerical results in differential
equations. Nowadays, many researchers have discussed applying numerical techniques to find the results of nonlinear ordinary
differential equations (ODEs). In the last few decades, various numerical techniques have been introduced, to name a few,
the Shooting method, Finite difference method, Keller box method, Haar wavelet method, etc., these numerical methods are
computing the results of boundary value problems (BVPs). MLWOMM is the more effective method for solving the BVPs with
finite intervals. Recent research articles are available on various types of wavelets techniques for computing linear and nonlinear
differential equationswith finite domains, to name a few,Haarwaveletmethod (11,12), Daubechies waveletmethod (13), Fibonacci
wavelet method (14), Chebyshev wavelet method (15), Hermite wavelet method (16), Legendre wavelet method (17), etc. Alfred
Haar is the first one who introduced the notation of wavelets in the year 1909 and this work is extended by Grossmann and
Morlet (18).The authors Shiralashetti et al. have investigated finding the numerical solution of the strategy of wavelet operational
matrix in great detail and used it in differential equations (19,20). Authors Karkera et al. have briefly investigated the numerical
solution of third-order boundary layer Magnetohydrodynamics flow due to stretching sheet by applying the Haar wavelet
collocationmethod (HWCM) (21). Furthermore, V. B. Awati et al. discussed the forced convection of third-order boundary layer
flow problems that are solved in the Haar wavelet technique (22). Recently, many authors have investigated different problems
in differential equations and solving on the MLWOMM and they have detailed discussed calculating the Müntz−Legendre
wavelet operational matrix procedure (23–25).This technique is very precise and satisfactory compare to the Haar wavelet results.

The main goal of this article is to investigate the heat transfer problem on the effect of thermal radiation presence in a
saturated porous medium. First, to check the efficiency of the MLWOMM solution by implementing it on the boundary value
problem and comparing it with the Haar wavelet results with the exact solutions; it gives accurate results compared to the Haar
wavelet operational matrix method (HWOMM) results. So we have utilized the MLWOMM to solve the thermal radiation
problem and compare it with the velocity or temperature profiles ofHWOMMresults, and also investigated on effects of thermal
radiation with fluid suction/injection. The effects of several selected parameters such as Rd , fm and λ , have been discussed in
detail and presented in terms of graphs and tables.

2 Methodology

2.1 Mathematical preliminaries of Müntz-Legendre wavelets

Wavelets have been employed with great success in a variety of scientific and technical domains. A family of functions is
constructed by mother wavelets from dilating and translating themselves into a single function, which we call mother wavelets.
The family of continuous wavelets is following (14):

ψa,b(η) = |a|−
1
2 ψ

(
η −b

a

)
, a,b ∈ R,a ̸= 0.

Where, a is the dilation b is the translation parameter, Nevertheless, the translation parameter b varies continuously. Similarly,
a and b are the parameters of discrete values as a = a−k

0 ,b = nb0a−k
0 ,a0 > 1,b0 > 0.

https://www.indjst.org/ 2778

https://www.indjst.org/


Shiralashetti et al. / Indian Journal of Science and Technology 2022;15(48):2777–2790

Where n,k ∈ N we have the following family of discrete wavelets may be given as

ψn,k(η) = |a|−
k
2 ψ

(
ak

0η −nb0

)
, a,b ∈ R,a ̸= 0.

Where, ψn,k are the wavelet bases in L2(R). Furthermore, a = 2, and b = 1then form the orthonormal basis ψn,k(η) .

2.1.1 Müntz-Legendre polynomials
The polynomials of the nthMüntz−Legendre which are defined on the interval by[0,1) (25), we have

Lm(η) =
m

∑
k=0

ξk,mηλk, ξ0,0 = 1, ξk,m =
∏m−1

j=0 (λk +λ j +1)

∏m
j=0, j ̸=k (λk −λ j)

,m ∈ N0.

The satisfy orthogonality criteria for these polynomials are as follows∫ 1

0
Ln(η)Lm(η)dη =

(
δn,m

2λm +1

)
, (m ≥ n).

Here, δn,m is defined as the Kronecker symbol. And also the also the Müntz−Legendre polynomials have been satisfied in
terms of recursive formula:

Lm(η) = Lm−1(η)− (λm +λm−1 +1)ηλm

∫ 1

η
η−λm−1Lm−1(η)dη , η ∈ (0,1) .

In this research article, we assume that λk = kγ . Here γ is a real constant. In general, the Müntz−Legendre polynomials have
been described in terms of recurrence relation as (25) :

Lm(η) = ∑m
k=0 ξk,mηλk, ξ0,0 = 1, ξk,m =

(−1)m−k

γmk!(m− k)!

m−1

∏
z=0

((k+ z)× γ +1). (1)

Where, k = 0,1,2, . . . ,m, and Lm(η) are the Müntz−Legendre polynomials of the order min the finite intervals η ∈ [0,1),
generally, we can define the first few polynomials forλk = kγ,γ = 1/2 are

L0(η) = 1,
L1(η) = 3η1/2 −2,
L2(η) = 10η −12η1/2 +3,
L3(η) = 30η1/2 −60η +35η3/2 −4,
L4(η) = 210η +126η2 −60η1/2 −280η3/2 +5,
L5(η) = 105η1/2 −1260η2 −560η +1260η3/2 +462η5/2 −6,
L6(η) = 1260η +6930η2 −168η1/2 +1716η3 −4200η3/2 −5544η5/2 +7,
L7(η) = 252η1/2 −27720η2 −2520η −24024η3 +11550η3/2 +36036η5/2 +6435η7/2 −8,


. (2)

2.1.2 Müntz-Legendre wavelets and Function approximation
Müntz− Legendre wavelets are a type of compactly supported wavelet formed by Müntz− Legendre polynomials over the
interval [−1,1]. Generally, the Müntz−Legendrewavelets can be represented as in the interval, [0,1) , we have (25) :

ψn,m(η) =


√

(2λm +1)2
k−1

2 Lm
(
2k−1η − n̂

)
,

(
n−1
2k−1 ≤ η <

n
2k−1

)
,

0, otherwise.
(3)

The Müntz − Legendre wavelets have introduced by ψn,m(η) = ψ(n̂,k,m,η), here they are 4-arguments, where, n̂ = n −
1,n = 1,2,3,4, . . . ,2k−1 assume that kis any positive numbers η represented the time and m can be considered the order of
Müntz−Legendre polynomials. Where, k and nrepresent the level of resolution with translation parameter, and Lm(η) is the
Müntz−Legendre polynomial of degree m. With m = 0,1,2, . . . ,M −1and the coefficients of

√
(2λm +1) is orthonormality,
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if the dilation and translation parameters a = 2−k,b = n̂2−k. The Müntz − Legendre wavelets ψn,m(η)are also formed
orthonormality concerning weight function w(η) = 1 .

The Müntz−Legendre wavelets in Eq. (3) are also represented in the following way:

ψn,m(η) =
√
(2λm +1)2

k−1
2

Lm

(
2k−1η −n+1

)
χIn,k(η), (4)

Where χIn,k(η) is the specified characteristic function on
[

n−1
2k−1 ,

n
2k−1

]
, for the instance, we choose k = 2, M = 4, and γ = 1/2.

The eight bases of the Müntz−Legendrewavelet family, we have:

The Müntz−Legendre waveletsmay be used to extend any square-integrable function that can be defined on f (η)∈ L2[0,1).
we have,

f (η) = ∑∞
n=1 ∑∞

m=0 an,mψn,m(η). (6)

By truncating the above infinite series, we have

f (η) = ∑2k−1

n=1 ∑M−1
m=0 an,mψn,m(η) = aT Φ(η). (7)

Where,

an,m = ⟨ f (η),ψn,m(η)⟩=
∫ 1

0 f (η)ψn,m(η)dη , (8)

Eq. (10) represents unknown coefficients of the Müntz−Legendre wavelet, and also the matrix equivalent of Eq. (11) is as
follows (25):

f (η) = aT Φ(η), (9)

where, ais a form of row vector-that can be written as

a =
[
a1,0,a1,1,a1,2, . . . ,a1,M−1,a2,0,a2,1, . . . ,a2,M−1, . . . ,a2⋆−1,0,a2⋆−1,1, . . . ,a2⋆−1,M−1

]T
, (10)

and the matrix Φ(η) is
(
2k−1M×1

)
Φ(η) =

[
ψ1,0(η),ψ1,1(η),ψ1,2(η), . . . ,ψ1,M−1(η),ψ2,0(η),ψ2,1(η), . . . ,ψ2,M−1(η), . . . ,ψ2k−1,0(η),ψ2k−1,1(η), . . . ,ψ2k−1,M−1(η)

]T
. (11)

By using suitable collocation points are as follows:

ηl =
(2l −1)

2kM
, l = 1,2, . . . ,2k−1M. (12)
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For instance, if k = 2 and M = 4 we can write matrix form

Φ8×8 =



1.4142 1.4142 1.4142 1.4142 0 0 0 0
−1.8787 −0.3258 0.7434 1.6125 0 0 0 0
0.0180 −1.4659 −0.5801 1.2861 0 0 0 0
1.8481 −0.2586 −1.3837 0.5925 0 0 0 0

0 0 0 0 1.4142 1.4142 1.4142 1.4142
0 0 0 0 −1.8787 −0.3258 0.7434 1.6125
0 0 0 0 0.0180 −1.4659 −0.5801 1.2861
0 0 0 0 1.8481 −0.2586 −1.3837 0.5925


. (13)

2.1.3 Operational matrix of Müntz-Legendre wavelets
In the present section, we construct the operational matrices of Müntz−Legendre wavelets.The authors Shiralashetti et al. have
introduced the strategy of operational matrices of integration (20), we have:∫ η

0 Φ(η)dη = PΦ(η). (14)

Where, P is the order of 2k−1M×2k−1MMüntz−Legendrewavelet operational matrix. Now we have illustrated the procedure
of calculating the Müntz−Legendre operational coefficient matrix P. In particular, if k = 2,M = 4 and γ = 1/2. Firstly, we can
choose eight basis functions that are represented in Eq. (5), by integrating Eq. (5) by using corresponding collocation points
provided in Eq. (12) we will get∫ η

0 ψ1,0(η)dη =

{ √
2η , η ∈

[
0, 1

2

)
√

2
2 , η ∈

[ 1
2 ,1

) =
[ 1

4 ,
197
1393 ,

14
485 , 0, 1

2 , 0, 0, 0
]T Φ8(η) ,

∫ η
0 ψ1,1(η)dη =

{
4
√

2η3/2 −4η , η ∈
[
0, 1

2

)
0, η ∈

[ 1
2 ,1

) =
[
− 197

1393 , 0, 41
703 ,

2
99 , 0, 0, 0, 0

]T Φ8(η),

∫ η
0 ψ1,2(η)dη =

{ √
6η

(
10η −8×21/2η1/2 +3

)
, η ∈

[
0, 1

2

)
0, η ∈

[ 1
2 ,1

) =
[
− 26

625 ,−
29
962 ,−

7
185 ,

41
607 ,0,0,0,0

]T Φ8(η),

∫ η
0 ψ1,3(η)dη =

{
−8η

(
15×21/2η +21/2 −10η1/2 −14η3/2

)
, η ∈

[
0, 1

2

)
0, η ∈

[ 1
2 ,1

) =
[
− 1

31 ,
11
284 , − 85

691 ,
59

1041 , 0,0,0,0
]T Φ8(η) ,

∫ η
0 ψ2,0(η)dη =

{
0, η ∈

[
0, 1

2

)
√

2
(
η − 1

2

)
, η ∈

[ 1
2 ,1

) =
[
0, 0, 0, 0, 1

4 ,
197
1393 ,

14
485 , 0

]T Φ8(η),

∫ η
0 ψ2,1(η)dη =

{
0, η ∈

[
0, 1

2

)
2(2η −1)3/2 −4η +2, η ∈

[ 1
2 ,1

)
=
[
0, 0, 0, 0, − 197

1393 , 0, 41
703 ,

2
99

]T Φ8(η),∫ η
0 ψ2,2(η)dη =

{
0, η ∈

[
0, 1

2

)
√

6
(
7η +4(2η −1)3/2 −10η2 −1

)
, η ∈

[ 1
2 ,1

)
=
[
0,0, 0,0,− 26

625 ,−
29

962 ,−
7

185 ,
41
607

]T Φ8(η),∫ η
0 ψ2,3(η)dη =

{
0, η ∈

[
0, 1

2

)
112

√
2η +20

√
2(2η −1)3/2 +14

√
2(2η −1)5/2 −26

√
2−120

√
2η2, η ∈

[ 1
2 ,1

)
=
[
0, 0,0, 0,− 1

35 ,
11
284 , − 85

691 ,
59

1041

]T Φ8(η).
Therefore, in the following Eq. (15), we obtain the form:∫ η

0 Φ8×1(η)dη = P8×8Φ8(z), (15)

where,

P8×8 =



0.2500 0.1414 0.0289 0 0.5000 0 0 0
−0.1414 0 0.0583 0.0202 0 0 0 0
−0.0416 −0.0301 −0.0378 0.0675 0 0 0 0
−0.0286 0.0387 −0.1230 0.0567 0 0 0 0

0 0 0 0 0.2500 0.1414 0.0289 0
0 0 0 0 −0.1414 0 0.0583 0.0202
0 0 0 0 −0.0416 −0.0301 −0.0378 0.0675
0 0 0 0 −0.0286 0.0387 −0.1230 0.0567


. (16)
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Similarly, we maintain the same procedure, integrating Eq. (15) we will find that Q and R are the operational matrices. We have∫ η
0
∫ η

0 Φ(η)dηdη = Q8×8Φ8(η), (17)∫ η
0
∫ η

0
∫ η

0 Φ(η)dηdηdη = R8×8Φ8(η), (18)

where,

Q8×8 =



0.0413 0.0345 0.0144 0.0048 0.2500 0.0707 0.0144 0
−0.0384 −0.0210 −0.0088 0.0051 −0.0707 0 0 0
−0.0001 −0.0029 −0.0092 0.0002 −0.0144 0 0 0
0.0050 −0.0009 0.0015 −0.0062 0 0 0 0

0 0 0 0 0.0413 0.0345 0.0144 0.0048
0 0 0 0 −0.0384 −0.0210 −0.0088 0.0051
0 0 0 0 −0.0001 −0.0029 −0.0092 0.0002
0 0 0 0 0.0050 −0.0009 0.0015 −0.0062


, (19)

R8×8 =



0.0049 0.0056 0.0021 0.0019 0.0727 0.0349 0.0108 0.0024
−0.0057 −0.0051 −0.0025 −0.0008 −0.0362 −0.0100 −0.0020 0
0.0013 0.0001 0.0003 −0.0008 −0.0031 −0.0020 −0.0004 0
0.0009 0.0004 0.0008 −0.0003 0.0020 0 0 0

0 0 0 0 0.0049 0.0056 0.0021 0.0019
0 0 0 0 −0.0057 −0.0051 −0.0025 −0.0008
0 0 0 0 0.0013 0.0001 0.0003 −0.0008
0 0 0 0 0.0009 0.0004 0.0008 −0.0003


. (20)

2.2 Müntz-Legendre wavelet operational matrix method of solution
In this section, we developed a numerical solution to a nonlinear third-order Boundary value problem andheat transfer problem
on natural convection about a vertical plate immersed in a saturated porous medium arising in heat and mass transfer. For the
test applicability of the Müntz−Legendre wavelets, we concentrate on the following boundary value problems that are defined
with the intervals on [0,1). And we consider the general form of the third-order differential equation as follows:

F
′′′
(η) = f

(
η ,F,F

′
,F

′′
)
. (21)

Following Shiralashetti et al. (17), we assume that

F
′′′
(η) = ∑2k−1M

l=1 alψ(η) = aT Φ(η), (22)

where, aT is the unknown Müntz−Legendre wavelet coefficients and integrating the above Eq. (22) from 0 to η , we have

F ′′(η) = F ′′(0)+∑2k−1M
l=1 aiP(η) = F ′′(0)+aT P(η), (23)

integrating the above Eq. (23) from 0 to η , we have:

F ′(η) = F ′(0)+ηF ′′(0)+∑2k−1M
l=1 aiQ(η) = F ′(0)+ηF ′′(0)+aT Q(η), (24)

again integrating the above Eq. (24) from 0 to η , we get F(η)

F(η) = F(0)+ηF
′
(0)+

η2

2
F

′′
(0)+

2k−1M

∑
l=1

alR(η) = F(0)+ηF
′
(0)+

η2

2
F

′′
(0)+aT R(η). (25)

In the above Eq. (25) we find F ′′(0) using boundary conditions and if we set η∞ = 1, we get

F
′′
(0) =

[
F

′
(1)−F

′
(0)−∑2k−1M

i=1 alEl

]
=
[
F

′
(1)−F

′
(0)−aT E

]
. (26)

Here, E =
∫ 1

0 Pl(η)dη . Nowwe have substituted the values F(η),F ′(η),F ′′(η),F ′′′(η) and f ′′(0) in Eq. (21) and applied them
using collocation points given in Eq. (12), finally, a 2k−1M×2k−1M nonlinear system is obtained. To solve a nonlinear system
to calculate the unknowns of Mü ntz-Legendre wavelet coefficients a′iS Newton’s iterative technique is applied. The received a′iS
values are substituted in the Eq. (25), and we get the MLWOMM solution.
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2.3 Müntz-Legendre wavelet operational matrix method of implementation

In this section, we developed a numerical solution for a system of third-order nonlinear boundary value problems and the effect
of thermal radiation problem on the natural convection of vertical plate embedded in a saturated porous medium, by using the
MLWOMM, in the interval [0,1). The received results are compared with the Haar wavelet solutions.

Test problem 1. Firstly, we consider the third-order nonlinear boundary value problem (26):

F ′′′(η)−η4F(η)+ [F(η)]2 −g(η) = 0, 0 < η < 1,η ∈ [0,1],
F(0) = 0,F ′(0) =−1, F ′(1) = sin(1).

}
, (27)

Here, g(η) =−3sin(η)− cos(η)(η −1)−η4(η −1)sin(η)+(η −1)2 sin2(η).
Eq. (27) has the exact solution as F(η) = (η −1)sin(η).
Now we have substituted the values F ′′′(η) and F(η), in Eq. (27), from section 2.2 and applied them using collocation

points given in Eq. (12), finally, a third-order nonlinear system is obtained.

aT
[
Φ(η)−η4R(η)

]
− η6

2
[
sin(1)−aT E +1

]
+

[
aT R(η)−η +

η2

2
[
sin(1)−aT E +1

]]2

+η5 −g(η) = 0. (28)

If k = 2,M = 4 ⇒ 2k−1 ×M = 8,γ = 0.5, η ∈ [0,1) for instance, we have the nonlinear system is obtained.
Solving the above nonlinear system to find the unknowns of Müntz−Legendre wavelet coefficients a′lS Newton’s iterative

technique is applied. We take k = 2, M = 4, and γ = 0.5 . The received calculated unknown Müntz− Legendre wavelet
coefficients a1 =−0.0082, a2 =−0.4006, a3 =−0.0829, a4 = 0.0048, a5 =−1.2944, a6 =−0.3073, a7 =−0.0489, a8 =
0.0132, these values are substituted in Eq. (25), and we get theMLWOMMsolution.The collected results are presented in terms
of Table and graph. The effectiveness of MLWOMM is presented by comparison with exact solutions and HWOMM solutions
which are demonstrated in Table 1. The obtained numerical results show in Figure 1. The displayed, Table and graph clearly
show that the comparisons ofMLWOMMsolutions are in great agreement with the exact solutions, andmore accurate solutions
compare to HWOMM solutions.

Table 1. Comparison of MLWOMM, and HWOMM with exact solutions of Test problem 1.
For instance k = 2,M = 8,γ = 0.5
η Exact solution HWOMM solu-

tion
MLWOMM solution Absolute error Absolute error

0.0313 -0.0303 -0.0306 -0.0303 0.0003 0.0000
0.0938 -0.0848 -0.0870 -0.0848 0.0021 0.0000
0.1563 -0.1313 -0.1360 -0.1312 0.0047 0.0001
0.2188 -0.1695 -0.1768 -0.1694 0.0073 0.0001
0.2813 -0.1995 -0.2087 -0.1993 0.0092 0.0002
0.3438 -0.2212 -0.2313 -0.2209 0.0102 0.0003
0.4063 -0.2346 -0.2448 -0.2342 0.0102 0.0004
0.4688 -0.2400 -0.2494 -0.2395 0.0094 0.0005
0.5313 -0.2375 -0.2454 -0.2375 0.0080 0.0000
0.5938 -0.2273 -0.2335 -0.2273 0.0062 0.0000
0.6563 -0.2097 -0.2140 -0.2097 0.0043 0.0000
0.7188 -0.1852 -0.1878 -0.1852 0.0026 0.0000
0.7813 -0.1540 -0.1553 -0.1540 0.0012 0.0000
0.8438 -0.1167 -0.1171 -0.1167 0.0004 0.0000
0.9063 -0.0738 -0.0737 -0.0738 0.0001 0.0000
0.9688 -0.0258 -0.0255 -0.0257 0.0002 0.0001

Error Estimate: We derive the absolute error of the Müntz−Legendre wavelet operational matrix method (MLWOMM).
This technique allows comparing our findings to the exact solutions as well as numerical solutions obtained through other
approaches of HWOMM. The absolute error is used to determine the precision of the suggested method. We use the definition
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Fig 1.Numerical solution of the MLWOMM and HWOMM with the exact solutions of the test problem 1

of absolute error to compare the approximate solutions and exact solutions of the proposed method. The absolute error can be
defined as (14),

e(η) = |F(η)−F∗(η)| , η ∈ [0,1).
Here, F(η)andF∗(η) are represented by exact solutions and approximated solutions of MLWOMM and HWOMM.
Heat transfer Problem 2. Lastly, we consider the thermal radiation problem in the heat transfer, we solve the third-order

nonlinear thermal radiation problem on natural convection of vertical plate embedded in a saturated porous medium. This
problem is solved by using the Müntz−Legendre wavelet operational matrix method.

The mathematical formulation of the problem : Let us consider the 2-dimensional viscous incompressible fluid flow
induced by steady natural convection warmed vertical plate immersed in a saturated porous medium with the T∞ outside
temperature distribution. The viscous fluids are considered Newtonian, with the plate surface being subjected to continual
fluid blowing or suction. The governing boundary equations for this problem can be expressed, and taking into Boussinesq and
Darcy approximations can be introduced as (2,3) :

∂u
∂x

+
∂v
∂y

= 0, (29)

∂u
∂y

=
gKβ

v
∂T
∂y

, (30)

(
u

∂T
∂x

+ v
∂T
∂y

)
=

1
ρCp

(
k

∂ 2T
∂y2 − ∂Qr

∂y

)
. (31)

The associated boundary conditions are:

x ≥ 0, T (x,0) = Tw(x), v(x,0) =Vw(x), at y = 0
x ≥ 0, T (x,∞) = T∞, u(x,∞) = 0, at y = ∞} , (32)

Here, u and vare represents velocities along x and yco-ordinates respectively, T is the viscous fluid temperature,Cp is the specific
heat at constant pressure, ρ is the density of the fluid, k is the equivalent thermal diffusivity, v is the kinematic viscosity, K is
the porous medium’s permeability, β is the coefficient of thermal expansion and g is the gravitational acceleration. We assume
that temperature distribution on the plate is governed by the power-law equation Tw = T∞ +Axλ , Here, A is a non-negative
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constant for heated plates, and λ is the temperature exponent. The radiation heat flux based on the Rosseland diffusion model
for thermal radiation heat flux is expressed as (3) :

Qr =−4σ
3χ

∂T 4

∂y
. (33)

Here, χ and σ are the Rosseland mean absorption constant and Stefan−Boltzmann coefficient. We assume that T 4 is a linear
function temperature since temperature changes within the flow are negligible. As a result, T 4 is expanded in a Taylor series T∞
while higher-order terms are ignored. The following term T 4can be represented as:

T 4 ≈ 4T T 3
∞ −3T 4

∞ , (34)

The system of partial differential equations is transformed into a simple nonlinear ordinary differential equation by using
similarity transformations. We introduce and use the similarity transformations and parameters (2), we have:

Ψ(x,y) = αRaxF(η), Rax =
gβK (Tw −T∞)x

αv
, T = T∞ +Axλ θ(η)

Rd =
16σT 3

∞
3γk

, η(x,y) =
y
x

Ra1/2
x , θ(η) =

T −T∞

Tw −T∞
,α =

k
ρCp

 , (35)

Here, Rax is the modified Darcy-Rayleigh number, and the stream function Ψ(x,y) is denoted as

v =−∂Ψ
∂x

=−
( α

2x

)
Ra1/2

x

[
(λ +1)F +(λ −1)F

′
]
, u =

∂Ψ
∂y

=
α
x

RaxF
′
(η). (36)

And Eqns. (30) and (31) become the system of nonlinear ordinary differential equations with boundary conditions as the results
follow:

F
′′
(η) = θ ′

(η), (37)

θ ′′
(η)+

λ +1
2(Rd +1)

F(η)θ
′
(η)− λ

(Rd +1)
F

′
(η)θ(η) = 0. (38)

Here, the prime represents differentiation concerning η , λ represents temperature exponent, and Rd represents thermal
radiation parameter. We see in Eq. (35), and the boundary conditions (32), are transformed into suitable boundary conditions,
we have:

F(0) = fm, F
′
(∞) = 0,

θ(0) = 1, θ(∞) = 0,

}
. (39)

The speed of injection or suction at the flat plate surface is given by:

v(x,0) =−
( α

2x

)
Ra1/2

x (1+λ )F(0), (40)

Here, fm = F(0) is the injection or suction parameter with the value of parameter fm > 0 or fm < 0. The fluid’s entrainment
velocity is given by;

v(x,∞) =−
( α

2x

)
Ra1/2

x (1+λ )F(∞). (41)

By inserting Eq. (37) into (38), we get the third-order nonlinear ordinary differential Eq. (42) connected with the boundary
conditions in Eq. (43) we have:

F
′′′
(η)+

λ +1
2(Rd +1)

F
′′
(η)F(η)− λ

(Rd +1)

(
F

′
(η)

)2
= 0. (42)
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With corresponding boundary conditions are as follows:

F(0) = fm, F
′
(0) = 1, F

′
(∞) = 0. (43)

We observe the Eqns. (37), (38), and (39) that F ′(η) = θ(η) indicate the vertical velocity and temperature profiles are identical.
The Rayleigh and Nusselt’s local number can be represented as follows:

NuxRa−1/2
x =−θ ′

(0). (44)

LWOMM solution of the heat transfer problem (42) with (43) is as follows:We developed a numerical solution for third-order
nonlinear ordinary differential equations by using to solve MLWOMM, with a finite interval [0,1) . The problem Eq. (42) is a
semi-infinite physical domain that is shortened to a finite domain by adding an unknown finite boundary η∞, and the problem
is normalized by introducing coordinate transformation (21) , In Eq. (43), the corresponding boundary condition of F ′(∞) = 0 ,
let we take η∞ = 1 that implies F ′(1) = 0. The general method of solution we have already discussed in section 3. Here, we use
the same procedure, Now we have substituted the values of F(η), F ′(η), F ′′(η), F ′′′(η) and F ′′(0) from section 2.2, in
Eq. (42) with corresponding boundary conditions in Eq. (43) and applied them to collocation points in Eq. (12), and finally, a
nonlinear system is obtained.

aT Φ(η)+
λ +1

2(Rd +1)

{(
fm +η +

η2

2
(
−1−aT E

)
+aT R(η)

)
×
((
−1−aT E

)
+aT P(η)

)}
−

λ
(Rd +1)

×
[(

1+η
(
−1−aT E

)
+aT Q(η)

)]2
= 0,

(45)

here, Φ(η), P(η),Q(η),R(η),E, l = 0,1,2,3, . . . ,2k−1 × M are the
(
2k−1 ×M

)
×
(
2k−1 ×M

)
square matrices and E are

the column matrix coefficients of Müntz − Legendre wavelet. Solving the nonlinear system Eq. (45) to find the unknown
Müntz−Legendre wavelet coefficients ai

′s Newton’s iterative technique is used. In this Newton’s iterative approach to solving
by using Matlab software 2020a, initially, we take the level of resolution values k and M, we have also taken collocation points,
Next, the level of resolution k,M, increases the scale of matrices also increases. The main advantage of this algorithm’s results is
to decreases and it takes less time to compute and execute for the numerical solution of BVPs. And calculate the unknown
coefficients of a′is are using Newton’s iterative approach successfully applied. This technique is repeated until the required
exactness is reached. The obtained results of the MLWOMM solutions are demonstrated in terms of tables and graphs. The
effectiveness of MLWOMM is presented and comparison solutions are shown in Figure 2 and Table 2

Fig 2. Numerical solutions of MLWOMM and HWOMM solutions at fm = 1 of of the Heat transfer Problem 2.

3 Results and Discussion
The study presents that the computations were performed numerically to analyze the boundary value problem represented by
Eq. (27) and the heat transfer problem (Eq. (42)) with corresponding boundary conditions provided by Eq. (43) on the semi-
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Table 2. Comparison of MLWOMM results with the HWOMM results of the Heat transfer problem 2.
For
instance
k =
2,M =
8, at λ =
1, Rd =
1
For fm = 1 For fm =−1
η HWOMM

Solution
of
F ′(η),θ(η)

MLWOMM
Solution
of
F

′
(η),θ(η)

HWOMM
Solution
of
F ′(η),θ(η)

MLWOMM
Solution
of
F ′(η),θ(η)

0.0313 0.9495 0.9556 0.9689 0.9703
0.0938 0.8564 0.8703 0.9078 0.9110
0.1563 0.7720 0.7892 0.8475 0.8517
0.2188 0.6942 0.7122 0.7878 0.7921
0.2813 0.6217 0.6390 0.7283 0.7323
0.3438 0.5537 0.5693 0.6688 0.6722
0.4063 0.4893 0.5029 0.6090 0.6115
0.4688 0.4280 0.4397 0.5487 0.5503
0.5313 0.3695 0.3759 0.4878 0.4893
0.5938 0.3135 0.3180 0.4260 0.4269
0.6563 0.2598 0.2628 0.3633 0.3637
0.7188 0.2081 0.2100 0.2996 0.2997
0.7813 0.1585 0.1596 0.2349 0.2348
0.8438 0.1108 0.1114 0.1691 0.1690
0.9063 0.0651 0.0653 0.1023 0.1021
0.9688 0.0212 0.0213 0.0343 0.0343

Fig 3. Vertical velocity or temperature profiles λ = 1, fm = 1, for various values of Rd .
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Fig 4. Velocity or Temperature profiles λ = 1,Rd = 1, for various values of fm.

infinite domain is solved by using the MLWOMM as described in Section 2.2. First, we solved the test problem of the boundary
value problem given in Eq. (27) with the exact solution, the purpose of solving this problem is to check the accuracy of our
proposed method and confirms by verifying our MLWOMM results. The collected results are presented in terms of Tables and
Graphs. The effectiveness of MLWOMM is presented by comparison with exact solutions and HWOMM solutions which are
demonstrated in Table 1, and Figure 1 shows the numerical results of MLWOMM and HWOMM solutions. The display, Tables,
and Graphs clearly show that the comparisons of MLWOMM solutions are in great agreement with the exact solutions, and
more accurate solutions compare to HWOMM solutions. Next, we select the thermal radiation problem with Eq. (42), and Eq.
(43) to be solved by using MLWOMM in Matlab software 2020a.

Table 2 and Figure 2 are displayed for the results of the heat transfer problem, the vertical velocity or temperature profile
results of MLWOMM that found that they are more accurate compared to the HWOMM results. We observed these results
in Table 2, For instance, k = 2, M = 8, λ = 1, Rd = 1 when the suction/injection parameter fw = 1 , the velocity or
temperature profile results are decreases compare to the suction/injection parameter fw =−1.Displayed Figure 2, clearly shows
the comparison of MLWOMM solutions is more accurate than the HWOMM solutions.

Displayed Figures 3 and 4 clearly show solutions for the temperature of the plate with constant lateral mass flux (λ =
1) controlled by the fw with the Rd . The exponential decay temperature θ(η)or velocity F ′(η) profiles through the boundary
layers are confirmed in Figures 3 and 4. The calculations of suction/injection parameters fm were performed for different
cases, in the presence of thermal radiation Rd , which corresponds to the parameters are suction fm > 0, injection fm < 0 ,
and impermeable plate fm = 0 . The velocity F ′(η) or temperature profiles θ(η) are numerical results illustrated in Figures 3
and 4, for the parameters λ , fm and Rd be the selected values of the thermal radiation problem. In Figure 3 we observed that the
fluid velocity or temperature profile rate increases with increasing values of the thermal radiation parameter Rd . This is because
the effect of radiation Rd is to increase the rate of energy transport to the fluid, and therefore the fluid temperature. And also
Figure 4 shows Suction greatly reduces the thickness of the boundary layer for fm = 1 , whereas injection significantly increases
it for fm =−1 ; however, the flow of heat surface is always non-negative, regardless of the value of fm, because heat is transferred
from the surface to the porous medium.

Overall we observe in the tables and graphs, that the numerical outcomes which are obtained by using MLWOMM are in
very excellent agreement with the obtained HWOMM results. On the contrary, the typical Haar wavelet technique produces
a good solution, but MLWOMM produces excellent solutions when it is compared with HWOMM solutions. As MLWOMM
results are more accurate than HWOMM results. And also vertical velocity or temperature profile rate was studied.

4 Conclusion
In the present article, we studied the heat transfer of the thermal radiation effect on natural convection around a vertical flat
surface immersed in a saturated porous medium. Initially, to ensure the efficiency of the proposed strategy, a third-order

https://www.indjst.org/ 2788

https://www.indjst.org/


Shiralashetti et al. / Indian Journal of Science and Technology 2022;15(48):2777–2790

nonlinear boundary value problem having the exact solution is presented as a test problem. Next, formulated Heat transfer
problem, the governing equation of the problem with proper boundary conditions is reduced into the nonlinear ordinary
differential equations by applied similarity transformations. The nonlinear problems with finite intervals are numerically
solved by using MLWOMM. The effect of the thermal radiation parameters Rd , with the injection/suction of fluid fm, and
the temperature exponent’s parameter λ are discussed graphically. And also the effect of fluid velocity or temperature profile
rate was studied. Furthermore, the obtained MLWOMM results are in very excellent agreement with the obtained HWOMM
results and the more accurate than HWOMM results.
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