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Abstract
Objective: To investigate the effect of voids on the propagation of plane
waves in a generalized thermo-elastic solid. Method: The method of plane
harmonic solution is employed to solve the basic equations of generalized
thermo-elastic void solids. Findings: Under the effect of voids and non-voids,
three sets of longitudinal waves are derived, and they are not appeared in
any classical theory of elasticity. But one transverse wave is derived and these
results are coinciding with the theory of classical elasticity. Novelty: Under
the MATLAB programme the speed of longitudinal waves are shown in the
frequency relation. Longitudinal waves are propagatingwith high speed in non-
thermal voids solids.
Keywords: Thermoelasticity; Voids; Plane Harmonic Solution; Plane
Longitudinal Waves; Plane Transverse Waves

1 Introduction
An important generalization on classical theory of elasticity is that “theory of linear
elasticity materials having voids”.This theory is very essential to investigate the different
types of biological and geological materials for whose classical theory of elasticity is
not adequate. The “linear elasticity theory with voids” leads that the materials with a
small voids or pores, where the volume of the voids is included among the variables of
Kinematic. This theory reduces to classical theory when voids tending to zero.

Adam G et al. (1) discussed the elastic solutions to 2D plane strain problems. The
linear theory of elastic materials with voids was studied by De Cicco and De Angelis (2)
in their paper entitled a plane strain problem in the theory of elastic materials with
voids. The effect of voids on plane waves in micro stretch elastic solids was studied by
Dilabag Singh (3). Lesan (4) developed the “linear theory of thermo-elasticmaterials with
voids”. Marin Marin (5) presented a detailed study on the effect of voids in a heat-flux
dependent theory for thermo elastic bodies. Stoneley and Rayleigh waves in thermo
elastic materials with voids discussed by SS Singh (6). Some results on thermo-elastic
materials with voids were studied by a Ciarletta and Scarpetta (7). Plane waves in
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Thermo-viscoelastic material with voids under different theories of Thermo elasticity studied by Tomar et.al (8). Kumar and
Tomar (9) discussed Coupled dilational waves at a plane interface between two dissimilarmagneto-elastic half-spaces containing
voids. Mitthias et al. (10) studied a rate dependent non-linear mechanical behavior of thermo elastic composites.

S.K Tomar and Suraj Kumar (11) discussed the effects of voids on wave propagation in elastic-plastic materials, while the
micropolar thermo elastic void solids linear theory was developed by Ciarletta et.al. (12). Effects of voids on Rayleigh waves was
studied by Chandrashekaraiah (13). Tomar and Ashishkumar (14) studied about propagating waves in elastic materials with voids
subjected electro-magnetic interaction. The equation of the linear theory of thermo elastic diffusion in porous media based on
the concept of volume fraction derived by Aoudai (15).

In recent, Somaiah and Ravi Kumar (16) studied the plane waves in a micro-isotropic, micro-elastic solid. In this paper, we
studied the effect of voids on plane longitudinal waves in generalized thermo-elastic solids with voids. It is observed that one
set of transverse wave and three sets of longitudinal waves are derived. The longitudinal waves are travelled with high speed in
the non-void solids.

2 Methodology
The governing equations in terms of displacement u⃗, volume fraction ϕ and temperature Φ for generalized thermo elastic void
solids with the absence of body forces, equilibrated body forces and heat are given Iesan (4) , Lord and Shulman (17) as

ρ
∂ 2u
∂ t2 = (λ +µ)∇(∇ · u⃗)+µ∇2u⃗+b∇ϕ −β∇Φ (1)

K∇2Φ = βT0
(
∇ · ˙⃗u+ τ0∇ · ¨⃗u

)
+ρce

(
Φ̇+ τ0Φ̈

)
+mT0

(
ϕ̇ + τ0ϕ̈

)
(2)

ρχ
∂ 2ϕ
∂ t2 = a∇2ϕ − cϕ −b∇ · u⃗+mΦ (3)

where λ ,µ are Lame’s constants, ρ is the density of the medium, τ0 is the thermal relaxation time, Φ = T −
T0, with T is the temperature, T0 being uniform temperature of the medium and it is assumed to be such that

∣∣∣ Φ
T0

∣∣∣≤ 1,K is the
coefficient of thermal conductivity, superpose dot is the partial derivative with respect to time t,ce is the specific heat at a con-
stant strain.The quantities a,b and c are the material constants due to the presence of voids, m is the thermo void coefficient, χ
is the equilibrated inertia, β = (3λ +2µ)αt ,αt being the coefficient of linear thermal expansion.

Equation (1) to (3) written as

c2
1∇2u⃗+ c2

2∇(∇ · u⃗)−β1∇Φ+b1∇ϕ =
∂ 2u⃗
∂ t2

(4)

K∗∇2Φ− ∂Φ
∂ t

−β ∗
(

∇ · ∂ u⃗
∂ t

+ τ0∇ · ∂ 2u⃗
∂ t2

)
−m∗

(
∂ϕ
∂ t

+ τ0
∂ 2ϕ
∂ t2

)
= τ0

∂ 2Φ
∂ t2 (5)

c2
3∇2ϕ − c2

4ϕ − c2
5∇ · u⃗+ c2

6Φ =
∂ 2ϕ
∂ t2

(6)

where

∇ = î1
∂

∂x1
+ î2

∂
∂x2

+ î3
∂

∂x3
;∇2 =

∂ 2

∂x2
1
+

∂ 2

∂x2
2
+

∂ 2

∂x2
3

;

c2
1 =

µ
ρ

;c2
2 =

λ +µ
ρ

;β1 =
β
ρ

;b1 =
b
ρ

;K∗ =
K

ρce
;β ∗ =

βT0

ρce
;

(7)

m∗ =
mT0

ρce
;c2

3 =
a

ρχ
;c2

4 =
c

ρχ
;c2

5 =
b

ρχ
;c2

6 =
m

ρχ

For the plane wave propagation in the positive direction of a unit vector n̂,
we may take

[⃗u,Φ,ϕ ] = [⃗A,B,C]exp[ik(n̂ · r⃗− vt)] (8)

where A⃗ is vector constant, B andC . are the scalar constants representing the amplitudes, r⃗ is the position vector, v is the phase velocity and k
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is the wave number related with angular frequency ω defined by ω = vk.
Equations (4) to (6) becomes with the help of equation (8) as(

ω2 − k2c2
1
)

A⃗−
[
c2

2k2(n̂ · A⃗)+ iβ1kB− ib1kC
]

n̂ = 0 (9)

β ∗ (K∗ω − τ0kω2
)
(n̂ · A⃗)+

(
K∗k2 + iω − τ0ω2

)
B+

(
im∗ω −m∗τ0ω2

)
C = 0 (10)

ikc2
5(n̂ · A⃗)−

(
ω2 − c2

6
)

B+
(
k2c2

3 + c2
4
)

C = 0 (11)

We obtain B andC by solving equations (10) and (11) as

B = (n̂ · A⃗)J
C = (n̂ · A⃗)H

(12)

where

J =
[
ikc2

5m∗ (i− τ0ω)−
(
k2c2

3 + c2
4
)

k (β ∗− τ0ω)
]

{(
K∗ k2

ω
+ i− τ0ω

)(
k2c2

3 + c2
4
)
−m∗ (c2

6 −ω2
)
(i− τ0ω)

}−1
(13)

and

H =
[(

c2
6 −ω2)(β ∗k− kτ0ω)− ikc2

5
(
iK∗k2 − τ0ω

)]{(
K∗ k2

ω
+ i− τ0ω

)(
k2c2

3 + c2
4
)
−m∗ (c2

6 −ω2)(i− τ0ω)

}−1 (14)

After substituting the values of B andC . from Eq. (12) in equation (9) we obtain(
ω2 − k2c2

1
)

A⃗−
[
c2

2k2 + iβ1kJ− ib1kH
]
(n̂ · A⃗)n̂ = 0 (15)

Taking scalar product of equation (15) with A⃗ we get,(
ω2 − k2c2

1
)

A⃗−
[
c2

2k2 + iβ1kJ− ib1kH
]
(n̂ · A⃗)2 = 0 (16)

where

A⃗ · A⃗ = |A|2 = A2

2.1 Transverse waves

For plane transverse waves, we have n̂ · A⃗ = 0 and equation (16) becomes ω2 − k2c2
1 = 0.

Therefore,
v2 = c2

1
The speed of the transverse wave vT is given by

vT = c1 =

√µ
ρ (17)

The speeds of the above transverse waves are coinciding with the results of classical elasticity (18).
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2.2 Longitudinal waves

For plane longitudinal waves, we have n̂ · A⃗ = A and equation (16) yields to

k
(
v2 − c2

1 − c2
2
)
+(ib1H − iβ1J) = 0 (18)

Inserting the values of J and H from equation (13) and (14) in equation (18) we obtain the sixth degree equation in ν

α0v6 +α1v4 +α2v2 +α3 = 0 (19)

where

α0 = τ0
[
m∗ (ω2 + c2

6
)
− c2

4
]

ω3 + i
[
c2

4 +m∗ (ω2 − c2
6
)]

ω2

α1 =−τ0
[
c2

3 +m∗ (c2
1 + c2

2
)]

ω5 +
[
c2

4K∗+ τ0
{

c2
4
(
c2

1 + c2
2
)
−m∗c2

4
(
c2

1 + c2
2
)
−b1c2

5 +β1m∗c2
5
}]

ω3

+ i
[

m∗ (c2
1 + c2

2
)

c2
6 −
{

c2
3ω2 + c2

4
(
c2

1 + c2
2
)
+m∗ (c2

1 + c2
2
)

ω2
}
+

b1
(
β ∗c2

6 − τ0c2
6ω −β ∗ω2 + τ0ω3

)
+β1

(
c2

4τ0ω −β ∗c2
4 +m∗c2

5
) ]ω2

α2 = c2
3 (K

∗− iβ1τ0)ω5 + i
[
c2

3
{

β ∗β1 −
(
c2

1 + c2
2
)}

+K∗b1c2
5
]

ω4

α3 = c2
3
(
c2

1 + c2
2
)
(τ0 −K∗)ω5 (20)

For solving equation (19) by Cardan’s method, transformV
as

V = α0v2 +
α1

3
(21)

we obtain

V 3 +A0V +A1 = 0 (22)

where

A0 = α0α1 −
1
3

α2
1 ;A1 =

2
27

α3
1 +α2

0 α3 −
1
3

α1α2α3 (23)

Now roots of the equation (22) are

V1 =

−A1

2
+

(
A2

1
4

+
A3

0
27

) 1
2

 1
3

+

−A1

2
−
(

A2
1

4
+

A3
0

27

) 1
2

 1
3

V2 =

(
−1+ i

√
3

2

)−A1

2
+

(
A2

1
4

+
A3

0
27

) 1
2

 1
3

−

(
1+ i

√
3

2

)−A1

2
−
(

A2
1

4
+

A3
0

27

) 1
2

 1
3

and

V3 =

(
−1+ i

√
3

2

)−A1

2
−
(

A2
1

4
+

A3
0

27

)1
2


1
3

−

(
1+ i

√
3

2

)−A1

2
+

(
A2

1
4

+
A3

0
27

)1
2


1
3

(24)

Hence by using equations (22) and (24), the roots of equation (19) are

v2
L1

=
1

α0

(
V1 −

1
3

α1

)
;v2

L2
=

1
α0

(
V2 −

1
3

α1

)
andv2

L3
=

1
α0

(
V3 −

1
3

α1

)
(25)

Equation (25) represents that three sets of longitudinal waves are propagate with distinct phase speeds and they are influenced
by the voids of the body and they are dispersive in nature, not appeared in any classical theory of elasticity.
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2.3 Particular cases of plane waves

Case (i): If we neglect the voids i.e., a = b = c = 0, then the speed of the longitudinal waves v∗
2

L1
,v∗

2

L2
and v∗

2

L3
are

given by

v∗
2

L1
=

1
α∗

0

(
V ∗

1 − 1
3

α∗
1

)
;v∗

2

L2
=

1
α∗

0

(
V ∗

2 − 1
3

α∗
1

)
and v∗

2

L3
=

1
α∗

0

(
V ∗

3 − 1
3

α∗
1

)
(26)

where

α∗
0 = m∗ [c2

6 (τ0ω − i)+ω2 (i+ωτ0)
]

ω2

α∗
1 =−τ0m∗ (c2

1 + c2
2
)

ω5 + i
[
m∗c2

6
(
c2

1 + c2
2
)
−m∗ (c2

1 + c2
2
)

ω2 +b1
(
β ∗c2

6 − c2
6τ0ω −β ∗ω2 + τ0ω3)]ω2

V ∗
1 =

α∗
1

3

(−1+

√
35
216

) 1
3

−

(
1+

√
35
216

) 1
3
 ;

V ∗
2 =

α∗
1

3

(−1+ i
√

3
2

)(
−1+

√
35
216

) 1
3

+

(
1+ i

√
3

2

)(
1+

√
35

216

) 1
3
 ;

V ∗
3 =

−α∗
1

3


(
−1+ i

√
3

2

)(
1+

√
35
216

)1
3
+

(
1+ i

√
3

2

)(
−1+

√
35
216

)1
3

 (27)

Case (2): If we neglect the voids and thermo voids (i.e., a = b = c = m = 0) in the body, then α0 = 0 and hence, v2
L1
,v2

L2
,v2

L3
→

∞, i.e., we get high speed longitudinal waves in the body.

3 Results and Discussion
To study the effects of voids on the speed of plane longitudinal waves in a generalized thermo-elastic solid, we consider the
magnesium solid as model of our problem and adopt the relevant parameters of magnesium solid from (19) as

Table 1. Parameters of Magnesium solid
Symbol Value Unit
λ 1 ·027×1011 N/m2

µ 1.510×1011 N/m2

K 0.690×102 Wm−1deg−1

ρ 8.836×103 kgm−3

β 7.07×106 Nm−2deg−1

ce 4.27×102 J kg−1deg−1

T0 0.0298×104 K0

τ0 0 ·18×10−12 sec

Table 2.The void parameters
Symbol Value Unit
a 3 ·688×10−5 N
b 1 ·13849×1010 Nm−2

c 1.473×1010 Nm−2

m 2×106 Nm−2deg−1

χ 1.753×10−15 m2

Consider the non-dimensional angular frequency ω ratio with 0 · 1 ≤ ω ≤ 1. The variation of angular frequency versus
speed of longitudinal wave-1, wave-2 and wave-3 (i.e., v2

L1
,v2

L2
,v2

L3
and v∗

2

L1
,v∗

2

L2
,v∗

2

L3
) (i.e.,and with voids and without voids are

shown in Figures 1, 2 and 3.
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Fig 1. Frequency versus speed of longitudinal wave-1

Fig 2. Frequency versus speed of longitudinal wave-2

Fig 3. Frequency versus speed of longitudinal wave-3
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From Figure 1 and Figure 3 we observed that the phase speeds v2
L1

and v2
L3

of wave-1 and wave-3 in thermo elastic solid with
voids are faster than the phase speeds v∗

2

L1
,v∗

2

L3
in thermo-elastic non-void solids. From Figure 2 we say that the phase speed v2

L2

of wave-2 in thermo-elastic solid with voids is slower than the phase speed v∗
2

L2
in thermo-elastic non-void solids.

The phase speed profiles v2
L1
,v2

L2
and v2

L3
of longitudinal waves in void solids for different thermal relaxation times 0sec,5×

10−4 sec , and 6×10−4sec are shown in Figures 4, 5 and 6.

Fig 4. Frequency versus phase velocity of longitudinal wave

Fig 5. Frequency versus phase velocity of longitudinal wave

From these figures we observed that, the phase speed v2
L1
of wave-1 is inverse proportional to the thermal relaxation time,

while v2
L3

of wave-3 is proportional to the thermal relaxation time. But the longitudinal wave-2 propagates with high speed as
relaxation time τ0 → 0 and it is proportional to the non-vanishing relaxation time. The effects of density on transverse waves
are studied in two different experiments on purely solids and solids mixed with liquids are shown in Figures 7 and 8.

From these figures we observed that transverse waves are slower in high density materials.
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Fig 6. Frequency versus phase velocity of longitudinal wave

Fig 7.Density versus Speed of transverse wave

Fig 8.Density versus Speed of Transverse wave
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4 Conclusion
The governing equations of generalized thermo elastic void solids are solved for the study of effects of voids on plane waves.
From the illustrations we conclude that

i) One set of transverse wave is propagating and it is coinciding with the theory of classical elasticity.
ii)Three sets of coupled longitudinal waves are derived with the effects of voids and non-voids.These waves are not appeared

in any theory of classical elasticity.
iii) Longitudinal waves are propagating with high speed in non-thermal void solids.
iv) Longitudinal waves-1 and 3 in thermo-elastic void solids are faster than in non-void solids.
v) Longitudinal wave-2 in thermo elastic void solids is slower than in non-void solids.
vi) Plane transverse waves are faster in low density materials.
vii) Longitudinal wave-1 is inverse proportional but wave-3 is proportional to thermal relaxation time.
viii) Longitudinal waves are propagating with high speed as thermal relaxation time tending to zero
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