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Abstract

Objectives: Data collection and distribution are essential components
required for the victory of Internet of Medical Things (IoMT) system. Gener-
ally, missing data is the most recurrent problem that impacts an overall system
performance. Methods: Missing data in loMT systems can be caused by var-
ious factors, including faulty connections, external attacks, or sensing errors.
Although missing data is ubiquitous in 10T, missing data imputation is hardly
ever observed in an IoMT setting. As a result, doing analytics on loMT data with
missing values causes a deterioration in the accuracy and dependability of the
data analysis outputs. To achieve excellent performance, missing data must be
imputed once it occurs in such systems. Therefore, this paper proposes a novel
Two Tier Missing Data Imputation (TT-MDI) technique for missing at random
(MAR) type missing data in [oMT using an enhanced linear interpolation tech-
nique. Findings: The proposed TT-MDI algorithm has two tiers for imputing
MAR missing data and it was tested using the Kaggle Machine Learning Repos-
itory’s cStick loMT dataset. Utilizing the distances between the class centroids
with their related data instances, the first tier aims to identify the imputation
threshold. The identified threshold is then used by the second tier to impute
missing data. According to the experimental findings, the proposed work offers
higher accuracy, precision, recall, and F-measure for imputed dataset using the
TT-MDI technique than missing data included dataset when compared to the
original dataset. Novelty: The TT-MDI technique consists of two tiers. The
first tier uses Manhattan distances between class centroids and related data
instances to discover the imputation threshold. Next, the second tier uses
the discovered threshold to impute missing data using the Enhanced Linear
Interpolation technique.
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1 Introduction

The Internet of Medical Things (IoMT) is a system of hardware elements, software and
medical devices connected to the Internet for use in healthcare IoT V). ToMT, also known
as the Internet of Things in healthcare, enables distant and wireless devices to safely
interact via the Internet to enable quick and appropriate healthcare data processing.

The Internet of Things has a clear and long-lasting impact on the healthcare industry.
According to a recent Deloitte survey?), the worldwide IoMT market is expected to
grow from $41 billion in 2017 to $158 billion by 2022. The IoMT has a variety of effects
on the healthcare industry. These changes are most noticeable when IoMT is utilized in
the home, on the body, in the community, and hospitals.

1.1 In-Home IoMT

Utilizing in-home-IoMT, individuals can transmit healthcare records from their
residences to other locations, like their healthcare practitioner or a medical Centre.
For instance, remote patient monitoring (RPM) involves using medical devices to
transmit data from recently discharged patients” hospitals, such as pulse rate and oxygen
saturation, for evaluation by their doctors. Through the early detection of issues, re-
admissions to hospitals may be avoided.

1.2 On-Body loMT

Worn medical devices linked to remote surveillance or tracking systems are on-body-
IoMT. On-body-IoMT, unlike in-home-IoMT, could be utilized exterior of the house as
individual go about their daily activities.

Consumer-on-body-IoMT devices are worn health trackers which anybody could
purchase for personal use or share with physicians. These devices can provide early
warning indicators for further severe health issues and record a typical metric like heart
rate. The Apple Watch, for instance, could alert users to abnormal cardiac beats.

1.3 Community loMT

The utilization of IoMT sensors across a larger city or geographical region is known as
community-IoMT. Community-IoMT includes technology that allows remote services
and mobile and emergency treatment. Point-of-care devices, for instance, could be
utilized through health professionals in non-conventional hospital contexts like military
hospitals, and kiosks could be utilized to distribute medicines to patients in locations
where conventional infrastructures are limited or non-existent.

1.4 In-Hospital loMT

Hospitals need to monitor the availability and distribution of their medical resources
throughout time and how staff and patients shift about the facility. Healthcare
practitioners use IoMT devices and other surveillance equipment to monitor these
communications; thus, those administrators can obtain a complete picture of what is
going on.

The most serious problem with IoT devices is a shortage of crucial data required
to keep them working. Missing data is a serious issue that hinders the effectiveness
of programs and forces them to fail®). A robust technique for retrieving missing data
should ensure that ToMT systems work properly and precisely .

For example, suppose a problem (e.g., a sensor failure) happens in the motion sensor.
In that scenario, the data from the sensor won’t be adequately received by the desired
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applications, which would cause significant issues for users (e.g., doctors) who will miss vital information about the patient’s
status. We provide a unique technique for filling missing data utilizing a novel Two Tier Missing Data Imputation (TT-MDI)
technique that considers the previous data obtained by a given sensor to fore see novel plausible missed values in IoMT systems
to minimize potential difficulties.

(cStick®), a well-known medical dataset which models ToMT systems is used to validate the proposed technique. The
effectiveness of the IoMT systems will suffer if there are missing values in this dataset (especially missing at random (MAR)
type). To maintain JoMT networks’ functionality and guarantee that customers receive top quality services, missing data must
be filled in. Threshold discovery (Tier-1) and Missing data imputation (Tier-2) utilizing Enhanced Linear Interpolation are the
two primary tiers of the proposed TT-MDI technique for imputing missing data.

The following sections make up the paper’s configuration: In Section II, the related work of existing missing data imputation
approaches is discussed. Section III demonstrates the proposed technique for imputing missing data. In Section IV, the
experimental setup, as well as the analysis and assessment of the attained outcomes, are described. Section V provides the
conclusion at the end.

2 Related Work

This section discussed some related works of existing missing data imputation techniques.

Jia et al.®) suggested a mixed matrix factorization-based Imputation Method for traffic Congestion Records, or CIM
for short. CIM jointly analyzes the regularity, road similarities, and temporal synchronization features of traffic congestion
behaviors in order to approximate the missing congestion data. In specifically, using the data on traffic congestion, the authors
initially built an order-3 tensor. The authors then used joint matrix factorization to predict the periodicity and road similarity
by combining the geographical and temporal data. In order to guarantee the temporal coherence, the authors added local
constraints to the matrix factorization process. According to their findings on an actual traffic dataset, modeling all three
characteristics of traffic patterns at once is effectual, and CIM outperformed the benchmarks for imputation work for missing
traffic records.

Turabieh et al. ©) presented a D-ANFIS (dynamic adaptive network-based fuzzy inference system) approach for missing data
imputation but accurately. The main contribution is to impute missing values after they are obtained by splitting the acquired
data into two datasets: 1) complete dataset (with no missing data) and 2) incomplete dataset (with missing data) (with missing
data). Then, the D-ANFIS is trained using a holdout approach with complete data, and the missing value is imputed using the
partial dataset (s). The authors concluded that using D-ANFIS improves IoMT performance effectively.

Silva-Ramirez et al.”) initiated the CANFIS-ART technique to automate data imputation, which is using the Co-active
Neuro-Fuzzy Inference System. The Fuzzy- ART technique is used to create this model, consisting of Neural Network adaptive
abilities and a fuzzy logic qualitative method. The efficacy of the CANFIS-ART approach is evaluated to that of various modern
imputation methods such as Multilayer Perceptron or Hot-Deck, among others, utilizing a total of eighteen databases showing a
perturbation procedure using the random formation of non-monotone missing data patterns. The fields, variables, and sizes of
the data sets vary. A set of three classifiers was used to compare databases imputed by various approaches. These findings were
statistically examined utilizing Wilcoxon signed-rank test. The authors determined that the CANFIS-ART method surpasses
existing approaches and shows a greater generalization power, enhancing the accuracy of the data in databases containing
missing data.

Su et al.® presented a strategy for imputing missing data using statistics and machine learning that takes advantage of
one-dimensional interpolation of the interest variable to capture global trends and linear compensatory of multidimensional
variables to capture local variation. First, the mapping of multidimensional nonlinear variables into a feature space utilizing
KCPA, and the resulting novel variables are directly coupled by the interest variable. The linear compensation is then performed
using these novel variables in conjunction with the multidimensional linear variables. According to the comparative experiment,
this technique surpasses commonly utilized techniques by decreasing RMSE by 29.19 per cent and MAE by 44.73 per cent on
average and having the nearby to 1.

Franga et al.®) provided a technique to forecast and impute missing data in IoT gateways to attain special autonomy on the
network edge. These gateways normally have inadequate computing resources. As a result, missing data imputation approaches
must be simple and effective. As a result, two regression methods using neural networks were given in this paper to impute
incomplete data in IoT gateways. The authors looked at the execution time and the quantity of memory required, and the
forecast quality. The authors used six years of climate data from Rio de Janeiro to evaluate their models, altering the missing data
percentages. The authors concluded that neural network regression methods work better than the other imputation approaches
tested, based on averages and repetition of past values for overall missing data percentages. Furthermore, the neural network
models have a short execution time and use fewer than 140 KB of memory, allowing them to operate on IoT gateways quickly.
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Kamkhad et al. !9) proposed and explored a novel method for semantically imputing missing data using an ontology model.
The authors add three novel developments to the area: Initially, they use Particle Swarm Optimization (PSO) that is applied to
the problem of cleaning up integer data, to increase the effectiveness of missing data forecasting. PSO’s effectiveness is enhanced
utilizing K-means to assist determine the fitness score. Next, using ontology with PSO to reduce the search space and improve
PSO’s accuracy in anticipating missing numerical values whilst also allowing it to arrive at a solution swiftly. The last step is
to create a logical framework for structural and knowledge-based modelling that will use conceptual linkages to substitute the
nominal data that is lacking from the dataset. As evaluated through the root-mean-square error, the authors determined that
their methodology can calculate missing data effectively and with less likelihood of error than traditional techniques.

Lee et al. 1) propose MP-BMDI, a high-performance imputation algorithm for sustaining big data studies in IoT systems,
where the lack of huge missing sub-sequences is necessary to provide unbiased outcomes. The authors use a method that involves
finding a finite amount of sub-sequences which are generally identical to the sub-sequence before the missing data, after that
adjusting the tallness of the sub-sequences that follow to ideal places. The relevant sub-sequence completely replaces the missing
gap after the most appropriate sub-sequence for replacement is picked between them using the pattern score function PSF(r)
proposed in 1?), By exploiting sensor data acquired from real environment surveillance and providing substantial insights on the
algorithm’s efficacy from many viewpoints, mathematical outcomes are offered to confirm the algorithm’s advantages compared
to alternative benchmark methodologies.

Jietal.13) advocated using multi-source data to fill in the missing traffic data. Gru network captures missing patterns because
of traffic data’s regularity and specificity. The processed missing, mask, and time interval data are fed into the Gru network for
additional in-depth information capture. The findings of road speed matching for floating vehicle information on the road in
the relevant period are investigated further by the Gru network. The two outcomes are combined to provide the filling value of
the missing value.

Utilizing an unsupervised neural network and Adaptive Resonance Theory 2 (ART2), Nickolas et al.'¥) introduced
CLUSTIMBP, a Clustering Based Imputation Algorithm. The effectiveness of the imputation approach is evaluated to existing
imputation algorithms using the Root Mean Squared Error (RMSE) rate as the performance indicator. In addition, the impact of
the methodology is assessed utilizing imputation data set for classification accuracy, with a Type II error rate decrease ranging
from 2% to 11% depending on the classifier.

3 Methodology
3.1 Novel Two Tier Missing At Random Type Missing Data Imputation

This section proposed a novel two-tier missing data imputation technique (TT-MDI) to impute the missing at the random type
of data. Utilizing the distances between the class centroids with their related data instances, the first tier aims to identify the
imputation threshold. The identified threshold is then used by the second tier to impute missing data. The subsections that
follow describe these two tiers.

3.2 Tier 1 - Threshold Discovery

Figure 1 depicts the first tier’s process for identifying the threshold for missing value imputation. It consists of four steps, each
of which is explained below.

Step 1: Given dataset D has N classes and M dimensions.

Step 2: The i-th class (i = 1 to N) of D, represented as D;, is separated into complete (D;_compiere) and incomplete subsets
(Di_incomplete)» Where the latter contain missing data.

Figure 2 illustrates nine feature dimensions with a two-class incomplete dataset, in which the red boxes specify the missing
values.

Step 3: For thei-th class, compute its class centroid of j-th feature, cent(D; ;), which is explained in Equation (1), and standard
deviation std(D; ;) of D;_compiere, which is explained in Equation (2).

_ L

cent (Dij) ;

(1)

Here ) x;; is the sum of j-th feature values from all i-th class data instances, and n is the number of i-th class data instances.

std (Dyj) = \/Z by eent(DE)” )

n
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Tier 1

D} complete DN _complete

Step 1 Step 2

T Divide D into D gymplete
@ Dataset and Dipcomplete Subsets based
™ on classes i (Here i=1 to N)

Complete
Subsets

ese | Complete
Subsets

Incomplete
Subsets

wes |Incomplete
Subsets

D1_incomplete DN_incomplete

Fori=lto N

Compute each class centroid
Step 3 |cent(D; and standard deviation
std; of Dj_complete

l

Compute the distances between
cent(Dj) and the data instances
in class i

I

Select the median of the
Step 4 distances for the Threshold T; of]
class i

X

Fig 1. Flow diagram of Tier1-Threshold Discovery

Class 1

D1_complete

1
:H ! E. ‘ ‘ ‘ ‘ ‘ ‘ ‘ ! ‘Dl’i"mmp‘m

:. . : ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ : ‘DZJOMPME

Dataset D (with M=9 and N=2)

Fig 2. A two-class dataset example for subset division

Using Equation (1) and Equation (2), we can compute the class centroid and standard deviation of all features and obtains
cent(D;) and std(D;). Next, the Manhattan distance (MD) between cent(D;) and each data instance in class i is computed. For
example, let the values of a cent(D;) is [aj,...., a,,] and the values of a data instance is [by,...., b,,], then the Manhattan distance
calculation shown in Equation (3).

MD:|a1—b1\+...+|am—bm\ (3)

Step 4: The threshold Ti for class i is determined by taking the median of the distances between each data instance in the class
and the class centroid. Finally, Steps 3 and 4 are repeated up until the threshold is attained for each class.

Figure 3 demonstrates an illustration of computing the 1st class centroid cent(D;), the standard deviation std(D;), the
distances between cent(D;) with other data instances and threshold value computation using the median.
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Class 1
2 4 1
3 6 1
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1 10 6 1
1 ] 1
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v MD(cent(Dy), 1) = [1.75- 2| + [6.25 - 4 + 6.75-7| = 0.25 + 225+ 025 =2.75 s
the 1% data
dis3
- gis2
Distance between cent(Dy) and . - e 1% e05a S 1 s
MD(cent(Dy). 2) = [L.75 - 3| + [6.25 - 6] + [6.75 -5 = 1.25 + 025+ LTS =3.25

the 2,4 data

Distance between cent(D;) and
a MD(cent(Dy), 3) = |75 - 1| + 6.25 - 10] + [6.75 -6) = 0.75 + 3.75+ 0.75=5.25
the 3™ data

Distance between cent(D;) and . - . e nae ax
n MD(cent(D). 4) = [L.75 - 1| + [6.25 - 5 + [6.75 -9 = 0.75 + 1.5+ 225 =4.25
the 4™ data

Threshold (T ) of Class 1 = Median of these distances = 2.75, 3.25, 4.25, 5.25 = (3.25+4.25)2 =3.75

Fig 3. An illustration of class1 for the class centroid, standard deviation, Manhattan distances and median

The Threshold discovery algorithm showed in Algorithm 1.

Algorithm 1: Threshold discovery

Input : Dataset D with M feature dimensions, N classes, and P data instances
Output : N threshold values for N classes

Step 1 : Forj=1toP

Step 2 : If D(j) has missing value(s) then

Step 3 : Get the class label of D(j) and set this class label to the variable i
Step 4 : Put D(j) t0 D;_incompiete

Step 5 : Else

Step 6 : Get the class label of D(j) and set this class label to the variable i
Step 7 : Put D(j) to D;_complere

Step 8 : End If

Step 9 : End For

Step 10 : Fori=1toN

Step 11 : cent(D;_complere) = Mean(D;_compiere) /! EQ. (1)

Step 12 : std(D;_complete) = Standard Deviation(D;_compiere) // EQ. (2)
Step 13 : End For

Step 14 : Forj=1toP

Step 15 : MD_D; compiere(j) = Manhattan distance(cent(D; compiere) D compiere(§)) // Eq. (3)
Step 16 : End For

Step 17 : Fori=1toN

Step 18 : Threshold(i) = Median(MD_D;_complere)

Step 19 : End For

3.3 Tier 2 - Missing Data Imputation

Figure 4 shows the missing data imputation flow for Tier 2. It includes the three steps outlined below.
Step 1: For the i-th class incomplete dataset (D;_jncomplere) contains Num_miss_data instances: If the data instance has only
one missing value, proceed to Step 2; otherwise, if it has several missing values, proceed to Step 3.
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Step 2: For D;_jucompiere> when the data j has only one missing value, the class centre cent(D;_compiere) is utilized to impute
the missing value of j. Figure 5 illustrates an illustration for the 1st class incomplete dataset, i.e., D1_jncompiere- In this illustration,
as the third feature of data j is missing, the third feature of a cent(D1_compiere) is substituted for the missing data.

; Tier 2
Step 1 End Tier 2

- False
Fori=lto N
Dincomplete
True

For j=1 to Num_miss_data,

Step 2:
Sinpgle e Step 3: Multiple Missing Values
ok Imputation
Missing B P
Value Number of missing No Impute the missing values
. value =1 in data j based on cent(D; )
Imputation 7 L complete’
Calculate the distance
between cent(Dy cppypiere) and
Impute the missing value M based imputed data j
on "eﬂ'(Di_mmp[ng
¥

Calculate the distance
between cent(D; copypler) and

imputed data j

li

(j)(—{ Use the imputed value ‘

Impute the missing value based
on (1) ELI(M) (2) ELIQM) + std;
(3) ELI(M) - std;

Impute the missing value based
| { on (1) ELIQM) (2) ELIQM) +
std; (3) ELI(M) - std;

Dataset (D)

Fig 4. Flow diagram of Tier 2 - Missing Data Imputation

wes oM LTI T[T

cent(Dy complere) ‘].75|6.25‘6.75| ‘ ‘ ‘ ‘ ‘ ‘ 1 ‘

Distance
between cent(Dy comprere) and  MD(Cent(D; complere), imputed data j) = 175 - 1] + [6.25 - 10| + [6.75 -6.75 = 0.75 + 3.75 + 0 = 4.5
the imputed data j

imputed data j ‘ 1 |10 6.75

Fig 5. An example of class centroid based missing value imputation

Subsequently, the distance between the imputed data j and cent(D{_compiere) is computed to compare it with the threshold
T;. The imputation procedure for data j is done if the distance is smaller than Ti.

Otherwise, three various values are imputed if the distance is greater than or equal to Ti. These three values are computed
using Linear Interpolation (LI) and standard deviation. A curve fitting method called linear interpolation generates novel data
points within the bounds of a finite collection of known data points using linear polynomials. Two neighboring identified values
measured before and after X are required for linear interpolation. Suppose the value at point X is missing. In that case, the value
at point X will be computed using both the final actual assessment performed before point X, identifying point A, and the first
actual assessment taken after point X, identifying point B. (a value), (b value), and (x value) are the values at positions A, B, and
X, respectively. At X observation, Equation (4) computes the missing x value.

1
LI (x value) = 3 (a value + b value) 4)

Figure 6 also shows an example of missing data imputation using linear interpolation. In addition, linear interpolation is rapid
and simple; however, it is not accurate in a dataset with class labels. As a result, an Enhanced Linear Interpolation (ELI) method is

https://www.indjst.org/ 1198


https://www.indjst.org/

Iris Punitha & Sathiaseelan / Indian Journal of Science and Technology 2023;16(16):1192-1204

proposed to improve linear interpolation accuracy. This method considers initial and subsequent values, previous class values,
current class values, and subsequent class values. For example, suppose the value at point X is missing. In that case, the value
at point X will be computed using both the last actual assessment performed before point X, identifying point A, and the first
actual assessment taken after point X, identifying point B. (a value, a class), (b value, b class), and (x value, x class) are the
coordinates at positions A, B, and X, correspondingly. For X observation, Equation (5) estimates the missing value x value at x
class.

(5)

1 _ _
ELI (x value) = ! (LI (x value) + [b value + [(a value — b value) x (x class — b class)H )

(a class — b class)

The example of enhanced linear interpolation based on missing data imputation is also explained in Figure 6. The enhanced
linear interpolation is based on imputed data taken as imputed result 1. After enhanced linear interpolation based on missing
data imputation, the imputed value is added by standard deviation, taken as imputed result two. Finally, the imputed value is
subtracted by standard deviation, taken as imputed result 3.

w L[ T T 11T
ENEE EEEEEEn
wen s [o ] [ D[]
cent(D;_complere) ‘1.75 6.25(6.75 ‘ ‘ ‘ ‘ ‘ ‘ 1 ‘
cent(Dy complere)
based imputed ‘ 1 ‘10 6.75 ‘ ‘ ‘ ‘ ‘ ‘ 1 ‘
data j
LI(data j) ‘ 1 ‘10 7 ‘ ‘ ‘ ‘ ‘ ‘ 1 ‘

. Imputed
ELI(data j) ‘ 1 ‘10‘ 8 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ! ‘ result 1
std(D;_complete) ‘0.83‘2.28‘1.48‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 ‘
ELI(data j) +
Imputed
td based

s @r_mm,u;m) ase 1 ‘10 ‘9.48‘ ‘ ‘ ‘ ‘ ‘ ‘ 1 ‘ result 2
imputed data j
ELI(data j) -

= Tmputed

td .52

E @Iﬁcomﬂ[zi‘e)b‘.“ed 1 ‘10 6.5 ‘ ‘ ‘ ‘ ‘ ‘ 1 ‘ result 3
imputed data j

Fig 6. An example of class centroid, standard deviation, linear interpolation and enhanced linear interpolation based on missing data
imputation.

After that, the distance between all imputed results (for data j) and cent(Di_complete) is computed in Figure 7. Then, the
imputed result with a smaller distance than the other imputed results is taken as the final imputed result.

Distance between cent(D1) MD(cent(D;_complete); imputed result 1) =[1.75 - 1] +[6.25 - 10| + [6.75 -8 = 0.75 + 3.75 + 125 = 5.75
and the imputed result 1 —

Distance between cent®1) iy cenep complete), Imputed result 2) = [1.75 - 1] + [6.25 - 10| + [6.75 -9.48 = 0.75 + 375+ 2.73 =723
and the imputed result 2 —

Distance between cent(D1)

MD(cent(D;_complere), imputed result 3) = [1.75 - 1 + |6.25 - 10] +[6.75 -6.52| = 0.75 + 3.75 + 023 =473
and the imputed result 3 -

Fig 7. Distance between all imputed results with a cluster centroid.

In Figure 7, imputed result 3 has a smaller distance than the others. So we can take imputed result three as the final imputed
result.

Step 3: The appropriate feature values of a cent(Di) are imputed for any numerous missing values of data j. Next, a comparison
using the threshold Ti is made to determine the distance between the imputed data j and cent(Di). An illustration of imputing
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two missing values for class 1 is shown in Figure 8.

data j

6.25

6.75

cent(Dy_complere) | 1.75

imputed dataj  |1.75| 10 |6.75

Distance
between cent(D_complere) and
the imputed data j

MD(cent(D;_compiere)s imputed data j) = [L.75 - L75] +6.25 - 10] + 6.7 =0+375+0=375

Fig 8. A case where two missing values were imputed

As a result, the imputation process for data j is finished if the distance is less than T;. Otherwise, each missing value
is successively imputed by ELI(data j), adding and subtracting the std; with ELI(data j) of the imputed attribute values, if
appropriate, if the distance is larger than or equal to T;.

data j1 ‘3‘6 5 ‘ ‘ ‘ ‘ ‘ ‘1‘
HEEEEN
data j+1 ‘1 s 9‘ ‘ ‘ ‘ ‘ ‘ ‘1‘
cent@; complere) ‘1.75 6.25(6.75 ‘ ‘ ‘ ‘ ‘ ‘ 1 ‘
cent(Dy_complere)
based imputed 1.75( 10 |6.75 ‘ ‘ ‘ ‘ ‘ ‘ 1 ‘
data j
LI(data j) 2|10 7 ‘ ‘ ‘ ‘ ‘ ‘1‘
- Imputed
ELI(dat. 15|10 | 8 1
aay  [sfolo| [ ] ] ][ [r] TS
std(D;_complere) ‘0.83‘2.28‘1.48‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 ‘
ELI(data j) +
Std(D;_compiers) based [2.33| 10 ‘9.43‘ ‘ ‘ ‘ ‘ ‘ ‘ 1 ‘ I:;‘;'::;
imputed data j
ELI(data j) -
sld(D;J,,mpme)based‘Dﬁ? 10 |6.52 ‘ ‘ ‘ ‘ ‘ ‘ 1 ‘ I:;‘:::::
imputed data j

Fig 9. A case where two missing values were imputed

After that, the distance between all imputed results (for data j) and cent(D; compiere) is computed, which is explained in
Figure 10. Then, the imputed result with a smaller distance than the other imputed results is taken as the final imputed result.

Distance between cent(D1)
and the imputed result 1

Distance between cent(D1)
and the imputed result 2

Distance between cent(D)

MD(cent(;_compiere), imputed result 1) = |L.75

MD(cent(D;_compiere), imputed result 2) = |1.75

MD(cent(D;_compiere), imputed result 3) = |1.75

- 1.5)+6.25 - 10]+ [6.75 -8] = 0.25+ 3.75 + 125 =525

-2.33|+6.25 - 10| +[6.75 -9.48 = 0.58 + 3.75+ 2.73 = 7.06

- 0.67+(6.25 - 10| +[6.75 -6.52| = 1.08 + 3.75 + 0.23 = 5.06

and the imputed result 3

Fig 10. Distance between all imputed results with a cluster centroid

In Figure 10, imputed result 3 has a smaller distance than the others. Therefore, the imputed result 3 is considered the final
imputed result. The proposed Missing data imputation process (Tier-2) showed in Algorithm 2.

https://www.indjst.org/ 1200


https://www.indjst.org/

Iris Punitha & Sathiaseelan / Indian Journal of Science and Technology 2023;16(16):1192-1204

Algorithm 2: Missing Data Imputation

Input : D;_incomplete containing N classes and M feature dimensions

Output : Imputed dataset for D;_jncomplere

Step 1 : Fori=1toN

Step 2 : For j=1 to Num_miss_data / Num_miss_data - Number of available missing data instances in ith
class

Step 3 : If the number of missing values = 1 in data

Step 4 : Impute the missing value M based on cent(D;_compiere)

Step 5 : Distance = Manhattan distance(cent(D;_compiere)s Di_incompiete(j))

Step 6 : If Distance > Threshold(i)

Step 7 : Impute the missing value based on (1) ELI(M) (2) ELI(M) + std; (3) ELI(M) - std;

Step 8 : Else

Step 9 : Use the imputed value

Step 10 : End If

Step 11 : Else

Step 12 : Impute the missing values based on cent(D;_compiere)

Step 13 : Distance = Manhattan distance(cent(D;_compiere)> Di_incomplete(j))

Step 14 : If Distance > Threshold(i)

Step 15 : For each Missing Value M in data j

Step 16 : Impute the missing value based on (1) ELI(M) (2) ELI(M) + std; (3) ELI(M) - std;

Step 17 : End For

Step 18 : Else

Step 19 : Use the imputed value

Step 20 : End If

Step 21 : End If

Step 22 : End For

Step 23 : End For

4 Results and Discussion

This study uses the "cStick dataset” obtained from the Kaggle machine learning repository ®). There are 2039 instances and
seven features in all. For evaluation, we randomly inserted 10% missing data in the original dataset (data of 203 instances
missing according to MAR type). The TT-MDI technique is used to recover missing data. Threshold discovery and missing data
imputation are the two tiers of this approach. According to the results, before imputation and after imputation the proposed
work offers higher accuracy for imputed dataset using the TT-MDI technique than MAR missing data included dataset when
compared to the original dataset. The proposed TT-MDI technique was evaluated utilizing accuracy, precision, recall, and f-
measure using Machine Learning-based classifiers, namely the Repeated Incremental Pruning to Produce Error Reduction
(RIPPER), Support Vector Machine (SVM), Naive Bayes (NB) and C4.5 classifiers. The classifiers are implemented using the
Weka tool. The Experimental results clearly shows that all evaluation metrics were enhanced by 4 % to 14 % after imputing
missing data using the TT-MDI algorithm.

4.1 Accuracy

The definition of accuracy is the ratio of the total number of correct forecasts to the total number of forecasts. The per cent of
each accurately predicted data point was denoted by accuracy, as illustrated in Equation (6).

(TP+TN)

(6)
(TP+TN +FP +FN)

Accuracy =

Table 1 demonstrates the attained findings before and after missing data imputation based on the Accuracy value using the
TT-MDI algorithm.
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Table 1. Accuracy comparison of before and after missing data imputation using the TT-MDI technique

Accuracy (in %)
RIPPER SVM NB C4.5
cStick Original dataset 97.5728  91.4572 86.0346  91.1451
cStick Missing dataset 79.6865  79.9896  74.5061  77.6084
cStick Imputed Dataset 93.315 83.2034 81.6316 90.017

Data

Table 1 compares accuracy before and after employing the TT-MDI algorithm to fill in missing data. The results show
that utilizing the TT-MDI technique to impute missing value(s) improved the RIPPER, SVM, NB and C4.5 classifiers final
performance. The accuracy of the TT-MDI technique, for example, is improved by almost 12% once missing data are imputed.
While minor, this change aids the oM T applications in performing well and continuing to function without missing data issues.

4.2 Precision

The ratio of True Positives to all Positives is known as precision. Precision measures exactness or quality and a positive predictive
value, as illustrated in Equation (7).
Precisi TP )
recision = ——————
(TP+FP)
Table 2 demonstrates the findings attained before and after missing data was imputed based on Precision value using the TT-
MDI algorithm.

Table 2. Precision comparison of before and after missing data imputation using the TT-MDI algorithm

Precision (in %)

Data

RIPPER SVM NB C4.5
cStick Original dataset 96.473 90.8308 87.7065 92.385
cStick Missing dataset 81.7431 74.7614 69.8278 80.0692
cStick Imputed Dataset 91.0901 87.435 79.8693 84.9774

Table 2 compares precision before and after employing the TT-MDI algorithm to fill in missing data. The results show
that utilizing the TT-MDI technique to impute missing value(s) improved the RIPPER, SVM, NB and C4.5 classifiers final
performance. The precision value of the TT-MDI technique, for example, is increased by approximately 9% once missing data
are imputed. This change, while minor, aids the IoMT applications in performing well and continuing to function without
missing data issues.

4.3 Recall
Recall is the measure of accurate identification of true positives. The recall is also known as sensitivity shown in Equation (8).
TP
Recall = ———— (8)
(TP+FN)

The attained findings before and after missing data imputation based on the Recall value using the TT-MDI algorithm is shown
in Table 3.

Table 3. Recall comparison of before imputing missing data and after imputing missing data using the TT-MDI algorithm

Recall (in %)
Data
RIPPER SVM NB C4.5
cStick Original dataset 96.2309 88.6585 87.3535 94.5988
cStick Missing dataset 77.1882 72.3559 67.8606 79.4142
cStick Imputed Dataset 87.0738 86.4643 79.1077 87.2304

Table 3 compares recall before and after employing the TT-MDI technique to fill in missing data. The results show
that utilizing the TT-MDI technique to impute missing value(s) improved the RIPPER, SVM, NB and C4.5 classifiers final
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performance. The recall value of the TT-MDI technique, for example, is increased by approximately 11% once missing data are
imputed. This change, while minor, aids the IoMT applications in performing well and continuing to function without missing
data issues. It is clear from Table 3 that the overall recall after imputing missing data using the TT-MDI algorithm was enhanced.

4.4 F-Measure

The harmonic mean of recall and precision is called the F-measure, shown in Equation (9).

(Precision x Recall)

F _M = 2~
easure (Precision + Recall)

)

The attained findings before and after missing data imputation based on the F-measure value using the TT-MDI algorithm is
shown in Table 4.

Table 4. F-measure comparison of before and after missing data imputation using the TT-MDI algorithm

F-Measure (in %)

Data

RIPPER SVM NB C4.5
cStick Original dataset 96.3518 89.7315 87.5296 93.4788
cStick Missing dataset 79.4004 73.539 68.8301 79.7403
cStick Imputed Dataset 89.0367 86.9469 79.4866 86.0892

Table 4 compares F-measure before and after using the TT-MDI technique to impute missing data. The results show
that utilizing the TT-MDI technique to impute missing value(s) improved the RIPPER, SVM, NB and C4.5 classifiers final
performance. After missing data is imputed, the F-measure value utilizing the TT-MDI technique increases by approximately
10%. This change, while minor, aids the IoMT applications in performing well and continuing to function without missing data
issues. It is clear from Table 4 that the all F-measure after missing data imputation using the TT-MDI algorithm is enhanced.

5 Conclusion

Data with a missing value poses a concern to IoMT systems because it is the most frequent problem that degrades system
performance in general. As a result, end-user satisfaction declines. Data loss in oM T networks can be caused by several factors,
including faulty connections, external attacks, and sensor failures. Missing value handling is a difficult yet fascinating field
of research in data mining and information retrieval. Missing data must be imputed as soon as it happens in these systems
to guarantee excellent performance. Therefore, this paper proposed a novel Two Tier Missing Data Imputation (TT-MDI)
algorithm for MAR type missing data in the IoMT. Utilizing the distances between the class centroids with their related data
instances, the first tier aims to identify the imputation threshold. The identified threshold is then used by the second tier to
impute missing data. The proposed work offers higher accuracy for imputed dataset using the TT-MDI technique than missing
data included dataset when compared to the original dataset. This technique was evaluated using accuracy, precision, recall, and
f-measure using Machine Learning-based classifiers, namely the Repeated Incremental Pruning to Produce Error Reduction
(RIPPER), Support Vector Machine (SVM), Naive Bayes (NB) and C4.5 classifiers. Based on the accuracy, precision, recall, and
f-measure, the obtained results proved which the TT-MDI algorithm is advantageous in increasing the entire efficiency of oM T
applications.
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