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Abstract
Objectives: To suggest reliable location parameters (central value) inmultivari-
ate datasets using data depth procedures in order to reduce the presence of
outliers.Methods: Applying depth techniques in both outlier-free and outlier-
containing scenarios, the data sets starsCYG and delivery time data are utilized
to determine the measure of location. Various classical and robust data depth
procedures are used to find the location parameters, namely Mahalanobis
depth, Tukey’s half space depth, Projection depth, Zonoid depth, Spatial depth,
and L2 Depth (Euclidean Depth). Distance-Distance plot is used for identifying
the outliers. Further, it has been researched howwell the data depth processes
work by computing the parameters under actual and simulation environments,
with andwithout outliers by considering different levels of contaminations (0%,
1%, 2%, 3%, 5%, 10%, 20%, 30%, 40%). Findings: From the two data sets studied,
Halfspace depth and Euclidean (using MCD estimator) give the same location
parameters if the anomalies are present. These two procedures work equally
well and more effectively than the others. The robust depth procedures work
well if the outliers are present in the datasets and from the simulation study
it can handle a certain level of contamination present in the data set. Nov-
elty: Any dataset that contains outliers makes analysis results risky. Robust
statistical techniques can tolerate some getting contaminated. According to the
study, even if the data contains outliers, the Depth processes employing robust
estimators can withstand a certain amount of contamination and still produce
accurate findings.

Keywords: Location; Data Depth; Outliers; Mahalanobis Distance; Robust

1 Introduction
Identifying the center of a data cloud and calculating how close a particular data point
is to the center are common statistical tasks that include measures of centrality. We are
interested in the subject of how central an observation is in a probability distribution in
a probabilistic context. Outlyingness is the antithesis of centrality. The Mahalanobis
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distance is a commonly used measure of outlyingness in multivariate statistics. This is the standard Euclidean distance used to
transform ”whitened” data using a scatter matrix and a center point. Since the early 1990s, more general statistics for calculating
the centrality and outlyingness of data in Rd as well as for locating the center portions of a data cloud made up of points
with at least a certain degree of centrality have been created. Data depth is one of the main concepts used to measure the
deepest point (1). This concept is emerging nowadays and is used in the field of non-parametric statistics. Data depth measures
how deep a given data is located in the entire data cloud. It is also defined as the position of the sample point to the entire
data or the position of the sample point concerning the probability distribution. Various notions of depth preliminaries have
been established in the literature by several researchers. Relying upon this depth functions, procedures of signs and ranks,
median, order statistics, and outlyingness indicators might be simply expanded from their basic versions (2). Data exploration,
asymptotic distributions, ordering, and robust estimation are key statistics areas where data depth is essential (3,4). Data depth
procedures in both univariate and multivariate are based on the idea of ranks. It results in an ordering of observations from the
center outward as opposed to the usual ranking from smaller to largest (5,6).

The depth of a point X ∈ Rp should not depend on the fundamental coordinate system or in particular the scale of the
fundamental measurement. For any distribution with a uniquely distinct center, the depth function should attain a maximum
value at its center (7). As a point moves away from the deepest point, along a fixed line through the center, the depth at X should
decrease monotonically for any x having the deepest point (8).The depth of point x should be moved toward zero when the
observation is far away from the data cloud.

This paper mainly focused on computing location parameters based on depth procedures. Calculates a depth value for each
observation and the deepest point—the one with the highest depth value—is subsequently taken into account as a location.
In this article, various depth procedures, including classical and robust methods are discussed and examined by computing
location parameters in both outlier-free and outlier-containing scenarios for real and simulated environments, taking into
account varying levels of contamination.The conventionalmeasure of location (samplemean vector) is incredibly data-sensitive
when the data deviate from the model assumptions. Many robust alternatives are set up to assess the measure of location. These
are mainly based on the concept of robust estimation and have been created in recent years. The effectiveness of the technique
is examined in real and simulations (level of contaminations: 0%, 1%, 2%, 3%, 5%, 10%, 20%, 30%, and 40%), and the results
are given in Section 3 and the appendix.

2 Methodology
To compare inferencemethods based ondepth and evaluatemeasures such as location and scalemany graphical and quantitative
methods are established. Throughout the past few decades, various depth theories have been put forth. The well- well-known
techniques, including the Mahalanobis Depth (9),Half-Space Depth (10), Projection Depth (11,12), Zonoid Depth (13), Spatial
Depth (14), L2 depth (Euclidean Depth) (15,16), and Euclidean Depth using MCD estimator (17) that are simply described in this
section.

2.1 Mahalanobis Depth

Mahalanobis depth was first described by Liu et al. (1993) from Mahalanobis distance. Mahalanobis (1936) established
the statistical idea of generalized distance which is calculated by using a classical mean vector and covariance matrix. For
determining the Mahalanobis depth of observation, the Mahalanobis distance is used. The positive inverse of Mahalanobis
distance is termed as Mahalanobis depth. For an observation y ∈ Sn ⊂ Rdaboutad −dimensionaldata,, Mahalanobis depth is
specified as

MD(Y, Sn) = [1+(Y −
−
Y )S−1(Y −

−
Y )]

−1
(1)

where
−
Y and S are the mean vector and dispersion matrix of Sn . Since it is reliant on non-robust parameters like the mean and

dispersion matrix, this algorithm lacks to be reliable.

2.2 Half-space Depth

Theconcept of half-space depthwas introduced by Tukey (1975). Suppose dividing a certain number y into two parts: each point
equal to or less than y is considered as a closed half-space, and each value less than y is an open half-space. Similarly, all values
equal to or greater than y as closed halfspace. For d > 1, the lowest depth of every one-dimensional projection of the dataset
can be used to define the halfspace depth. The procedure for computing halfspace depth along with numerical illustration has

https://www.indjst.org/ 1928

https://www.indjst.org/


R Muthukrishnan & Nair / Indian Journal of Science and Technology 2023;16(26):1927–1934

been given by Xiongtao (2022).
That is the smallest number of observations in a closed half-space with a border through Y, which is defined as the

halfspace depth of an observation regarding a d-dimensional data set Sn. Halfspace depth of a point y = (y1,y2, . . . ,yn) ∈
Sn ⊂ Rdrelativetod −dimensionaldatasetSn is, given by

P(z | Y ) = inf{P[Y ∈ H],closedhal f space,z ∈ H} (2)

Here the median is the deepest point. As the point that has the highest depth value in the multivariate scenario, the concept of
median can be used widely. The Tukey median is referred to as the multivariate median. Tukey depth is another name for Half
Space depth.

2.3 Projection Depth

Projection depth is initiated by Liu et.al (1993). It is based on the outlyingness and further, it was explored by Zuo and Serfling
(2000). This procedure reflects the projection pursuit methodology and involves supremum over infinitely numerous direction
vectors hence the computation of projection depth appears intractable. Initially, classical location and scale can be used to
compute projection depth. Later it was replaced by a robust measure such as median and Median Absolute Deviation (MAD).

Let µ(.) be the location and σ(. be a scale for univariate observations. For a distribution function G, the outlyigness of
observation y is given as

o(y,G) = sup |(u,y,G)|∥u | −1 (3)

where Q(u,y,G) =
(
uT y−µ (Gu)

)
/σ (Gu)andGu is thedistributiono f uT y.

For a multivariate d- dimensional data set with location µ(.)andscaleσ(.), the description of the projection depth is

PD(y,G) =
1

1+o(y,G)
(4)

2.4 Zonoid Depth

The Zonoid depth was demonstrated by Koshevoy and Mosler (1996) and is equivalent to two times Tukey’s data depth of a
suitably modified distribution. Zonoid depth differs from the remaining ideas. This perception has many properties in which
these concepts have some limitations most effective, Liu et al. (1993) for Tukey’s and projection depth. The zonoid depth,
Dµ(y)o f anobservation ∈ Rd isde f inedby,

Dµ(y) =
{

sup{α : y ∈ Dα(µ)} , if y ∈ Dα(µ) for some α
0, elsewhere. (5)

Depth of an observation y is the maximum height αandwhereα ∈ projα Ẑ(µ).
Now NowDα(µ) = 1

α projα(Ẑ(µ))
where 0 < α ≤ 1.
Moreover, the depth of y is equal to one if y is the expectation and zero if y sits exterior (µ) f orallα .Intheeventthatα > 0,(µ)

is the collection of each observation with data depths that are either greater or equal to α .

2.5 Spatial Depth

Vardi and Zhang (2000) formulated Spatial depth from the idea of spatial quantiles which was introduced by Chaudhuri (1996).
It was extended by Zuo and Serfling (2000) and is given by, SupposesG be a cumulative distribution function of a d- dimensional
random vector X. Formerly the multidimensional spatial depth of y ∈ Rd is therefore outlined I n the following manner.

SD(x,G) = I −∥E(y−x)∥e (6)

where ∥. ∥e is the Euclidean model in d-dimensional space.
The concept of spatial (sometimes referred to as geometric) quantiles for multidimensional data acts as a basis for the depth

function known as spatial depth. L1-depth is another name for this spatial depth.
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2.6 Euclidean Depth (L2Depth)

Euclidean Depth was introduced by Zuo and Serfling (2000). According to a point’s mean outlyingness, the Euclidean Depth,
DL2ismeasuredbytheL2distance and is given by

Dz(v | Y ) = (1+E∥v−Y∥)−1 (7)

holds αmax = 1.T hedepthli f tisD̂L2(Y ) = {(α,v) : E∥v−αY∥ ≤ 1−α} and curved.
It is provided for the distribution of n observations,

DL2 (v | y1, . . . ,yn) =

(
1+

1
n

n

∑
i=1

∥v− yi∥
)−1

(8)

L2 depth is extreme at its spatial median of Y and disappears towards infinity. The extreme depth value is obtained at the
center whereas if the distribution is completely symmetrical, in which case the spatial median serves as the center. The triangle
inequality is the sole source of the deepest point’s monotonicity, as well as the compactness and convexity of the center
areas. Further, Euclidean Depth depends continuously on v. Additionally, depth merges in the probability distribution when
considering a weakly convergent along with an identically integrable sequence. Pn → Pitholds limn DL2 (v | Pn) = DL2(v | P).

Yet, the ordering of scatter produced by the Euclidean Depth is not an appropriate ordering of scatter because it violates its
dilation order. Euclidean Depth is also known L2 depth.

2.7 Euclidean Depth (using MCD estimator)

The Euclidean Depth is not affine invariant, although it is invariant under rigid Euclidean motions. The following is an affine
invariant version when faced with a positive definite d ×dmatrixH,, and H-norm is given in the form

∥v∥H =
√

v′H−1v,v ∈ Rd (9)

Let SY be a positive definite d × d matrix that continuously reflects on the allocation and assesses the dispersion of Y in an
affine equivariant manner. Later indicates that

SY b+d = BSY B holds for some matrix B of full rank and some d.
The affine invariant form of L2depth is taken for more robust choices for SY , the covariance matrix, and modified L2 depth

is

DL2(v | Y ) = (1+E∥v−Y∥sx)
−1

It shares the same characteristics as the L2depth aside from invariance.The covariancematrixΣX o f Xisastraight f orwardoption f orSX ,Zuo,
and Serfling (2000).Theminimumcovariance determinant (MCD) in addition tominimumvolume ellipsoid (MVE) estimators
are more reliable options for SX , Rousseeuw et al. (1987), Lopuha et al. (1991).

3 Results and Discussion
A comparison of various depth procedures to find location parameters of two real data sets namely starsCYG and delivery
time is enlisted in Tables 1 and 2 respectively. Also, a simulation study was done for the same. The depth procedures discussed
above are conducted in real and simulation environments. Various notions of depth procedures are used to locate the deepest
point, both with and without outlier conditions. Comparing various depth functions, robust estimators can withstand some
contamination and still provide accurate findings, even when the data contains outliers. These estimators are employed in the
depth procedures to identify location parameters.

3.1 Real Data

Real data from starsCYG, Rousseeuw, and Leroy (1987, pp.27) is taken into consideration to examine the effectiveness of
the aforementioned depth techniques. Two variables, the logarithm of the effective surface temperature of each star and the
logarithm of its light intensity are included in the dataset, which contains 47 stars in the direction of Cygnus. Found that there
are 4 extreme outliers and 2 potential outliers using a distance-distance plot. Table 1 provides an overview of the highest depth
value and corresponding observation under various depth processes (with and without outliers).
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Table 1.Maximum depth value and observation number under various depth procedures of stars CYG data
Methods MD HSD PD ZD SD L2d(T) L2d(mcd)
Depth
value

0.941 (0.924) 0.382 (0.372) 0.659 (0.605) 0.891 (0.821) 0.960 (0.850) 0.465 (0.449) 0.425 (0.328)

Observation
no.

25 (28) 28(28) 25(42) 25(28) 25(42) 25 (25) 28(28)

(.) - Without outliers

FromTable 1 it is noticed that Halfspace depth and L2 depth (using theMCD estimator) give the samemeasure of location in
both cases, the 28th observation. These two procedures work equally well and more effectively than the others. L2 depth using
the moment estimator gives the 25th observation as a measure of location in both cases. Other depths namely Mahalanobis,
Projection, Zonoid, and Spatial give different locations corresponding maximum depth values.

Delivery Time Data from Montgomery and Peck (1982), which is multivariate real data, is taken into consideration to study
the effectiveness of the mentioned depth methods. The data set contains 25 observations and 3 variables namely the number
of products, the distance walked by the route driver, and Delivery time. Found that there are 6 outliers using distance-distance
plot, the two are extreme outliers and the other 4 are considered as potential outliers. Table 2 displays the greatest depth value
and observation number for several depth techniques with and without outliers.

Table 2.Maximum depth value and observation number under various depth procedures of Delivery time data
Methods MD HSD PD ZD SD L2d(T) L2d(mc d)
Depth
value

0.934 (0.932) 0.4 (0.3) 0.753 (0.517) 0.771 (0.683) 0.858 (0.78) 0.36 (0.319) 0.408 (0.395)

Observation
no.

15 (6) 6 (6) 6(6) 15 (17) 15 (6) 17 (6) 6 (6)

(.) - Without outliers

Table 2 shows that Halfspace depth, projection depth, and L2 depth (using MCD estimator) give the same measure of
location in both cases, 6th observation with and without outliers. These techniques perform similarly well as well as being
more efficient than the others. Other depths namely Mahalanobis, Zonoid, Spatial, and L2 depth using moment estimator give
different locations corresponding maximum depth values.

3.2 Simulation Data

The different depth procedures have all been put through simulation testing. The experiments were carried out by computing
the maximum depth values that correspond to location measurements and the observation numbers that belong to maximum
depth values under simulation studies while considering various levels of contamination. First data is generated with mean
vector µ= (0, 0), covariance matrix Σ=I2 for sample size, n=100. Further same experiments were performed under various
levels of contaminations, such as ε= 0%, 1%, 2%, 3%, 5%, 10%, 20%, 30%, and 40%. (For Location µ= (4, 4), Σ=I2, Scale µ= (0,
0), Σ=1.5I2, Location, and Scale, µ= (4, 4), Σ=1.5I2 are taken into account, and the outcomes are compiled in the tables titled
Tables 3, 4 and 5. It is concluded that half space depth and L2 depth using the MCD estimator can tolerate certain levels of
contamination and gives the same deepest point. Other depth procedures fail to provide identical location measurements even
if the data contamination is very low.

Table 3.Measure of location and deepest points under Location contamination
Error MD HSD PD ZD SD L2D L2D(mcd)
0.00 0.968

(-.177,.169)
41

0.42
(.177,.169)
41

0.783
(.177,.169)
41

0.876
(-.177,.169)
41

0.917
(-.177,.169)
41

0.445
(-.177,.169)
41

0.442
(-.177,.169)
41

0.01 0.952
(-.177,.169)
41

0.42
(.177,.169)
41

0.762
(.177,.169)
41

0.813
(-.294, -.465)
20

0..915
(-.177,.169)
41

0.426
(-.177,.169)
41

0.442
(-.177,.169)
41

Continued on next page

https://www.indjst.org/ 1931

https://www.indjst.org/


R Muthukrishnan & Nair / Indian Journal of Science and Technology 2023;16(26):1927–1934

Table 3 continued
0.02 0.947

(-.177,.169)
41

0.42
(.177,.169)
41

0.778
(.177,.169)
41

0.782
(-.294, -.465)
20

0..925
(-.294, .465)
20

0.426
(-.177,.169)
41

0.442
(-.177,.169)
41

0.03 0.939
(-.177,.169)
41

0.42
(.177,.169)
41

0.777
(.177,.169)
41

0.784
(-.294, -.465)
20

0..904
(-.177,.169)
41

0.417
(-.177,.169)
41

0.442
(-.177,.169)
41

0.05 0.905
(.235,.33)
90

0.42
(.177,.169)
41

0.738
(.177,.169)
41

0.718
(0.414,0.183)
82

0.845
(0.235,0.33)
90

0.408
(0.235,0.33)
90

0.442
(-.177,.169)
41

0.1 0.849
(.235,.33)
90

0.42
(.177,.169)
41

0.670
(.177,.169)
41

0.698
(-.294, -.465)
20

0.817
(0.235,0.33)
90

0.398
(-.006,.485)
36

0.442
(-.177,.169)
41

0.2 0.741
(.414,0.183)
82

0.41
(.177,.169)
41

0.590
(.414,0.183)
82

0.690
(.414,0.183)
82

0.768
(.414,0.183)
82

0.388
(.414,0.183)
82

0.442
(-.177,.169)
41

0.3 0.664
(.235,.33)
90

0.39
(.414,.183)
82

0.53
(.235, -0.33)
90

0.677
(-0.006,0.485)
36

0.699
(.235, -0.33)
90

0.377
(-.006,.485)
36

0.442
(-.177,.169)
41

0.4 0.579
(.235,.33)
90

0.38
(-.294,.465)
20

0.534
(.235, -0.33)
90

0.661
(.235,0-.33)
90

0.647
(-.294, .465)
20

0.365
(.235, -0.33)
90

0.405
(.235,.33)
90

(First value indicates the highest depth value, (.) indicates measure of location and the last value indicates the observation number).

Table 4.Measure of location and deepest points under Scale contamination
Error MD HSD PD ZD SD L2D L2D(mcd)
0.00 0.944

(.053,.351)
27

0.36
(0.053,0.351)
27

0.657
(0.053,0.351)
27

0.856
(0.053,0.351)
27

0.863
(.053,.351)
27

0.435
(.053,.351)
27

0.442
(.053,.351)
27

0.01 0.933
(.053,.351)
27

0.36
(0.053,0.351)
27

0.651
(0.053,0.351)
27

0.848
(0.053,0.351)
27

0.846
(.053,.351)
27

0.418
(.053,.351)
27

0.442
(0.053,.351)
27

0.02 0.924
(.053,.351)
27

0.36
(0.053,0.351)
27

0.629
(0.053,0.351)
27

0.863
(0.053,0.351)
27

0.858
(0.053,.351)
27

0.412
(.053,.351)
27

0.442
(.053,.351)
27

0.03 0.920
(.053,.351)
27

0.36
(0.053,0.351)
27

0.662
(0.053,0.351)
27

0.808
(0.053,0.351)
27

0.877
(.053,0.351)
27

0.411 (0
.053,.351)
27

0.442
(.053,.351)
27

0.05 0.902
(.053,.351)
27

0.36
(0.053,0.351)
27

0.626
(0.053,0.351)
27

0.808
(0.053,0.351)
27

0.863
(0.053,.351)
27

0.405
(.053,.351)
27

0.442
(0.053,.351)
27

0.1 0.851
(.053,.351)
27

0.34
(0.053,0.351)
27

0.594
(0.053,0.351)
27

0.795
(0.053,0.351)
27

0.863
(0.053,.351)
27

0.400
(.053,.351)
27

0.442
(0.053,.351)
27

0.2 0.747
(.053,.351)
27

0.33
(0.053,0.351)
27

0.544
(0.053,0.351)
27

0.746
(0.053,0.351)
27

0.754
(.053,0.351)
27

0.383
(.053,.351)
27

0.442
(0.053,.351)
27

0.3 0.648
(.053,.351)
27

0.36
(0.053,0.351)
27

0.501
(0.053,0.351)
27

0.713
(0.053,0.351)
27

0.719
(.053,.351)
27

0.373
(.129, -
.162) 70

0.442
(.053,.351)
27

0.4 0.582
(.612, -.162)
15

0.34
(0.053,0.351)
27

0.500
(0.573,0.607)
27

0.603
(-0.108, -.250)
78

0.641
(.129, -.162)
70

0.363
(.181, .138)
70

0.418
(.181, .138)
70
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Table 5.Measure of location and deepest points under Location-Scale contamination
Error MD HSD PD ZD SD L2D L2D(mcd)
0.00 0.984

(.184,.023)
34

0.44
(-.184,.023)
34

0.771
(-.184,.023)
34

0.893
(-.184,.023)
34

0.945
(-.184,.023)
34

0.446
(-.184,.023)
34

0.442
(-.184,.023)
34

0.01 0.980
(-.184,.023)
34

.44
(.184,.023)
34

0.713
(-.184,.023)
34

0.832
(-.103,.327)
64

0.94
(-.184,.023)
34

0.405
(-.184,.023)
34

0.441
(-.184,.023)
34

0.02 0.974
(-.184,.023)
34

0.46
(-.184,.023)
34

0.767
(-.184,.023)
34

0.870
(.038,.189)
12

0.94
(-.184,.023)
34

0.421
(-.184,.023)
34

0.441
(-.184,.023)
34

0.03 0.966
(-.184,.023)
34

0.42
(-.184,.023)
34

0.767
(-.184,.023)
34

0.870
(.038,.189)
12

0.939
(-.184,.023)
34

0.414
(-.184,.023)
34

0.441
(-.184,.023)
34

0.05 0.947
(-.184,.023)
34

0.43
(-.184,.023)
34

0.742
(-.184,.023)
34

0.893
(-.355,.276)
34

0.932
(-.184,.023)
34

0.418
(-.184,.023)
34

0.441(-
.184,.023)
34

0.1 0.870
(.038,.189)
12

0.42
(-.184,.023)
34

0.714
(-.184,.023)
34

0862
(-.362,.327)
98

0.893
(-.184,.023)
34

0.402
(-.184,.023)
34

0.441
(-.184,.023)
34

0.2 0.791
(-.184,.023)
34

0.42
(-.184,.023)
34

0.642
(-.184,.023)
34

0.800
(-.184,.023)
34

0.835
(-.184,.023)
34

0.387
(-.184,.023)
34

0.441
(-.184,.023)
34

0.3 0.695
(.060,.128)
50

.46
(-.184,.023)
34

0.588
(-.103,.327)
64

0.838
(-.103,.327)
64

0.808
(-.103,.327)
64

0.378
(-.103,.327)
64

0.432
(.038,.189)
12

0.4 0.587
(-.342,.100)
81

0.44
(.038,.189)
12

0.870
(.038,.189) 12

0.812
(-.103,.327)
64

0.798
(-.103,.327)
64

0.378
(-.184,.023)
34

0.427
(-.342,.100)
81

4 Conclusion
Robust estimators used in the depth procedures to find location parameters may resist a certain level of contamination and still
give correct results, even if the data contains outliers. The depth procedures such as halfspace depth and Euclidean Depth using
MCD estimator give better results compared with other depth procedures. By finding the deepest point in a dataset instead of
relying on a more conventional method of determining location, the research groups can find the best location parameter with
greater precision when using these methods.
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