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Abstract
Objectives: The primary goal of this study is to present the concept of a
strong Γ − group as a generalization of Γ − group. Methods and Findings:
We have investigated some of the properties of the Γ− group and extended
it to introduce the idea of a strong Γ− group. Novelty: Every strong Γ− group
is a Γ − group, but not all Γ − groups are strong Γ − groups. Further if G is a
non-empty Γ− semigroup and for all a,b ε G, the equations aαx = b and yαa = b
for all x, y ε G and for all α ε Γ have unique solutions in G, then G is a strong
Γ− group. Also, we characterize that non-empty subsetH of a strongΓ− group G
is a strong Γ− subgroup if and only if for all a,b εH,aαc ε H for all α ε Γ where
c is strong inverse of b in G. Finally, we prove that the intersection of two
strong Γ− subgroups is again a strong Γ− subgroup and the center of strong
Γ− group C (G) is also a Γ− subgroup.
Keywords: Semigroup; Strong Γ −group; Strong Γ −subgroup; Centre of Γ
−group

1 Introduction
The notion of a ternary algebraic system was introduced by Lehmer in 1932. As a
speculation of ring, the notion of a Γ− ring was introduced by N Nobusawa in 1964.
In 1981, M. K. Sen introduced the notion of a Γ− semigroup as a generalization of
semigroup. In 1995, Rao (1) introduced the notion of a Γ− semiring as a generalization
of Γ ring.The formal study of semi groups begins in the early 20th century. Rao studied
ideals of Γ− semirings, semirings, semigroups and Γ− semigroup. In this paper, we
study the concept of a strong Γ− group as a generalization of Γ− group. Further, we
prove some basic results regarding strong Γ− subgroup, centre of strong Γ− group
etc. and study some fundamental properties of a strong Γ− group.

1.1 Preliminaries

We include some necessary preliminaries from (1–3) for the sake of completeness.
Definition 2.1. A semigroup is an algebraic system (G, .) consisting of a non-empty

set G together with an associative binary operation‘.′
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Definition 2.2. An algebraic system (G, .) consisting of a non-empty set G together with an associative binary operation ‘.′

is called a group if it satisfies:
(i) there exists e ∈ G such that x.e = e.x = x for all x ∈ G.
(ii) if for each x ∈ G, there exists y ∈ G such that x.y = y.x = e.
Definition 2.3. Let G and Γ be non-empty sets.Then we callG a Γ− semigroup if there exists a mappingG × Γ × G → G,

(images of (x, α, y) will be denoted by xαy, x, y ∈ G,α ∈ Γ)such that it satisfies xα(yβ z) = (xαy)β z for all x, y, z ∈ G
and α, β ∈ Γ.

Definition 2.4. A Γ− semigroup G is said to be commutative if xαy = yαx f or all x, y ∈ G for all α ∈ Γ.
Definition 2.5. Let G be a Γ− semigroup. An element e ∈ G is said to be unity if for each x ∈ G, there exists α ∈ Γ such

that xαe = eαx = x
Definition 2.6. In a Γ− semigroup G with unity e, an element x ∈ G is said to be left invertible (right invertible) if there

exists y ∈ G, α ∈ Γ such that yαx = e (xαy = e).
Definition 2.7. A Γ− semigroup G with unity e, an element u ∈ G is said to be unit if there exists v ∈ G and α ∈ Γ such

that uαv = e = vαu .
Definition 2.8. A Γ− semigroup Gwith zero element 0 is said to hold cancellation laws if x ̸= 0, xαy = xαz, yαx = zαx,

where x, y, z ∈ G, α ∈ Γ then y = z.
Definition 2.9. A Γ− semigroup G is said to be Γ− group if it satisfies:
(i) if there exists e ∈ G and for each x ∈ G, there exists α ∈ Γ such that xαe = eαx = x.
(ii) if for each element x ̸= 0, there exists y ∈ G, α ∈ Γ such that xαy = yαx = e.
Remark 2.10. Every group G is a Γ− group if Γ = G and ternary operation is xαy defined as the binary operation of the

group. The unity of a Γ−group may not be unique.
Example 2.11. Let G and Γ be the set of all rational numbers and the set of all natural numbers respectively. Define the

ternary operation G × Γ × G → G by (x, α , y) → xαy using the usual multiplication. Then G is a Γ− group.
Definition 2.12. An element x of a Γ− semigroup G is said to be a strong Γ− idempotent if xγx = x for all γ ∈ Γ.
Definition 2.13. A Γ− semigroup G is said to be strong Γ− idempotent if every element of G is strong Γ− idempotent.
Definition 2.14. Let G be a Γ− semigroup An element e ∈ G is said to be strong identity e if for each x ∈ G, we have

xαe = eαx = x for all α ∈ Γ.
Definition 2.15. Let G be a Γ− semigroup with strong identity e ∈ G. An element x ∈ G is said to have strong inverse in

G if there exists y ∈ G such that xαy = yαx = e for all α ∈ Γ.
Definition 2.16. A Γ− semigroup G is said to be a strong Γ− group if it satisfies:
(i) if G has strong identity e ∈ G;
(ii) And every element of G has strong inverse in G.
Example 2.17. Let G be the set of all positive rational numbers and Γ be the set of all real numbers whose square is 1.

Define the ternary operation G×Γ×G → G by (x, α , y) → x.|α|. y, where ′. ′ is the usual multiplication.Then G is a strong
Γ−group.

Example 2.18. Let G be a set of real solutions of the equation x2 = x and let Γ be the set of all non-positive integers. Define
the ternary operation G×Γ×G → G by (x, α , y)→ Max (x.y, α} ,where ′. ′ is the usual multiplication.Then G is a strong
Γ− group.

Example 2.19. Let G be the set of all non-zero real numbers and let Γ = {2πki : k ε N}.
Define the ternary operation G × Γ × G → G by (x, α, y) → x. eα . y, where ′. ′ is the usual multiplication. Then G is a

strong Γ− group.

2 Main Results
Theorem 3.1.Every strong Γ− group is a Γ− group .

Proof. Let G be a strong Γ− group. Then G is a Γ− semigroup with strong identity e ∈ G and every element a ∈ G has
a strong inverse in G. This implies that for all x ∈ G, α ∈ Γ, xαe = eαx = x and for all x ̸= 0 there exists y ∈ G such that
xαy = yαx = e.

Note: - Every Γ− group need not be a strong Γ− group.
Example 3.2.let G and Γ be the set of all rational numbers and the set of all natural numbers respectively. Define the ternary

operation G × Γ × G → G by (x, α , y) → xαy, where ′. ′ is the usual multiplication. Then G is a Γ− group. Let e be the
strong identity of G. Then for each x ̸= 0 ∈ G, x = xαe = eαx for all α ∈ Γ. This implies that e = 1/α for all α ∈ Γ and
hence e depends on α which is not possible. Thus, G does not have a strong identity. Therefore, G is not a strong Γ− group.
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Theorem 3.3. (Cancellation Laws) Let G be a strong Γ− group. If xαy = xαz, yβx = zβx, where x, y, z ∈ G and for all
α , β ∈ Γ then y = z.

Proof. Let x, y, z ∈ G and α, γ ∈ Γ. Suppose e is the strong identity of G. Then xα(eγy) = xα(eγz) implies that
(xαe)γy = (xαe)γz . Now xαe ∈ G, there exists w ∈ G such that (xαe)δw = wδ (xαe) = e for all δ ∈ Γ.Therefore
y = eηy = wδ (xαe)ηy = wδ (xα(eηy)) = wδ (xα(eηz)) = wδ (xαe)ηz = eηz = z for all η ∈ Γ Similarly yβx = zβx
implies y = z.

Theorem 3.4.The strong identity of a strong Γ− group is unique.
Proof. If possible, let e1, e2 be two strong identities of a strong Γ− group G. Therefore, e1αe2 = e1 and e1αe2 = e2 for

all α ∈ Γ. Hence, e1 = e2.
Theorem 3.5. The strong inverse of each element of a strong Γ− group is unique.
Proof. Let e be the strong identity of a strong Γ− group G and a ∈ G be an arbitrary element. If possible, let b1, b2 ∈ G

be two strong inverses of a. Therefore, aαb1 = e = b1αa and aβb2 = e = b2βa for all α, β ∈ Γ. Now b1 = b1αe =
b1α(aβb2) = (b1αa)βb2 = eβb2 = b2.

Theorem 3.6. Let G be a strong Γ− group. Then left strong identity and right strong identity are the same in G.
Proof. Let e1 and e2 be the left and right strong identities of G. Then e1αx = x and xαe2 = x for all x ∈ G, α ∈ Γ. Now

by taking x = e2 and x = e1 respectively in above relations, we have e1 = e2.
Theorem 3.7. Let G be a strong Γ− group. Then left strong inverse and right strong inverse of every element in a strong

Γ− group is same.
Proof. Let e be the strong identity of G and b, c be the left and right strong inverses of an element ∈ G . Then bαa = e

and aβc = e for all α , β ∈ Γ. Hence, b = bαe = bα(aβc) = (bαa)βc = eβc = c.
Theorem 3.8. Let G be a strong Γ− group. Then the equations aαx = b and yαa = b have unique solutions in G for

a, b ∈ G, α ∈ Γ.
Proof.Let a ∈ G, therefore there exists c ∈ G such that aαc = cαa = e for all α ∈ Γ where e is the strong identity of

G. Take x = cαb, then x ∈ G. Now aαx = aα(cβb) = (aαc)βb = eβb = b for all α, β ∈ Γ. Similarly, the solution
of yαa = b exists. Further suppose that x1 and x2 are two solutions of the equation aαx = b in G. Therefore aαx1 = b and
aαx2 = b for all α ∈ Γ.This implies that aαx1 = aαx2. By left cancellation law x1 = x2. Hence the equation aαx = b has a
unique solution in G. By similar arguments one can prove that the equation yαa = b also has a unique solution in G.

Theorem 3.9. Let G be a non-empty Γ− semigroup. If for all a, b ∈ G, the equations aαx = b and yαa = b, α ∈ Γ
have solutions in G then G is a strong Γ− group.

Proof. For any a, b ∈ G, let the equations aαx = b and yαa = b, α ∈ Γ have a solution in G. Since G is non empty, so
there exists a0 ∈ G. Therefore, the equations a0αx = a0 and yαa0 = a0, α ∈ Γ have solutions in G. Let x = g and y = f be
the respective solutions of these equations in G. Thus g, f ∈ G and a0αg = a0 and f αa0 = a0 for all α ∈ Γ. Now let b ∈ G
arbitrarily then there exist x0, y0 ∈ G such that a0αx0 = b and y0αa0 = b. By associativity of Γ− semigroup G, we have
bβg = (y0αa0)βg = y0α(a0βg) = y0αa0 = b. Also f βb = f β (a0αx0) = ( f βa0)αx0 = a0αx0 = b. Therefore bβg = b
and f βb = b for all b ∈ G and for all β ∈ Γ. Taking b = f in bβg = b. This implies that f βg = f and by taking b = g in
f βb = b, we have f βg = g. Thus g = f for all β ∈ Γ. Putting g = f in bβg = b and f βb = b for all b ∈ G for all β ∈ Γ,
we have bβg = b and gβb = b for all b ∈ G, β ∈ Γ. Thus g is the strong identity of G. Again, the equations aαx = g and
yαa = g for all α ∈ Γ have solutions in G. Let x = c and y = d be their respective solutions in G. Therefore aαc = g and
dαa = g. Now d = dαg = dα(aαc) = (dαa)αc = gαc = c. Hence aαc = g and cαa = g for all α ∈ Γ implies that c is
strong inverse of a for all a ∈ G. Thus, G is a strong Γ− group.

Theorem 3.10. Let G be a strong Γ− group. Then x ∈ G is strong Γ− idempotent if and only if x = e, where e is strong
identity of G.

Proof. Suppose x ∈ G is strong Γ− idempotent, then xαx = x for all α ∈ Γ.Now xαx = eαx for all α ∈ Γ. By right
cancellation law we have x = e. Conversely, assume that x = e, then xαx = eαe = e = x for all α ∈ Γ.

Theorem 3.11. (Reversal Law) Let G be a strong Γ− group.Then for x, y ∈ G and α ∈ Γ, strong inverse of xαy is zβw
for all β ∈ Γ, where w and z are strong inverses of x and y respectively.

Proof. Let x, y ∈ G and let w and z be strong inverses of x and y respectively.
Then for all α, β , γ, δ ∈ Γ, (xαy)γ (zβw) = xα (yγz)βw = xα (eβw) = xαw = e. Also (zβw)δ (xαy) =

zβ (wδx)αy = zβ (eαy) = zβy = e, where e is strong identity of G. This implies that strong inverse of xαy is zβw .
Definition3.12. (StrongΓ− subgroup)Anon-empty subsetHof a strongΓ− group G is said to be a strongΓ− subgroup of

G if H itself is a strong Γ− group.
Theorem 3.13. The strong identity of a strong Γ− group and strong Γ− subgroup are same.
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Proof. Let G be a strong Γ− group and H be its strong Γ− subgroup. Let e and e′ be the strong identities of G and H
respectively. Suppose a ∈ H is any element, then aαe′ = e′ αa = a for all α ∈ Γ. Since a ∈ H and H ⊂ G, so a ∈ G. Thus
aαe = eαa = a for all α ∈ Γ. Therefore aαe = aαe′ for all α ∈ Γ. So, by left cancellation law e = e′.

Theorem 3.14. The strong inverse of any element of a strong Γ− subgroup H is same as the strong inverse of the element
regarded as the element of the strong Γ− group G.

Proof. Let e be the strong identity of G and H. Since H ⊂ G, so for a ∈ H we have a ∈ G.Let b be strong inverse of a in H
and c be the strong inverse of a in G. This implies that bαa = e and cαa = e for all α ∈ Γ.Thus bαa = cαa for all α ∈ Γ.
So, by right cancellation law b = c.

Theorem 3.15. A non-empty subset H of a strong Γ− group G is a strong Γ− subgroup if and only if
(i) aαb ∈ H for all a, b ∈ H and for all α ∈ Γ.
(ii) for all a ∈ H there exists b ∈ H such that aαb = e for all α ∈ Γ, where e is strong identity of G.
Proof. Suppose H is a strong Γ− subgroup. Then H is a strong Γ− group under the same ternary operation as that

of G. Thus (i) and (ii) hold. Conversely, assume that (i) and (ii) hold in H . Since G is a strong Γ− group and H ⊂ G, so
xα(yβ z) = (xαy)β z for all x, y, z ∈ H and for all α , β ∈ Γ. Again H ̸= ∅, by (ii) for a ∈ H there exists b ∈ H such that
aαb = e for all α ∈Γ Thus (i) implies, e = aαb ∈ H .

Theorem 3.16. A non-empty subset H of a strong Γ− group G is a strong Γ− subgroup if and only if for all a, b ∈ H
and for all α ∈ Γ implies aαc ∈ H where c is strong inverse of b in G.

Proof. Suppose H is a non-empty strong Γ− subgroup of a strong Γ− group G. Then H is a strong Γ− group under the
same ternary operation as that of G. Therefore, for all a, b ∈ H and for all α ∈ Γ, aαc ∈ H , where c is strong inverse of b
in G. Conversely, since G is a strong Γ−group and H ⊂ G, xα(yβ z) = (xαy)β z for all x, y, z ∈ H and for all α , β ∈ Γ.
Let a ∈ H be any arbitrary element. Then for a ∈ H and for all α ∈ Γ implies aαb ∈ H, where b is strong inverse of
(i.e aαb = bαa = e, where e is strong identity o f G). Thus e ∈ H . Since H ̸= ∅, So let a ∈ H. This implies that for
e, a ∈ H, eαb ∈ H for all α ∈ Γ and b = bβe = eβb ∈ H for all β ∈ Γ where b is strong inverse of a. Hence H is a
strong Γ− subgroup .

Theorem 3.17. Intersection of two strong Γ− subgroups is again a strong Γ− subgroup of the strong Γ− group.
Proof. Let H1 and H2 be two strong Γ− subgroups of a strong Γ− group G. Since e ∈ H1 ∩ H2 so H1 ∩ H2 ̸=∅ , where

e is the strong identity of strong Γ− group G. Let x, y ∈ H1 ∩ H2 . This implies that x, y ∈ H1 and x, y ∈ H2 .Therefore
xαz ∈ H1 and xαz ∈ H2 for all α ∈ Γ, where z is strong inverse of y in G (since H1 and H2 are two strong Γ− subgroups).
Hence xαz ∈ H1 ∩ H2 for all α ∈ Γ.

Definition 3.18. (Center of a strong Γ− group) Let G be a strong Γ− group then Center of a strong Γ− group G is a
subset of G consisting of all elements x of G such that xαy = yαx for all y ∈ G and for all α ∈ Γ. It is denoted byC (G) .

Theorem 3.19. Let G be a strong Γ− group. Then the CentreC(G) of G is a strong Γ− subgroup of G.
Proof. Let e be the strong identity of G, then eαx = xαe for all x ∈ G and for all α ∈ Γ. Therefore e ∈ C(G), so

C(G) ̸= ∅. Let g1, g2 ∈ C(G) then g1αy = yαg1 and g2αy = yαg2 for all y ∈ G and for all α ∈ Γ. Since g2 ∈ G, there
exists strong inverse g3 ∈ G such that g2αg3 = g3αg2 = e for all α ∈ Γ. Now g3αy = g3α(yαe) = g3α(yα(g2αg3)) =
g3α((yαg2) αg3) = g3α((g2αy) αg3) = ((g3αg2) αy)αg3 = (eαy)αg3 = yαg3 for all y ∈ G. Therefore, g3 ∈ C(G). Thus
yα(g1αg3) = (yαg1) αg3 = (g1αy) αg3 = g1α(yαg3) = g1α(g3αy) = (g1αg3)αy for all y ∈ G and for all α ∈ Γ.
Therefore g1αg3 ∈ C(G) and henceC(G) is a strong Γ− subgroup G.

Theorem 3.20. Let G be a strong Γ− group. Then G is a commutative strong Γ− group if and only ifC(G) = G.
Proof. Let G be commutative strong Γ− group. Then for x ∈ G, xαy = yαx for all y ∈ G and for all α ∈ Γ. Therefore,

x ∈ C(G) and thus G ⊂ C(G). Clearly C(G) ⊂ G being a strong Γ− subgroup of G. Conversely, let x, y ∈ G. Since
C(G) = G, then x, y ∈ C(G) and hence xαy = yαx for all α ∈ Γ. This implies that G is commutative strong Γ− group.

Definition 3.21. (Normalizer of an element of a strong Γ− group) Let G be a strong Γ− group, then Normalizer of an
element a of G is a subset of G consisting of all elements x of G such that xαa = aαx for all α ∈ Γ. It is denoted by N(a).

Theorem 3.22. Let G be a strong Γ− group, then normalizer N(a) is a strong Γ− subgroup of G.
Proof. Let e be the strong identity of G, then eαx = xαe for all x ∈ G and for all α ∈ Γ. In particular eαa = aαe

for all α ∈ Γ. Therefore e ∈ N (a) , so N(a) ̸= ∅. Let g1, g2 ∈ N(a), then g1αa = aαg1 and g2αa = aαg2 for all
α ∈ Γ. Since g2 ∈ G, there exists g3 ∈ G such that g2αg3 = g3αg2 = e for all α ∈ Γ. Now g3αa = g3α(aαe) =
g3α(aα(g2αg3)) = g3α((aαg2)αg3) = g3α((g2αa)αg3) = ((g3αg2)αa)αg3 = (eαa)αg3 = aαg3.Therefore g3 ∈ N(a).
Now aα(g1αg3) = (aαg1)αg3 = (g1αa)αg3 = g1α(aαg3) = g1α(g3αa) = (g1αg3)αa for allα ∈ Γ.Thus g1αg3 ∈ N(a).
Hence, N(a) is a strong Γ− subgroup of G.

Theorem 3.23. LetG be a strong Γ− group.ThenG is commutative strong Γ− groupif and only ifN(a) = G for all a ∈ G.
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Proof. Let G be commutative strong Γ− group. Then for x ∈ G, we have xαy = yαx for all y ∈ G and for all α ∈ Γ. In
particular xαa = aαx for allα ∈ Γ.Therefore x ∈ N(a) and thusG ⊂ N(a).ClearlyN(a) ⊂ G being a strong Γ− subgroup
of G. Conversely, let x, y ∈ G. Since N(a) = G for all a ∈ G, then in particular N(x) = N(y). Therefore, xαy = yαx for all
α ∈ Γ. This implies that G is commutative strong Γ− group.

3 Conclusion
This article presents the idea of a strong Γ− group and provides some key findings in this area. We pay particular attention to
outcomes that hold true for strong Γ− groups but not for Γ− groups. For researchers, this article has a lot of potential.
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