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Abstract

Objective: The present method aims to solve and investigate the efficiency,
accuracy, and stability of the 2D unsteady Navier-Stokes equation in stream
function vorticity formulation and Taylor's vortex problem. Method: RBF
partition of unity method (RBF-PUM) was implemented to solve the two-
dimensional Navier- Stokes equations in stream function vorticity formulation
and Taylor’s vortex problem. Findings: RBF-PUM results show good agreement
with the exact solutions. The numerical approach is found to be efficient and
accurate while maintaining stability even for a Reynolds number as high as
1000. The global RBF method's high computational cost can be overcome by
using the RBF-PUM. Novelty and applications: The RBF-PU methodology is
extended to solve the two-dimensional Navier- Stokes equations in stream
function vorticity formulation and Taylor's vortex problem, which were not
discussed earlier in the literature. The adaptive spatial refinement within the
partitions may be performed independently using the RBF-PUM. Then it may
be extended to the more complex problems in CFD.

Keywords: Mesh Free Methods; RBF- PUM; Navier- Stokes Equations; Taylor's
Vortex Problem; CFD

1 Introduction

Several scientific and technical applications involve partial differential equations
(PDEs), which appear as initial-boundary value problems. These later mechanisms
include slow evolution methods like diffusion and heat conduction. The non-linearities
of the investigated procedures, the instability of numerical approaches, and the increase
in data due to additional dimensions make this class of problems exceedingly difficult
analytically and numerically in several different ways. Furthermore, because most
PDEs lack an exact solution, it has become crucial in many research areas to develop
accurate and effective approximation techniques for calculating the numerical solution
of differential equations.
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Recent years have seen much work researching “Meshfree” methods ("?). The purpose of Meshfree methods is to eliminate
the structure of the mesh and approximate the solution entirely using the nodes or data points as a scattered or quasi-random
set of points rather than nodes of grid-based discretization. Meshfree character, adaptability
in handling geometrical complexity, spectral rate of convergence, and ease of application to multi-dimensional problems are
the meshless approaches’ most salient features®). One of the meshless techniques was made possible by the groundbreaking
work of Kansa, who used Radial Basis Functions (RBFs) to solve PDEs. A scaling parameter is present in the RBFs shown in
Table 1. It is widely recognized that the selection of the scaling parameter affects the RBFs” accuracy. There are a few numerical
techniques for selecting the ideal scaling parameter value ).

However, filled collocation matrices produced by using globally supported basis functions are more unreliable and
computationally expensive as data set size increases. Restricting the basis function support is the simplest way to localize an
RBF collocation method . In this situation, nonzero functions only within their support are used instead of the standard base
functions globally supported.

In this section, the RBF-PUM approach ©-®) will be discussed. This strategy uses localization to cut the computational
cost of RBF-based methods. The well-known RBE-PUM creates a sufficient number of overlapping subdomains or patches
to encapsulate the problem’s original domain completely. The global fit is then produced by integrating these approximations
after a local RBF approximant is created on each subdomain using compactly supported PU weight functions.

The RBF-PU approach is used in literature to solve PDEs like the pseudo-Parabolic Problem, Poisson Problem, and Unsteady
Convection Diftusion Equation. Since the RBF-PUM methodology did not handle Taylor’s vortex problem or the 2D Navier-
Stokes equations in stream function vorticity formulation, we extended the RBF-PU methodology to solve these problems in
the current study. Even for a Reynolds number as high as 1000, the results produced using this method are well aligned with
the analytical solutions.

The article’s structure is as follows. In section 2, we review the main theoretical concepts of RBF approximation, we briefly
present the PUM collocation by RBFs, RBF-PUM method for time dependent PDEs and Poisson problem and stability analysis
of our present method. The results of our numerical experiments are presented in section 3. Finally, section 4 is devoted to brief
conclusions and future work.

2 Methodology
2.1 Radial Basis Function approximation

2.1.1 Radial Basis Function approximation using conditionally positive definite function
The function u(x) is approximated in a domain Q C R, at distinct data points or centers X = {x1,...,xy}, and interpolated
by s, x : & — R of the form

Sux(x) = 21}/:1 00 (Hx—xjH) +Z,g=1ﬁkpk(x), xe R4 (1)

oj & Py are unknowable real coefficients, ||.||represents the Euclidean distance, and @, : (0,4c0) — R is an RBF with scaling
parameter £ > 0 such that O (||x—x;|| =0 (g||x—x;||) ,Vx € Q . A few well-known RBFs are provided in Table 1, together
with their smoothness rankings(l). In equation (1) pi,..., po form a basis for the space 7,1 (Rd) with dimension Q whose
polynomials of total degree < m — 1 in d variables. To deal with higher degrees of freedom, the interpolation conditions

Sux (x)=u(x),i=1,...... ,N
Are fulfilled by the extra conditions
Zl}’zlajpk (Xj) =0 k=1,...... ,0 (2)

A linear equation system is obtained by solving the interpolation problem (1).

(7 5)(5)-6) ®

where the matrix A € RV is provided by A;; = 0 (¢ ||x; —x;||) .i,j=1,...... ,N; P € RVN*Chas entries

Pix=(pe(x)), j=1,..,N, k=1,....00 = (a1,....0n)", B=(Br......Bo)" , u= (ur,...,un)", 0 =
(0,....,0)" and O is a Q x Q zero matrix. The coefficient matrix on the left must be invertible for the system (3) to be properly
solved.
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Table 1. Some notable RBF examples using the Euclidean norm r = ||-||,and v € N.
RBF oe(r)
Gaussian C*(GA) e e
Multi Quadric C*(MQ) (1+€%r%) 12
Inverse Multi QuadricC(IMQ) (14£2r2)" 1/2
Thin plate spline C¥*+1(TPS) (=) 2i0gr
Matérn C*(M4) & (21 +3er+3)
Matérn C2(M2) e ¥ (er4-1)
Wendland C*(W4) (1— 8r)6+ (35212 + 18er +3)
WendlandC?(W2) (1— 8r)6+(4£r +1)

However, the polynomial Z,?Zl Bipk (x), inequation (1), is often needed if ¢ is conditionally positive definite. In the case of
positive definite RBFs, such as Gaussian, Multi-Quadric, Inverse Multi-Quadric or Matérn, the polynomial term is not required
in equation (1). For any differential operator, Lu can also be approximated, in a similar manner as in (1), as follows:

N [
Lu(o) =} a0 (2 [lx =) + 1 Bl pe(x)-

2.1.2 Radial Basis Function approximation using positive definite function
For positive definite function ¢, the interpolant of u (x) can be formulated without the polynomial term in equation (1). That
is,

sux () = L3y 00 (e]x—x]) @
To determine the coefficients ¢, ..., oy the interpolation requirements must be
sux (X)) =u(x;), i=1,...... N

The system of symmetric linear equations can be constructed by imposing these conditions as
Aa = u, (5)

Where A;; = ((Z) (8 ||xi ij| ) JLj=1,.. .. 2N a=(a,..., ocN)Tu = (uy,... .,uN)T. The RBF interpolation problem is well
posed if ¢ is a positive definite, in which the corresponding matrix A is invertible. As a result, there is a distinct and existing
solution to the problem.

We may therefore calculate the RBF interpolant at any data point x as soon as the vector « is found, i.e.,

s () = &7 (1) ©
Where 07 (x) = (0 (& ||x —x1]),...,0 (e ||x —xn])).

When a Lagrangian-form RBF interpolant is used, we may solve a time-dependent PDE and approximate the solution u(x,)
as follows.

sux (60) = X w5 (s (1) 41> 0 %
where y; (x), j=1,...,N, is the cardinal basis function and has the property
lifi=j ;
W’(x’){01f1 7&]] y J=1 0N,

and u; (t) =u (x;,) are the known functions to be determined.
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2.2 Method of Partition of Unity using RBFs

2.2.1 RBF- PUM to solve interpolation problems
Let @ C R? be an open bounded domain and let {Q j}]}/l:l be an open and bounded covering of Q that satisfies a minimal

overlap requirement between the subdomains (or patches) Q ;. Moreover, the set /(x) = {j : x € Q;} is uniformly bounded
by the constant K - independent of M - on Q, namely card(I(x)) < K, forx € Q, where Q C U’}il Q;. We construct a

partition of unity {®; }[jw: | that is the subordinate to the covering {Q; }1]”: , in relation to the subdomains such that,

M
ij(x):l,xeﬂ,
j=1

where the weight function ®; : ©; — R is a compactly supported, nonnegative and continuous with supp(w;) CQ ;. Thus, we
can establish a local RBF interpolant s, x; : Q; — R such that

8

) ®

Where N; is the number of centres in Q; i.e., the point x{ € X; = XN Q,. Therefore, the global RBF-PUM interpolating
polynomial is defined as

NA . .
Suj x; (%) = il al0 (8 Hx—x{

Pu,x - ZIJW:I w] (X) Suj.Xj (-x) B X e 97 (9)
If the function Sujx; J=1,....M, satisfy the interpolation conditions
sy () = () <y o)

Following that, the global interpolating polynomial (9) acquires the interpolation characteristic of the local interpolants, i.e.,

P x (x{) = 21}4:1 ; (x{) Suj X; (x{) = _1]‘-/1:1 u (x{) ; (x{) =u (x{) (11)
Solving the j — th interpolation problem (10) leads to the local RBF linear system.
AJ‘(X/' =Uj

. . . N T . T
x| ) k=1, N0 = (of o) andu = () e

Where A; is a Nj X N; matrix of entries Ale =0 (8 ’ ;
should be noted that similar to (5), the employment of positive definite RBFs & ensures the solution’s existence and uniqueness
as well as the non-singularity of the local matrix A ; ©), The Shepard approach can be utilized to build the PUM weight function

®; and is given by

®;(x)

=2 i=1,....M 12
Yrer(x) Pr(x) (12)

@;(x)
@; (x) is a compactly supported function with support for Q; like the Wendland C? function in Table 1. With a shape
parameter, such functions are scaled to obtain @;(x) = ¢ (8 Hx —& j‘ ), where &; is the center of the function. As a result,

0;(x) =0,V &I(x).
Therefore, equation (9) might be revised as

Pux(x) = ¥jerx) @ (%) Sujx; (x) (13)
And the weight function @; (x) in (12) fulfil the property of partition of unity
Zjel(x) ®;(x) =1

Therefore, similarly to Equations (11)and (12), if the local fits Suj X; (x) in Eq. (13) interpolate at a specific data point x;, i.e.
Su; x; (xi) = u(x;) for each node x; €Q;, then the global fit likewise interpolates at that point, that is

Pux(xi)=Y jete) @7 (%) Sujy (i) = u (i) Y et @ () = 1 (xi)

https://www.indjst.org/ 2093
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2.2.2 Differential problems with RBF- PUM
When an RBF- PUM technique is used to solve a PDE numerically with time dependence, the differential problem’s
solution, u(x,t), is approximately determined by the global interpolant.

PM7X (.X,[) = ZA]'€I(X) w; (X) Suj X ()C,f), t >0, (14)
Where, analogous to equation (9) sy, x; (x,¢) is local RBF interpolant defined on Q; of the form
Suj X; (xvt) = Zke](Q,‘) Yk (x) Ui (t) (15)

With J(Q;) = (k: x, € Q;} that specifies the set of nodes in Q;. According to equations (14) and (15), the RBF-PUM
interpolant can be represented as follows.

Pux (x,t) = ¥ jer(x) ® (x) ZkeJ(Qj) Vi (X) uk (1) = L jer(x) Lres(a) (@) (%) Wi (x) Jux (1) (16)
Therefore, if a time-dependent problem’s initial condition was interpolated, we have

me (xk,O) = u(xk,O) Vk while me (xk,t) ~ l/l(xk,l) fOl’ t> 010
We may calculate a derivative term of order u of the global fit (16) by denoting by ¢t and v the multi-indices for common
rules and then using Leibniz’s rule to generate the derivative rule.

|l m
%PL”X (1) =Y jer) Lkes(e) % (0;(0) Y (x)) u (1)

lu=vlg, V]
Sk <Z(f)a;xu—?“x)aax‘fﬂ)c))uk(z) (17)

JElX) kel (Q;) \v=H

If we fix x= x; and k in equation (17), we obtain the ik - element of the global differentiation matrix.

2.3 Convection-diffusion problem - RBF-PUM scheme

In this subsection, we apply RBF-PUM for time dependent PDE, specifically to solve unsteady convection-diffusion equation.
Let us consider the following unsteady convection-diffusion equation

% = kAu(x,t) +v.Vu(x,t) = Lu(x,t),x e QC R 1 >0, (18)

where Laplacian and gradient operators are denoted by A and V respectively, and L is the convection-diffusion operator '), In
addition, u (x,7) stands for concentration or temperature for mass or heat transport, v is the constant velocity vector and k is
the diffusion coefficient. Adding an initial condition to equation (18) of the form is necessary.

u(x,0) = up(x) (19)
And boundary conditions
PBu(x,t) = g(x,t),x € dIQ,t >0 (20)

Here g(x,t) is a known function, 3 is a boundary operator, that may be Dirichlet, Neumann or mixed type, and dQ2 denote
the boundary of Q. We can discretize the time derivative of PDE (18) in the case of Dirichlet boundary conditions using the
standard FD formula and the 6 -weighted scheme

un+1 (x) _ u”(x) i

57 (k Au" (x) +v. V! (X)) + (1= 6) (k A" (x) + v.Vi" (x)) (21)

= 0L (x) + (1—0) Zu" (x) (22)

https://www.indjst.org/ 2094
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where 0 < 6 < 1, "™ (x) = u (x,"1), 1" = 1" + 81, 8t is the time step size.
From equation (21) or (22), we get

W (x) + 1 (kAT (x) + v Vit (x)) = u(x) + £ (kAu™ (x) + v - Vi (x)) (23)
Or,
W (x) + Lt (x) = ' (x) + (L0 (x) (24)

where 1 =—00t and {=(1—0) 6t.
Relating to equation (16), the approximated value of u” (x) is

w(x) = p"(%) = Ljert) Lies(a;) (@) 00 Yilx) uf (25)

The N x N matrix A can be divided into two matrices A; and Ag, if I and B are internal and boundary points, respectively, and
let N be the total number of centres, which is equal to N; + Np. Hence A can be written as

A=A;+Ap (26)
where,
A=[w;(xi) y (x;) for (j€I(x;),keJ(Q;),i=1,2,...,N) and 0 elsewhere |

NXN?

Ap=la;jfor (i€ 1,1 < j<N)andO elsewhere]

Ap=[ajjfor (i€ B,1 < j<N)andO0 elsewhere]
Substituting (25) in equation (23) together with (20), the resulting sparse system can be expressed in matrix form
Cu = Dy 4y 27)
where,

C=A+nkAA;+1V-VA;,

D=A+CkAA;+ v -VA;,

N - [g;ﬁ-l for (i€B)and0 elsewhere} T,

Combining equations (21), which deals with internal points, and (20), which deals with boundary points, yields the system (27).
Therefore, using equation (19), which represents the internal condition, we may determine u"! by solving (27). Afterwards,
by replacing such values of 4" in

pr=Au" (28)

at time level n, we can get the approximate solution to the PDE.

https://www.indjst.org/ 2095
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2.4 RBF- PUM for Poisson problem
The Poisson problem with Dirichlet boundary conditions is defined by the Laplace operator L = A as

Aulx)=f(x), xeQ (29a)

ulx)=g(x), x€dQ (29b)
After discretizing the problem (29) on a global set of collocation points

XN :XN,- UXN;, = {xl,...,xN} = {x,-yl,.. . ,x,;’N}U {xb_’h...,xb’N}

where the numbers of interior and boundary nodes areN; and N, respectively. Using the assumption that the Poisson problem
allows for an approximate solution of the type (9), we obtain,

APu,X ()Ci) = Z?:l A (Wj ()Ci) suj,Xj (x,')) = f(xl-) ,Xi € Q (303)
P.x (x) = Z?:l (w; (Xi) Su; x; (x;)) = g (xi),x; € 0Q (30b)
This allows the Laplace operator Ato be expanded as

A (wj (x1) sux; (31)) =

Aw; (xi) suj x; (%) +2Vw; (i) - Vs, x; (60) +wj (x0) Asy; x; (%), xi € Q (31)
. N\.T
The local nodal values vector can be defined as s,; x; = (su;x; (x{ ) seees SupX; (val)) , while the local coefficient vector
. . T ’
aj=(af,..., aj{,l_) is such that «; :Ajflsujyx_l.. So, we get
As,,jﬁxj ZAJAA;ISM./’XJ., Vs“.hx/ A A s,,j ; (32)

Where A]-A and AJV are the matrices with entries

(49), =20 (=],

Additionally, the diagonal matrix is defined

W,A = diag(WjA (x{) ""’WfA (xlj;’f))

) (), =0

j=1,...,N;.
’2)7.] ) (RN

corresponding to each subdomain, and similarly W and W;. We must differentiate (30) using a product derivative rule before
using the relation in (32) to derive the discrete operator L;. Boundary conditions and equation (31) allow us to express the
discrete local Laplacian as

(L) ,xl e
L), = ki
(i) { 8iirx] € 0Q

where &; is the Kronecker delta and
L= (WjA +2wy.AY +WjAjA) Al

The global discrete operator is then obtained by combining the local matrices L; into the global matrix L of entries

ki=1,...,N.

M&

nA/ Nij
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Consequently, we must resolve the linear system
Lz=u (33)

where z = (P,x (x1),-.-,Pux (xn))" and u = (uy,...,uy)" defined by,

e flxi), xeQ
o glxi), x,€dQ

2.5 Stability analysis for RBF-PUM

This section contains a numerical stability study of RBF-PUM that explicitly considers the time-dependent equation under
consideration. We introduce an error in equation (27). " = u" — p" is the value we choose, where 1" is the exact solution and
p" is the approximate solution. Now, the error’s equation can be written as

en+1 = Ke" (34)

where K = AC~'DA~! is the amplification matrix. The numerical method will be stable if as n — oo the error e” — 0. This can
be ensured if p(K) < 1, where p(K) stands for the amplification matrix’s spectral radius. When K is substituted in equation
(34), we get,

CA et = DA~len (35)
Implying Dirichlet boundary conditions, equation (35) can be written as
[I—08tM]e™™ = [I+(1—6)8tM]e", (36)

Where the identity matrix I € R¥*N and the matrix M = ZA;A~.
Equation (36) shows that stability is guaranteed if every eigenvalue of the matrix [I + 88:M] ' [ — (1 — 6)8tM] is less than
unity, i.e.,

’1+(1—6)6th

<
- 6512 ’— L (37)

where M is a matrix, and Ay is one of its eigenvalues. the eigen values of the matrix M can be determined by figuring out the
generalized eigen value problem,

gA[S = A,MAS

In the case of the Crank-Nicholson scheme, that is, for 6 = % the inequality (37) is always satisfied if Ayy < 0. This indicates
that the numerical system is unconditionally stable when A, < 0.

3 Results and Discussion

Using some of the RBFs in Table 1, the numerical outcomes of the PUM approach can be demonstrated. In the equation (8), the
basis functions for our analysis are the Gaussian (GA), Multi Quadric (MQ), and Inverse Multi Quadric (IMQ). The function
of Shepard’s weight is localized using the compactly supported RBF W2 in (12). The maximum absolute error (MAE) can be
calculated to check the accuracy. The PU covering is composed instead of M circular patches that are centred at a uniform grid
points, where the overlap of the patches is 20% of the distance between the centers 19,

In spite of the fact that the approximation method discussed in section 4 is applicable for all values of 8 € [0, 1], we focus on
0= %, which identifies the well-known Crank-Nicholson scheme. The numerical approach is found to be efficient, accurate,
and stable. The proposed method is used for two unsteady test problems to examine their validity and efficacy. These unsteady
problems are (i) the two- dimensional Navier-Stokes equation in stream function and vorticity formulation and (i) the Taylor’s
vortex problem. Since these problems can be solved analytically, Dirichlet boundary conditions are employed.

Problem 1

https://www.indjst.org/ 2097
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The problem of flow of decayed viscosity !?) is governed by two- dimensional Navier- Stroke’s equation in non- dimensional
form for an incompressible flow !3) can be written as

Jdu Jdu
a“ra*y:() (38)

du du Jdu oP 1 _,

dv dv dv _ dP 1 _,

in the square 0 < x,y < 7, ¢ > 0. Here u and v are the velocities in the directions x and y, Re is the Reynold’s number, and P is
the pressure. The initial conditions are

u(x,y,0) = sinxcosy (41a)

v(x,y,0) = —cosx siny (41b)

and the boundary conditions at x = 0, x =m;y = 0,y =7 are provided by the relations

—2t
Re 42
u(x,y,r) = sinxcosye Re (42a)
e 42b
v(x,y,1) = —cosxsinye Re (42b)
The analytical solution to this problem is
—2t
Re 43
u(x,y,t) = sinxcosye Re (43a)
- 43b
v(x,y,t) = —cosxsinye Re (43b)
—2t
(43¢)

1 _
P= _Z(COS 2x+sin2y)e Re

Introducing stream- function y and vorticity @, equations (38) to (40) can be written as

Jo Jdo Jdow 1 _,
 — 44
ot +u8x+v8y Revw (“44)

Viy=—o (45)

In cartesian coordinate system u and v are given by
_ 9y L
u= a—yandv——ay

where the initial and boundary conditions for ¥ and ® can be derived from equations (41) and (42).
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The analytic solution to this problem is,

and

u = sin(x) cos(y)e2/Re
v = —cos(x)sin(y)e2/Re

v = sin(x)sin(y)e 2/Re

® = 2sin(x) sin(y)e~%/Re

(46a)

(46b)

(47a)

(47b)

Results for three different Reynolds numbers viz. 50, 100 and 1000 for a grid size 21 x 21 are shown in the tables Tables 2, 3
and 4. In all cases, we fix 8¢ = 0.01 and final time 7 = 1. The numerical results of RBF- PUM for 2D Navier- Stroke’s equation
in stream function and vorticity formulation are well-aligned with the exact solution.

Table 2. RBF-PUM using Gaussian function

Grid Re MAE iny MAE in®
50 4.21e—04 1.80e — 01

21 x 21 100 431e—04 2.63¢ — 02
1000 4.41e—04 5.12e — 04

Table 3. RBF-PUM using Multi Quadric function

Grid Re MAE iny MAE in®
50 9.06e — 04 4.68¢ —02

21 x21 100 9.29¢ — 04 2.23e —02
1000 9.51e—04 1.72¢ — 03

Table 4. RBF-PUM using Inverse Multi Quadric function

Grid Re MAE iny MAE in®
50 3.45¢—-03 1.05¢ —01

21 x 21 100 3.54¢—03 4.52¢—-02
1000 3.62¢ —03 3.92¢ - 03

Problem 2

In this example, we consider the Taylor’s vortex problem (1), equations (44) and (45) with the initial conditions,

u(x,y,0) = sin(Px) cos(Ly),0 < x,y <27 (48a)
v(x,y,0) = —cos(Px)sin(Ly),0 < x,y <21 (48b)
The analytical solution is given by,
u = sin(Px) cos(Py)e 27 1/Re (49a)
v = —cos(Px) sin(Py)e 271/Re (49b)
https://www.indjst.org/ 2099
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and
v = sin(Zx) sin(@y)e‘z‘yzt/Re (50a)
® = 2sin(Px) sin(@y)e’zyzl/Re (50b)

where P is an integer.
Numerical results are presented in Tables 5, 6 and 7 for Reynold’s number Re = 1000 and for P = 1, 2 and 4. The RBE-PUM
results and the exact solution are in good agreement.

Table 5. RBF-PUM using Gaussian function (Re=1000)

Grid & MAE iny MAE inw
1 1.66¢ — 02 8.24¢ —03
21 x21 2 6.72¢ — 01 1.43¢—02
4 7.98¢ — 01 1.82¢ —02
Table 6. RBF-PUM using Multi Quadric function (Re=1000)

Grid P MAE iny MAE in®
1 2.38¢ —02 4.90e — 03
21 x21 2 6.70e — 01 1.12e — 02
4 8.00e — 01 3.09¢ — 02

Table 7. RBF-PUM using Inverse Multi Quadric function (Re=1000)
Grid P MAE iny MAE in®
1 3.21e—02 8.68¢ — 03
21 x21 2 6.72¢ — 01 1.74e — 02
4 8.02¢ — 01 4.25¢—02

4 Conclusions

Using three different Radial Basis Functions— The Gaussian, The Multi Quadric, and The Inverse Multi Quadric Basis
functions—we have implemented and tested the RBF-PUM scheme to solve the 2D unsteady Navier-Stokes equation in stream
function vorticity formulation, and Taylor’s vortex problem, which was not previously covered by the RBF-PU methodology.
The global RBF method’s high computational cost can be overcome using the RBF-PUM, and the results obtained using this
method are well-aligned with the analytical solutions even for a Reynolds number as high as 1000.

Preconditioning is required since the RBF-PUM matrix is non-symmetric, ill-conditioned, and sparse. In future work,
the adaptive spatial refinement within the partitions may be performed independently using the RBF-PUM. Then it may be
extended to the more complex problems in CFD.
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