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Abstract
Objectives: The objective of the paper is to find the solutions of variational
inequality problems via the concept of common fixed point of a sequence
of nearly nonexpansive mappings. Methods: The present work uses three
step iterative algorithm to get the solutions of variational inequality problems.
Findings: By applying three step iterative algorithm, solutions of variational
inequality problem has been obtained.Novelty: In the present work, a specific
three step iterative algorithm has been deployed to get solution. Furthermore,
Matlab programming has been utilised to eastablish the accuracy of the results.
Mathematics Subject Classification 2020: 47H06, 47H09, 47H10, 47J25.
Keywords: Variational inequality; Fixed point; Nonexpansive mapping;
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1 Introduction
Let D be a nonempty convex and bounded subset of real Hilbert space M. Variational
inequalities are used in various fields, i.e., economics, optimization, game theory etc.
First of all it was used to study Stampacchia (1) variational inequality problem (VIP). In
that problem, we have to find out y∗ ∈ D such that

⟨By∗,y∗− z⟩ ≤ 0,∀z ∈ D

where B : D → M be a linear operator.
The corresponding fixed point problem to the VIP (1) is to find the fixed point of the

mapping PD(I−χB), for all χ > 0, where PD is the projection mapping fromM onto D.
If B is strongly monotone and Lipschitzian mapping and χ > 0 is a small number then
the mapping PD(I − χB) is a strict contraction mapping. So, problem (1) has a unique
solution y∗, by using Banach contraction principle, and the Picard iterations (ym}which
are defined by ym+1 = PD(I −χB)ym converge strongly to y∗.

To find out the solutions of VIPs and corresponding optimization problems,
equivalence relations between fixed point problems and VIPs are developed. So, the
prime objective is to find the common fixed point of the nonexpansive mappings.
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Moudafi (2) introduced the viscosity approximation method to determine the fixed point of a nonexpansive mapping and
that mapping was defined on a Hilbert space. If M is a Hilbert space and D be a closed and convex subset of M. Also, F : D → D
be a nonexpansive self-mapping and f : M → D is a strongly nonexpansive mapping. Then he proved that the sequence (ym}
in D which is defined by the iterative scheme:

y0 ∈ D, ym =
1

1+αm
F (ym)+

αm

1+αm
f (ym) , ∀m ≥ 0,

strongly converges and has the unique solution y∗ ∈ Fix(F) of VI

⟨(I − f )y∗,y∗− y⟩ ≤ 0,∀y ∈ Fi x(F)

,
where (αm} is a sequence of positive numbers such that αm → 0 as m → ∞.
Marino and Xu (3) studied the viscosity approximation method for nonexpansive mappings. They proved that the sequence

(ym} is given by

y0 ∈ M and ym+1 = αmδ f (ym)+(I −αmB)Fym, m ≥ 0

,
strongly converges and which has the unique solution of the corresponding VI

⟨(B−δ f )y∗,y− y∗⟩ ≥ 0,∀y ∈ Fix(F)

that is the optimization condition for the minimization problem

min
y∈Fi x(F)

1
2
⟨By,y⟩−ϕ(y)

where B is the strongly positive and bounded operator on M and ϕ is the potential function of δ f .
Yao et al. (4) introduced the iterative scheme to find out the solutions of generalized VIP and fixed point problem

(FPP). Akram et al. (5) worked on FPP and split variational inclusion problem. Many researchers introduced different iterative
schemes to find out the solutions of VIPs (6–11). Lamba and Panwar (12) and Panwar et al. (13) introduced iterative schemes for
nonexpansive mappings. Sahu et al. (14) and Tuyen (15) determined the solutions of VIPs by finding the common fixed point of
a sequence of nearly nonexpansive mappings. The result proved by Sahu et al. (14) is as follows.

Theorem 1.1 (14) “Let E be a non-empty, closed and convex subset of a real Hilbert space M. Let V : E → M be an
L-Lipschitzian and G : E → M be a k-Lipschitzian and θ -strongly monotone operator. Let (Tm} be a sequence of nearly
nonexpansive mappings from E into itself with respect to the sequence (am} such that F = ∩Fix(Tm) ̸= ϕ and T be a
self-mapping on E such that Tu = lim

m→∞
Tmu, ∀u ∈ E. Let FixT = ∩Fix(Tm} , 0 < ω < 2θ/k2 and 0 < δL < τ, where

τ = 1−
√

1−ω (2θ −ωk2). For u0 ∈ E, the sequence (um} is defined on E and is given by the iterative algorithm as{
u0 ∈ E

um+1 = PE [αmδVum +(I −αmωG)vm]
(2)

where (αm} be the sequence in (0,1) and satisfy the following conditions:
(a) lim

m→∞
αm = 0, ∑∞

m=1 αm = ∞;

(b) either ∑∞
m=1 (αm+1 −αm|< ∞ or lim

m→∞
αm+1

αm
= 1;

(c) either ∑∞
m=1 DB (Tm,Tm+1)< ∞ or lim

m→∞
DB(Tm,Tm+1)

αm+1
= 0 for each B ∈ E;

(d) lim
m→∞

am
αm

= 0.

Then the sequence (um} strongly converges to u∗ ∈ F and u∗ be the unique solution of VI

⟨(ωG−δV )u∗,u∗−u⟩ ≤ 0,∀u ∈ F.”

Chuadchawna et al. (16) proved the convergence theorem for generalized nonexpansive mappings in hyperbolic spaces.
Lohawech et al. (17) worked on finding the solutions of VIPs for Hilbert spaces. The algorithm given by Lohawech et al. (17)
is {

vm = (1−αm)um +αm (I −βmωG)Tum
um+1 = (I −βmωG)T vm

(3)
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2 Methodology
Let the inner product and norm in the Hilbert spaceM are denoted by ⟨ , ⟩ and ||.|| respectively. Let D be the nonempty, convex
and closed subset of M. The mapping PD : M → D defined by

|(h−PDh| |= in f
d∈D

||h−d||

is known as metric projection fromM on D.
Let D be a nonempty subset of M and G1,G2 : D → M be two mappings. We assign the collection of all bounded subsets of

D as D.Then for B ∈ D, the deviation DB(G1,G2) between

DB (G1,G2) = sup(|(G1b−G2b| | : b ∈ B} .

A mapping G : D → M is called

• monotone is

⟨Gd1 −Gd2,d1 −d2⟩ ≥ 0,∀d1,d2 ∈ D

• η-strongly monotone if

⟨Gd1 −Gd2,d1 −d2⟩ ≥ η ∥d1 −d2∥2 ,∀d1,d2 ∈ D

• K-Lipschitzian if

∥Gd1 −Gd2∥ ≤ k∥d1 −d2∥ ,∀d1,d2 ∈ D

For 0 ≤ k < 1, G is called strict contraction and for k=1, G is called nonexpansive.
If (Tm} is a sequence of mappings from D into M and (am} ⊂ [0,1) is a sequence such that lim

m→∞
am = 0 then (Tm} is known

as sequence of nearly nonexpansive mappings with respect to sequence (am} if

|(Tmd1 −Tmd2| | ≤ |(d1 −d2| |+am, ∀d1,d2 ∈ D.

Definition: (see (18)) “Let (am} and (bm} are two real convergent sequences with limits a and b respectively.Then (am} converges
faster than (bm} if

lim
m→∞

am −a
bm −b

= 0.”

The lemmas which will be used for proving the main result are as follow:
Lemma 2.1 (see (3)): “Let M be a real Hilbert space. For all h1,h2 ∈ M and ε ∈ (0,1] , we have
1. ∥h1 +h2∥ ≤ ∥h1∥2 +2⟨h2,h1 +h2⟩ ;
2. ||(1− ε)h1 + εh2||2 = (1− ε) ||h1||2 + ε||h2||2 − ε (1− ε) ||h1 −h2||2.”
Lemma 2.2 (see (19)): “Let V : D → M be an L-Lipschitzian mapping and G : D → M be a k-Lipschitzian and θ -strongly

monotone operator. If 0 ≤ δL < ωθ , then

⟨h1 −h2,(ωG−δV )h1 − (ωG−δV )h2⟩ ≥ (ωθ −δL)∥h1 −h2∥2 ,∀h1,h2 ∈ D,
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that is, ωG−δV is strongly monotone having coefficient ωθ −δL.”
Lemma 2.3 (see (20)): “Let χ ∈ (0,1) , ω > 0 and the mapping J : D → M defined by

Jh1 = (1−χωG)h1, ∀h1 ∈ D,
is a strict contraction mapping if ω < 2θ/k2 or we can also say that, for ω ∈ (0,2θ/k2),

|(Jh1 − Jh2| | ≤ (1−χτ) |(h1 −h2| |, ∀h1,h2 ∈ D,

where τ = 1−
√

1−ω (2θ −ωk2).”
Lemma 2.4 (see (21)):“Let J be a nonexpansive self-mapping defined on closed and convex subset D of the Hilbert space M.

If J has a fixed point then (I-J) is demiclosed or we can say that if (ym} is a sequence in D which converges weakly to some y ∈ D
and the sequence ((I − J)ym} converges strongly to z then (I − J)y = z.”

Lemma 2.5 (see (21,22)): “If PD is a metric projection mapping then it satisfies the following properties:
1. PDh ∈ D,∀h ∈ M;
2. ⟨h−PDh,PDh−d⟩ ≥ 0,∀h ∈ M and d ∈ D;
3. |(h−d| |2 ≥ ||h−PDh||2 + ||d −PDh||2, ∀h ∈ M and d ∈ D;
4. ⟨PDh1 −PDh2,h1 −h2⟩ ≥ ∥PDh1 −PDh2∥2 ,∀h1,h2 ∈ M.”
Lemma 2.6 (see (23)):“ Let the sequence (sm} of non-negative real numbers be such that

sm+1 ≤ (1−am)sm +ambm + cm ,

where the sequences (am} , (bm} and (cm} follow the conditions:
1. am ⊂ [0,1] and ∑∞

m=1 am = ∞;
2. limsupm→∞bm ≤ 0;
3. ∑∞

m=1 cm ≤ ∞ or limsupm→∞cm/bm ≤ 0.
Then lim

m→∞
sm = 0.”

3 Result and Discussion
Our main result is as follow:

Theorem 3.1 Let E be a non-empty, closed and convex subset of a real Hilbert space M. LetV : E → M be an L-Lipschitzian
andG : E →M be a k-Lipschitzian and θ -stronglymonotone operator. Let (Tm} be a sequence of nearly nonexpansivemappings
from E into itself with respect to the sequence sequence (am} such that F = ∩Fix(Tm) ̸= ϕ and T be a self-mapping on E such
that Tu = lim

m→∞
Tmu, ∀u ∈ E. Let FixT = ∩Fix(Tm} , 0 < ω < 2θ/k2 and 0 < δL < τ, where τ = 1−

√
1−ω (2θ −ωk2). For

u0 ∈ E, the sequence (um} is defined on E and is given by the iterative algorithm as wm = γmum +(1− γm)Tmum
vm = βmwm +(1−βm)Tmwm

um+1 = PE [αmδVum +(I −αmωG)vm]
(4)

where (αm} , (βm} and (γm} be the sequences in (0,1) and satisfy the following conditions:
(a) lim

m→∞
αm = 0, ∑∞

m=0 αm = ∞;

(b) either ∑∞
m=0 (αm+1 −αm|< ∞ or lim

m→∞
αm+1

αm
= 1;

(c) ∑∞
m=0 (βm+1 −βm|< ∞;

(d) ∑∞
m=0 (γm+1 − γm|< ∞;

(e) either ∑∞
m=0 DB (Tm,Tm+1)< ∞ or lim

m→∞
DB(Tm,Tm+1)

αm+1
= 0 for each B ∈ E;

(f) lim
m→∞

am
αm

= 0.

Then the sequence (um} strongly converges to u∗ ∈ F and u∗ be the unique solution of VI

⟨(ωG−δV )u∗,u∗−u⟩ ≤ 0,∀u ∈ F
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Proof. Step 1. The sequence (um} is bounded.
Let d ∈ F, then using algorithm (4),

∥um+1 −d∥= ∥PE [αmδVum +(I −αmωG)vm]−d∥
≤ ∥[αmδVum +(I −αmωG)vm]−d∥
= ∥αmδVum −αmωGd +αmωGd +(I −αmωG)vm −d∥
= ∥αm (δVum −ωGd)+(I −αmωG)vm − (I −αmωG)d∥
= ∥αm (δVum −ωGd)−αmδV d +αmδV d +(I −αmωG)(vm −d)∥
= ∥αmδV (um −d)+αm(δV −ωG)d +(I −αmωG)(vm −d)∥
≤ αmδ ∥V (um −d)∥+αm∥(δV −ωG)d∥+∥(I −αmωG)(vm −d)∥
≤ αmδL∥um −d∥+αm∥(δV −ωG)d∥+(1−αmτ)∥vm −d∥

(5)

Now,

∥vm−d∥= ∥βmwm +(1−βm)Tmwm −d∥
= ∥βmwm −βm d+βm d+(1−βm)Tmwm −Tmd∥
= ∥βm (wm −d)+(1−βm)Tmwm −Tmd +βmTmd∥
= ∥βm (wm −d)+(1−βm)Tmwm − (1−βm)Tmd∥
= ∥βm (wm −d)+(1−βm)(Tmwm −Tmd)∥
≤ βm ∥wm −d∥+(1−βm)∥Tmwm −Tmd∥
≤ βm ∥wm −d∥+(1−βm) [∥(wm −d)∥+am]

≤ ∥wm −d∥+am

(6)

Now,

∥wm−d∥= ∥γmum +(1− γm)Tmum −d∥
= ∥γmum − γm d+ γm d+(1− γm)Tmum −d∥
= ∥γmum − γm d+(1− γm)Tmum −Tmd + γmTmd∥
= ∥γm (um −d)+(1− γm)Tmwm − (1− γm)Tmd∥
= ∥γm (um −d)+(1− γm)(Tmum −Tmd)∥
≤ γm ∥um −d∥+(1− γm)∥Tmum −Tmd∥
≤ γm∥∥um −d∥+(1− γm) [∥um −d∥+am]

≤ ∥um −d∥+am

(7)

From (5), using (6) and (7),

∥um+1 −d∥ ≤ αmδL∥um −d∥+αm∥(δV−ωG)d∥+(1−αmτ) [∥(um −d)∥+2am]

≤ (αmδL+1−αmτ)∥(um −d)∥+αm∥(δV−ωG)d∥+2am
(8)

∵ lim
m→∞

am
αm

= 0, ∃ M1 such that

αm||(δV −ωG)d||+2am

αm
≤ M1, ∀m ≥ 0.

So, from (8),

||um+1 −d|| ≤ (1−αm (τ −δL)] |(um −d| |+αmM1

≤ max
(
||um −d||, M1

τ −δL

}
, ∀m ∈ N.
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∴ (um} is bounded and thus (Tmum} , (Gvm} and (Vum} are bounded.
Step 2. ||um+1 −um|| → 0 as m → ∞. Now,

∥um+2 −um+1∥= ∥PE [αm+1δVum+1 +(I −αm+1ωG)vm+1]

−PE [αmδVum +(I −αmωG)vm]∥
≤∥αm+1δVum+1 +(I −αm+1ωG)vm+1 −αmδVum − (I −αmωG)vm∥
+∥αm+1δVum+1 −αm+1δVum +αm+1δVum −αmδVum

+∥−αm+1ωG)vm+1 − (I −αm+1ωG+αm+1ωG−αmωG)vm∥
− (I −αm+1δ (Vum+1 −Vum)+δ (αm+1 −αm)Vum +(I −αm+1ωG)vm+1 − (αm+1 −αm)ωGvm∥
= ∥αm+1δ (Vum+1 −Vum)+δ (αm+1 −αm)Vum

++(I −αm+1ωG)(vm+1 − vm)− (αm+1 −αm)ωGvm∥
= ∥αm+1δ (Vum+1 −Vum)+(αm+1 −αm)(δVum −ωGvm)

+(I −αm+1ωG)(vm+1 − vm)∥
≤αm+1δL∥um+1 −um∥+M2 |αm+1 −αm|+(1−αm+1τ)∥vm+1 − vm∥

(9)

where M2 = δ sup(||Vum||}+ωsup(||Gvm||}< ∞.
Now,

∥vm+1 − vm∥= ∥βm+1wm+1 +(1−βm+1)Tm+1wm+1 −βmwm − (1−βm)Tmwm∥
= ∥βm+1wm+1 −βm+1wm +βm+1wm −βmwm

+(1−βm+1)Tm+1wm+1 − (1−βm)Tmwm∥
= ∥βm+1 (wm+1 −wm)+(βm+1 −βm)wm

+(1−βm+1)(Tm+1wm+1 −Tm+1wm)+(1−βm)(Tm+1wm −Tmwm)

+(1−βm+1)Tm+1wm − (1−βm)Tm+1wm∥
= ∥βm+1 (wm+1 −wm)+(βm+1 −βm)wm

+(1−βm+1)(Tm+1wm+1 −Tm+1wm)+(1−βm)(Tm+1wm −Tmwm)

+(βm −βm+1)Tm+1wm∥
= ∥βm+1 (wm+1 −wm)+(βm+1 −βm)(Tm+1wm −wm)

+(1−βm+1)(Tm+1wm+1 −Tm+1wm)+(1−βm)(Tm+1wm −Tmwm)∥
≤ βm+1 ∥wm+1 −wm∥+ |βm+1 −βm| · ∥Tm+1wm −wm∥
+(1−βm+1)∥Tm+1wm+1 −Tm+1wm∥+(1−βm)∥Tm+1wm −Tmwm∥
≤ βm+1 ∥wm+1 −wm∥+Km |βm+1 −βm|
+(1−βm+1)(∥wm+1 −wm∥+am+1)+(1−βm)DB (Tm+1,Tm)

≤ ∥wm+1 −wm∥+Km |βm+1 −βm|+am+1 +DB (Tm+1,Tm)

(10)

where Km = sup
(
||T m+1wm||}+ sup{||wm||

}
< ∞.
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Now,

∥wm+1 −wm∥= ∥γm+1um+1 +(1− γm+1)Tm+1um+1 − γmum − (1− γm)Tmum∥
= ∥γm+1um+1 − γm+1um + γm+1um − γmum

+(1− γm+1)Tm+1um+1 − (1− γm)Tmum∥
= ∥γm+1 (um+1 −um)+(γm+1 − γm)um

+(1− γm+1)(Tm+1um+1 −Tm+1um)+(1− γm)(Tm+1um −Tmum)

+(1− γm+1)Tm+1um − (1− γm)Tm+1um∥
= ∥γm+1 (um+1 −um)+(γm+1 − γm)um

+(1− γm+1)(Tm+1um+1 −Tm+1um)+(1− γm)(Tm+1um −Tmum)

+(γm − γm+1)Tm+1um∥
= ∥γm+1 (um+1 −um)+(γm+1 − γm)(Tm+1um −um)

+(1− γm+1)(Tm+1um+1 −Tm+1um)+(1− γm)(Tm+1um −Tmum)∥
≤ γm+1 ∥um+1 −um∥+ |γm+1 − γm| · ∥Tm+1um −um∥
+(1− γm+1)∥Tm+1um+1 −Tm+1um∥+(1− γm)∥Tm+1um −Tmum∥
≤ γm+1 ∥um+1 −um∥+Lm |γm+1 − γm|
+(1− γm+1)(∥um+1 −um∥+am+1)+(1− γm)DB (Tm+1,Tm)

≤ ∥um+1 −um∥+Lm |γm+1 − γm|+DB (Tm+1,Tm)+am+1

(11)

where Lm = sup
(
||T m+1um||}+ sup{||um||

}
< ∞.

From (10),

||vm+1 − vm|| ≤ ||um+1 −um||+Km (βm+1 −βm|+Lm (γm+1 − γm| +2am+1 +2DB(Tm+1,Tm)

From (9),
||um+2 −um+1|| ≤ αm+1δL||um+1 −um||+M2 (αm+1 −αm|
+(1−αm+1τ) [||um+1 −um||+Km (βm+1 −βm|+Lm (γm+1 − γm|
+2am+1 +2DB(Tm+1,Tm)]

= [1−αm+1 (τ −δL)]||um+1 −um||+M2 (αm+1 −αm|
+(1−αm+1τ) [Km (βm+1 −βm|+Lm (γm+1 − γm|
+2am+1 +2DB(Tm+1,Tm)]

Using lemma 2.6,

||um+1 −um|| → 0 as m → ∞.

Step 3. lim
m→∞

||um −Tum||= 0.
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Now,

∥um+1 −Tmum∥2 = ⟨um+1 −Tmum,um+1 −Tmum⟩
= ⟨PE [αmδVum +(I −αmωG)vm]−Tmum,um+1 −Tmum⟩
≤ ⟨αmδVum +(I −αmωG)vm −Tmum,um+1 −Tmum⟩
= ⟨αmδVum −αmωG(Tmum)+αmωG(Tmum)

+(I −αmωG)vm − I(Tmum) ,um+1 −Tmum⟩
= ⟨αm (δVum −ωGTmum)+(I −αmωG)vm

−(I −αmωG)Tmum,um+1 −Tmum⟩
= ⟨αm (δVum −δV Tmum +δV Tmum −ωGTmum)+(I −αmωG)vm

−(I −αmωG)Tmum,um+1 −Tmum⟩
= ⟨αmδ (Vum −V Tmum)+αm(δV −ωG)Tmum)

+(I −αmωG)(vm −Tmum) ,um+1 −Tmum⟩
= ⟨αmδ (Vum −V Tmum) ,um+1 −Tmum⟩
+ ⟨αm(δV −ωG)Tmum,um+1 −Tmum⟩
+ ⟨(I −αmωG)(vm −Tmum) ,um+1 −Tmum⟩
≤ αmδL∥um −Tmum∥ .∥um+1 −Tmum∥
+αm ⟨(δV −ωG)Tmum,um+1 −Tmum⟩
+(1−αmτ)∥vm −Tmum∥ .∥um+1 −Tmum∥

(12)

Now,

∥vm −Tmum∥= ∥βmwm +(1−βm)Tmwm −Tmum∥
= ∥βmwm −βmTmum +βmTmum +(1−βm)Tmwm −Tmum∥
= ∥βm (wm −Tmum)+(1−βm)Tmwm − (1−βm)Tmum∥
= ∥βm (wm −Tmum)+(1−βm)(Tmwm −Tmum)∥
≤ βm ∥wm −Tmum∥+(1−βm)∥Tmwm −Tmum∥
≤ βm ∥wm −Tmum∥+(1−βm)(∥wm −um∥+am)

≤ βm ∥wm −Tmum∥+(1−βm)∥wm −um∥+am

(13)

Now,

∥wm −Tmum∥= ∥γmum +(1− γm)Tmum −Tmum∥
= ∥γmum − γmTmum∥
= γm ∥um −Tmum∥

(14)

Thus,
||vm −Tmum|| ≤ βmγm||um −Tmum||+(1−βm) ||wm −um||+am

Hence,
||um+1 −Tmum||2 ≤ αmδL||um −Tmum||.||um+1 −Tmum||

+αm⟨(δV −ωG)Tmum,um+1 −Tmum⟩
+(1−αmτ) [βmγm||um −Tmum||
+(1−βm) ||wm −um||+am].||um+1 −Tmum||
= [αmδL+βmγm (1−αmτ)]||um −Tmum||.||um+1 −Tmum||
+αm⟨(δV −ωG)Tmum,um+1 −Tmum⟩
+(1−αmτ) [(1−βm) ||wm −um||+am].||um+1 −Tmum||
≤ [αmδL+βmγm (1−αmτ)]

(
||um−Tmum||2+||um+1−Tmum||2

2

]
+αm⟨(δV −ωG)Tmum,um+1 −Tmum⟩
+(1−αmτ) [(1−βm) ||wm −um||+am].||um+1 −Tmum||
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+αm⟨(δV −ωG)Tmum,um+1 −Tmum⟩
+(1−αmτ) [(1−βm) ||wm −um||+am].||um+1 −Tmum||

||um+1 −Tmum||2 ≤
(

αmδL+βmγm(1−αmτ)
2−[αmδL+βmγm(1−αmτ)

]
.||um −Tmum||2

+ 2αm
2−[αmδL+βmγm(1−αmτ) ⟨(δV −ωG)Tmum,um+1 −Tmum⟩

+ 2(1−αmτ)
2−[αmδL+βmγm(1−αmτ) [(1−βm) ||wm −um||+am].M3

where M3 = sup{||um+1 −Tmum||}
||um+1 −Tmum||2 ≤ (αmδL+βmγm (1−αmτ)] .||um −Tmum||2

+2αm⟨(δV −ωG)Tmum,um+1 −Tmum⟩
+[(1−βm) ||wm −um||+am].M3

By lemma 2.6,
lim

m→∞
||um −Tmum||2 = 0

or

lim
m→∞

||um −Tmum||= 0 (15)

Now,
||um −Tum||= ||um −Tmum +Tmum −Tum||

≤ |(um −Tmum| |+ ||Tmum −Tum||
≤ |(um −Tmum| |+DB(Tm,T )

Taking limit as m → ∞ and using (15),
∴ lim

m→∞
||um −Tum||=0.

Step 4. We will prove that
−

where u∗ ∈ F is the unique solution of VI.
Since Tu = lim

m→∞
Tmu, ∀u ∈ E and each Tm is a nonexpansive mapping, so T is a nonexpansive mapping.

Let
(
umk

}
be a subsequence of (um} such that

limm→∞ sup⟨(δV −ωG)u∗,um −u∗⟩= limk→∞
⟨
(δV −ωG)u∗,umk −u∗

⟩
(16)

W.L.O.G, assume that umk → u ∈ E . By using lemma 2 4, we get u ∈ Fi xT = F .
So, from (16) and VI,

limm→∞ sup⟨(δV −ωG)u∗,um −u∗⟩= ⟨(δV −ωG)u∗,u−u∗⟩ (17)
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Step 5. um → u∗ as m → ∞.

∥um+1 −u∗∥2 = ⟨um+1 −u∗,um+1 −u∗⟩
= ⟨PE [αmδVum +(I −αmωG)vm]−u∗,um+1 −u∗⟩
≤ ⟨αmδVum +(I −αmωG)vm −u∗,um+1 −u∗⟩
= ⟨αmδVum −αmωGu∗+αmωGu∗

+(I −αmωG)vm − Iu∗,um+1 −u∗⟩
= ⟨αm (δVum −ωGu∗)+(I −αmωG)vm

−(I −αmωG)u∗,um+1 −u∗⟩
= ⟨αm (δVum −δVu∗+δVu∗−ωGu∗)+(I −αmωG)vm

−(I −αmωG)u∗,um+1 −u∗⟩
= ⟨αmδ (Vum −Vu∗)+αm(δV −ωG)u∗)

+(I −αmωG)(vm −u∗) ,um+1 −u∗⟩
= ⟨αmδ (Vum −Vu∗) ,um+1 −u∗⟩
+ ⟨αm(δV −ωG)u∗,um+1 −u∗⟩
+ ⟨(I −αmωG)(vm −u∗) ,um+1 −u∗⟩
≤ αmδL∥um −u∗∥ · ∥um+1 −u∗∥
+αm ⟨(δV −ωG)u∗,um+1 −u∗⟩
+(1−αmτ)∥vm −u∗∥ · ∥um+1 −u∗∥

(18)

Now,

∥vm −u∗∥=∥βmwm +(1−βm)Tmwm −u∗∥
= ∥βmwm −βmu∗+βmu∗+(1−βm)Tmwm −Tmu∗∥
= ∥βm (wm −u∗)+(1−βm)Tmwm − (1−βm)Tmu∗∥
= ∥βm (wm −u∗)+(1−βm)(Tmwm −Tmu∗)∥
≤ βm ∥wm −u∗∥+(1−βm)∥Tmwm −Tmu∗∥
≤ βm ∥wm −u∗∥+(1−βm)(∥wm −u∗∥+am)

≤ ∥wm −u∗∥+am

(19)

Similarly,

∥wm −u∗∥= ∥γmum +(1− γm)Tmum −u∗∥
≤ ∥um −u∗∥+am

⇒∥vm −u∗∥ ≤ ∥um −u∗∥+2am

Hence,
||um+1 −u∗||2 ≤ αmδL||um −u∗||.||um+1 −u∗||

+αm⟨(δV −ωG)u∗,um+1 −u∗⟩
+(1−αmτ)(||um −u∗||+2am) ||um+1 −u∗||
= [1−αm (τ −δL)]||um −u∗||.||um+1 −u∗||
+αm⟨(δV −ωG)u∗,um+1 −u∗⟩
+2(1−αmτ) ||um+1 −u∗||am

≤ [1−αm(τ −δL)
(
||um−u∗||2+||um+1−u∗||2

2

]
+αm⟨(δV −ωG)u∗,um+1 −u∗⟩
+2(1−αmτ) ||um+1 −u∗||am(

2−1+αm(τ−δL)]
2

]
.||um+1 −u∗||2 ≤ [1−αm(τ−δL)]

2 .||um −u∗||2
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+αm⟨(δV −ωG)u∗,um+1 −u∗⟩
+2(1−αmτ) ||um+1 −u∗||am(

1+αm(τ−δL)
2

]
.||um+1 −u∗||2 ≤ [1−αm(τ−δL)]

2 .||um −u∗||2

+αm⟨(δV −ωG)u∗,um+1 −u∗⟩
+2(1−αmτ) ||um+1 −u∗||am

||um+1 −u∗||2 ≤
(

1−αm(τ−δL)
1+αm(τ−δL)

]
.||um −u∗||2

+ 2αm
1+αm(τ−δL) ⟨(δV −ωG)u∗,um+1 −u∗⟩

+ 4(1−αmτ)
1+αm(τ−δL) ||um+1 −u∗||am

≤ [1−αm (τ −δL)].||um −u∗||2
+2αm⟨(δV −ωG)u∗,um+1 −u∗⟩
+4am||um+1 −u∗||
≤ [1−αm (τ −δL)].||um −u∗||2
+2αm⟨(δV −ωG)u∗,um+1 −u∗⟩+4amM4

where M4 = sup{||um+1 −u∗||}.
Assume that sm = ∥um −u∗∥2 , tm = αm(τ −δL),bm = 2

τ−δL ⟨(δV −ωG)u∗,um+1 −u∗⟩
cm = 4amM4. So,

sm+1 ≤ (1− tm)sm + tmbm+cm.
By Lemma 2.6,

lim
m→∞

||um −u∗||2 = 0

∴ ||um −u∗|| → 0 as m → ∞.
∴ um → u∗ as m → ∞.
This completes the proof.
Theorem 3.2 Let V and G be as defined in theorem 3.1. Let (Tm} be a sequence of contractive mappings from E into itself.

Let sequences (βm} , (γm} and (km} in (0,1) also satisfy
(a) lim

m→∞
βm = 0,

(b) lim
m→∞

γm = 0,

and the sequences (xm} and (um} defined by algorithms (2) and (4). Then (um} converges faster than (xm} .
Proof. From (6),

∥vm −d∥ ≤ βm ∥wm −d∥+(1−βm)∥Tmwm −Tmd∥
≤ βm ∥wm −d∥+(1−βm)km ∥wm −d∥
= βm ∥wm −d∥+ km ∥wm −d∥−βmkm ∥wm −d∥
= βm (1− km)∥wm −d∥+ km ∥wm −d∥
∴ lim

m→∞
∥vm −d∥ ≤ lim

m→∞
km ∥wm −d∥

(21)

Similarly, from (7),

lim
m→∞

||wm −d|| ≤ lim
m→∞

km||um −d|| (22)

From (5), using (21) and (22),
lim

m→∞
||um+1 −d|| ≤ lim

m→∞
[αmδL|(um −d| |+αm|((δV −ωG)d| |+(1−αmτ)km||wm −d||]

≤ lim
m→∞

km||wm −d||

≤ lim
m→∞

km
2||um −d||

≤ lim
m→∞

∏m
i=0 ki

2||u0 −d||
Taking K = supmkm, then

lim
m→∞

||um+1 −d|| ≤ lim
m→∞

||u0 −d||K2(m+1)

In (14), from (3.3),
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lim
m→∞

||xm+1 −d|| ≤ lim
m→∞

||x0 −d||K(m+1)

Define am = ||u0 −d||K2(m+1) and bm = ||x0 −d||K(m+1), then
ζm = am

bm

= ||u0−d||K2(m+1)

||x0−d||K(m+1)

= Km+1

∵ lim
m→∞

ζm+1
ζm

= lim
m→∞

Km+2

Km+1 = K < 1,

so by ratio test, ∑ζm < ∞.

∴ lim
m→∞

||um+1−d||
||xm+1−d|| = lim

m→∞
am
bm

= lim
m→∞

ζm=0.
=⇒ (um} converges faster than (xm} .

Supportive Application

For the reliability on the present result, an application in support of the main result is as follows:
Let M = R and E = (0,1] . Let the self-mapping T be defined by Tu = 1−u, ∀u ∈ E, so T is a nonexpansive mapping. Let

G, V : E → M be two mappings such that Gu = 3u and Vu = 3u, ∀u ∈ E.Then G is a 3-Lipschitzian and 3-strongly monotone
mapping and V is a 3-Lipschitzian mapping. Now, 0 < ω < 2θ/k2 and 0 < δL < τ, so we have ω = 1/3 , τ = 1 and δ = 1/4.
Taking αm, βm and γm in (0,1) as αm = 1

m , βm = 1
m+1 and γm = 1

m+2 . Also taking am = 1
m2 . Now, Tm : E → E is defined as

Tmu =

{
1−u, if u ∈ [0,1)

am, if u = 1

Then, the sequence (Tm} is of nearly nonexpansive mappings from E into itself. Also, F = ∩Fix(Tm) = (1/2} and Tu =
lim

m→∞
Tmu, ∀u ∈ E.

So, all the conditions of Theorem 3.1 are satisfied and hence the sequence (um} obtained by algorithm (4) converges to
the fixed point (1/2} and this fixed point is the solution of the corresponding variational inequality. The convergence of the
sequence (um} for different initial values of u1 is shown graphically in Figure 1.

Fig 1. Graphical representation of m and um

Figure 2 is the graphical representation of convergence of the sequence (um} using algorithms (2), (3) and (4). It can be seen
that convergence of the sequence (um} is the fastest by algorithm (4) among algorithms (2), (3) and (4).
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Fig 2. Gaphical representation of m and i for algorithms (2), (3) and (4)

4 Conclusion
In this paper, firstly, common fixed points of a sequence of nearly nonexpansive mappings are determined. After that, it is
showed that these fixed points are the solutions of the corresponding VIP.Theoretically, algorithms (2) and (4) are compared for
contractivemappings that establishes better convergence of algorithm (4) than algorithm (2). In addition, supportive application
is given to validate the result by comparing algorithms (2), (3) and (4) with the help of Matlab programming. For nearly
nonexpansive mappings, numerical comparison is done which shows that the improved algorithm (4) has the best convergence
rate among algorithms (2), (3) and (4).
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