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Abstract

Objectives: Computer vision duties like object detection, tracking, and
counting are significant for surveillance. Factors like altitude, camera angle,
occlusion, and motion blur make it a more challenging task. To present a
method to overcome all these factors and implement surveillance quickly and
accurately for smaller and larger object aspect ratios. Methods: Horizontal
Bounding Boxes and Oriented Bounding Boxes (HBB and OBB) are evaluated
on two ground truths respectively. PASCAL VOC 07 metric is adopted to
calculate the mean average precision. Constructed on the score, the original
implementation of Mask R-CNN includes the application of a mask head to
the highest-scoring 100 HBBs. Subsequently, the mask head was extended
to all HBBs remaining after the process of Non-Maximum Suppression.
This modification allowed the evaluation of Mask R-CNN, Cascade Mask R-
CNN, and Hybrid Task Cascade methods on a wider range of bounding
boxes. Findings: In summary, this research explores and compares different
approaches and techniques in the field of object detection, particularly focusing
on oriented object detection and the challenges posed by geometric variations.
Furthermore, it addresses the impact of different models, such as Mask
R-CNN, Faster R-CNN OBB + Rol Transformer, and Faster R-CNN OBB +
Dpool, on performance. Additionally, it highlights the importance of handling
numerical instability caused by extremely small instances. The research
findings are visually presented in Figure 2, providing a clear representation
of the performance of various networks. Novelty: The study summarizes
the findings of existing research papers and identifies research gaps. The
performance parameters of the various algorithms and analysis for various
networks show the evolution of various methods over the years. With changes
in the network, like mask transferring and dataset, the accuracy for smaller,
bigger objects and speed of execution are affected, are explained in results
and discussions as well as the conclusions.
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1 Introduction

Aerial surveillance plays a critical role in various domains such as security, urban
planning, environmental monitoring, and disaster management. It involves the use
of unmanned aerial vehicles (UAVs) or satellites to capture high-resolution images
or videos of large areas from above. These aerial data provide valuable insights
and enable the analysis of complex environments with a wide range of applications.
With the advancements in machine learning, particularly in computer vision and
image processing, aerial surveillance has witnessed significant improvements in
its effectiveness and efficiency. Machine learning algorithms have the capability
to automatically analyze and interpret aerial images, enabling the extraction of
valuable information from vast amounts of visual data. By leveraging machine
learning techniques, aerial surveillance can benefit from automated object detection,
classification, tracking, and anomaly detection. These capabilities enhance situational
awareness, enable real-time monitoring, and support decision-making processes.
Machine learning algorithms can learn patterns, detect changes, and identify objects
of interest, such as vehicles, buildings, or natural features, in aerial images or videos.

One of the key advantages of using machine learning in aerial surveillance is its
ability to handle the vast amount of data generated by UAVs or satellite sensors.
These algorithms can efficiently process and analyze large-scale aerial imagery datasets,
enabling the detection of subtle changes or abnormalities that might go unnoticed by
human observers. Moreover, machine learning algorithms can adapt and learn from
new data, improving their performance over time. This adaptability is crucial in aerial
surveillance, where environmental conditions, lighting, and objects of interest can vary
significantly. By continuously learning and updating their models, machine learning
algorithms can maintain high accuracy and reliability in aerial surveillance tasks.

In this paper, we explore the application of machine learning techniques in aerial
surveillance and their potential to revolutionize the way we monitor and analyze large-
scale environments. We discuss various approaches, algorithms, and methodologies
used in object detection, tracking, and anomaly detection tasks. Additionally, we
highlight the challenges and future directions in the field, aiming to inspire further
research and innovation in the intersection of aerial surveillance and machine learning.
By harnessing the power of machine learning, aerial surveillance holds tremendous
potential to improve situational awareness, enhance security measures, and support
decision-making processes in various domains. The following sections delve into the
specific applications, methodologies, and advancements in this exciting field.

Remote sensing is the method of acquiring and recording information about an
object without direct contact™™. Drones and UAVs (Unmanned Aerial Vehicles) have
become widely used in academics and real-world applications. As a result, one must
comprehend and analyze the image data that they collect. Object detectors based on
DNNs (deep neural networks) considerably improve object detection performance
in the deep learning age. Nevertheless, there are several prominent discrepancies
between conventional nature photographs and images obtained by drones, making item
detection a difficult process. For starters, the items in such photos are scaled differently.
The far items are extremely small in comparison to the close objects. Furthermore,
cities have a plethora of dense settings. Because of the density, there are a lot of
occlusions, making object detection even more challenging. Object detectors based on
deep learning (DL) are now mapped into dual groups.

Two-stage detectors are the first to assess whether the preceding anchors are an
object or background, they employ a region proposal network. Several manually defined
potential bounding boxes serve as prior anchors. The prospective anchors are then
classified into a set of categories using two head networks, and the offset between
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the anchors and ground truth boxes is estimated. One-stage detectors are the other kind. Unlike the two-stage detectors, the
one-stage detectors do not take the region proposal network. To anticipate the categories and the offset of the prior anchors,
they use two detectors directly. The low-resolution image grid is used to produce the previous anchors for these two types of
detectors. According to the intersection over union (IoU), each previous anchor can only have a single object bounding box.
However, using the image recorded by the drone, the fixed-shape anchor is unable to manage objects of varied sizes. Another
sort of detector, the anchor-free detector, has just been proposed. They condense bounding box prediction to a single key point
and size calculation. It provides a more accurate method of detecting objects of varying sizes. Despite this, regression is difficult
because of the high size difference.

In this study, the RRNet, a hybrid detector is presented. Regardless of the object’s scale, the object’s center point is always
present. As a result, instead of using the anchor box, two detectors were employed to anticipate the center point, as well as the
width (w) and the height (h) of each object. The center points and diameters are then converted to coarse bounding boxes.
Finally, used a Re-Regression module to feed the deep feature maps and coarse bounding boxes. The Re-Regression module
allows you to fine-tune the coarse bounding boxes before generating the final correct bounding boxes. Moreover, the review
advises that appropriate data augmentation can help deep models attain state-of-the-art performance without modifying the
network design. This strategy allows you to logically extend the objects in the image. Experiments illustrate that the proposed
model far exceeds the existing state-of-the-art detectors in the Via Drone 2018 dataset. In principle, the RRNet (Re-Regression
Network) is a hybrid model of an anchorless detector and a two-stage detector. It is believed that a regression engine is very
important for good results. In addition, it achieves the best outcomes for an average precision and recalls AP50, AR10, and
ARI100 respectively.

There are various applications of aerial imaging, some of which are as follows. Kolbe et.al. in their paper, special focus on the
utilization of model concepts concerning different tasks in disaster management ?). After extensive state-of-the-art, methods
belonging to each type of automatic building construction approach. Based on a concrete experiment, the essential points
characterizing each approach, including their concept and the obtained model characteristics are analyzed. It is of great interest
to study these issues since not many investigations are being carried out before and have delivered useful formulas®. One of
the emerging technologies used to study the rate of vegetation is hyperspectral remote sensing®.

2 Methodology

A detailed literature review was conducted focusing on object detection and tracking using drones concerning different
applications. The study summarizes the findings of existing research papers and identifies research gaps. The performance
of the various algorithms and analysis for various networks shows the evolution of various methods over the years. With little
changes in the network, such as mask transferring and dataset, the accuracy for smaller, bigger objects and speed of execution
are affected, which are explained in results and discussions, and also the conclusions.

The task of object detection involves the identification and classification of objects within images®). Using two location
representations horizontal bounding boxes and oriented bounding boxes (HBB and OBB) in this paper. The HBB is a rectangle
(%, ¥, w;, h), and the OBB is a quadrilateral {(xi, yi)|i = 1, 2, 3, 4}. Subsequently, two distinct tasks emerge, namely the detection
using Horizontal Bounding Boxes (HBB) and the detection using Oriented Bounding Boxes (OBB).

That said, these methods are evaluated on two kinds of ground truths: HBB and OBB ground truths®. Each detected
bounding box has a corresponding confidence score for the two tasks. Then adopted the PASCAL VOC 07 metric for the
calculation of the mean average precision (mAP). Average Precision (AP) computes the average precision value for recall value
over 0to 1 (i.e., the area under the precision/recall curve). mAP is the average of AP over all classes 7). The detailed computation
of the precision and recall can refer to. The intersection over union (IoU) is crucial in determining true positives and false
positives, which are required to compute precision and recall ®. It is important to highlight that, in the case of the Oriented
Bounding Box (OBB) task, the intersection over union (IoU) is computed between OBBs, as illustrated in Figure 1. The two
OBBs box precision and box groundtruth (Bp and Bgt) respectively, and the intersection between OBBs (Bp T Bgt) are all convex
polygons, whose area can be easily computed. The union area of two OBBs can be calculated as |Bp S Bgt| = |Bp| + |Bgt| — |Bp
T Bgt|. The code for the mAP and IoU computation between OBBs are found in the development kit.

To ensure fair comparisons among different algorithms in Dataset for Object Detection in Aerial Images (DOTA), a unified
code library based on MMDetection was implemented for the implementation and evaluation of all the algorithms. Due to
memory limitations, large images were cropped into 1024 x 1024 patches with a stride of 824 during both training and inference.
Temporary results were obtained from the patches, which were then mapped back to the original image coordinates and
subjected to Non-Maximum Suppression (NMS) with different threshold settings.

The training process was carried out using 4 GPUs, with a batch size of 81 (2 images per GPU). A learning rate of 0.01
was utilized, and the number of proposals and maximum predictions per image patch were set to 2,000. Baseline models
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Fig 1. Intersection of Union (IoU) calculation

were developed for both the Horizontal Bounding Box (HBB) and Oriented Bounding Box (OBB) tasks, employing different
techniques including RetinaNet, Mask R-CNN, and Faster R-CNN.

To enable the prediction of OBBs using existing object detection methods, two approaches were employed. The first approach
involved modifying the HBB head to predict OBBs by regressing the offsets relative to HBBs. The second approach used the
Mask Head to treat OBBs as coarse masks and performed pixel-level classification.

For OBB prediction, the Faster RCNN OBB, modified Rol Head of Faster R-CNN, and Anchor Head of the single-shot
detector (SSD) were used to regress quadrangles. A special representation (x, y, w, h, 6) was used for OBB regression, where (x,
y) represents the center, w and h represent the width and height, and 6 represents the orientation angle.

To calculate the learning target, IoUs were computed between horizontal Rols (anchors) and HBBs of the ground truths.
The best-matched ground-truth form was selected based on a distance function, and the corresponding learning target was
determined in equation (1).

{rx = [[(xb —x)] /w]}, {ty = [[(ob = ¥)I /Al },
{tw = [log(wb/w)]},{th = [log(hb/h)]}, (1)
{16 =[0b— 6]}

To address the detection of oriented objects in object detection methods and establish baselines for both the Horizontal
Bounding Box (HBB) and Oriented Bounding Box (OBB) tasks in DOTA, several modifications and approaches were
implemented.

To incorporate OBB predictions into the Faster RCNN and RetinaNet models, the HBB Rol Head and anchor head were
replaced with the OBB Head, resulting in two models: Faster R-CNN OBB and RetinaNet OBB. Furthermore, an adaptation
was made to Faster R-CNN to enable parallel prediction of both HBB and OBB, following a similar approach to Mask R-CNN.
This variant was referred to as Faster R-CNN H-OBB.

The performance of deformable Rol pooling (Dpool) and Rol Transformer was evaluated by replacing the RoI Align module
in Faster R-CNN OBB. This led to the creation of two additional models: Faster R-CNN OBB + Dpool and Faster R-CNN OBB
+ Rol Transformer. It is important to note that the Rol Transformer used in this study differs slightly from the original version,
as it was based on the Light Head RCNN instead of Faster R-CNN.

For OBB predictions in DOTA, the Mask R-CNN model, initially designed for instance segmentation, was adopted. Although
DOTA lacks pixel-level annotations, the OBB annotations were treated as coarse pixel-level annotations. During inference, the
minimum OBBs encompassing the predicted masks were calculated. While the original Mask R-CNN applies the mask head to
the top 100 HBBs based on their scores, in DOTA with its high number of instances per image, the mask head was applied to all
HBBs after Non-Maximum Suppression (NMS). These modifications and approaches provided valuable insights into handling
oriented objects in object detection and establishing effective baselines for the HBB and OBB tasks in DOTA.

3 Results and Discussion

Object detection still faces challenges in handling geometric variations. In this study, the challenges of handling geometric
variations in object detection were addressed. To evaluate different approaches, Rol Transformer and Dpool were utilized as
replacements for RoI Align in Faster R-CNN OBB. The resulting models were named Faster R-CNN OBB + Rol Transformer and
Faster R-CNN OBB + Dpool. Comparing their performance, it was observed that Dpool generally improves the performance of
Faster R-CNN OBB, but Rol Transformer surpasses Dpool, particularly in aerial images. This finding highlights the effectiveness
of carefully designed geometry transformation modules like RoI Transformer for aerial images compared to general geometry
transformation modules like Dpool.
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To tackle the numerical instability caused by extremely small instances during training on DOTA-v1.5 and DOTA-v2.0, a
threshold was set to exclude such instances. The impact of different thresholds on DOTA-v2.0 was explored, revealing that small
instances have minimal influence on the results.

The number of proposals is an important hyperparameter in modern detectors and exhibits significant variations between
aerial and natural images. Optimal settings for aerial images were investigated, and it was observed that for Faster R-CNN
OBB, the improvement in mAP slows down at around 8,000 proposals. Furthermore, within the range of 1,000 to 10,000
proposals, Faster R-CNN + Rol Transformer and Faster R-CNN OBB demonstrated mAP improvements of 2.2 and 1.39 points,
respectively. However, it should be noted that increasing the number of proposals also increases computational demands.
Therefore, 2,000 proposals were chosen for the other experiments conducted in this paper.

The performance of various models, including Faster R-CNN, Faster R-CNN OBB, RetinaNet OBB, Mask R-CNN, and Faster
R-CNN OBB + Rol Transformer, was evaluated on challenging scenes, as depicted in Figure 2. The results demonstrate that
Faster R-CNN OBB, Mask R-CNN, and Faster R-CNN OBB + Rol Transformer perform well in densely packed large vehicles.
However, RetinaNet OBB exhibits lower location precision due to feature misalignment. Detecting long-shaped instances with
large aspect ratios poses challenges as all methods tend to generate multiple predictions on single bridges or ships. Additionally,
there is a similarity issue where different categories are prone to misclassification due to similar features. Lastly, the detection
of extremely small instances (less than or approximately 10 pixels) presents difficulties, resulting in low recall rates.

In Figure 2 the results of the DOTA-v2.0 test-dev are visually represented, showcasing the performance of the five models
specifically designed for DOTA-v2.0. Only predictions with scores above 0.1 are displayed. The visualization demonstrates the
models’ capabilities in handling orientation variations, density variations, instances with large aspect ratios (Ars), and instances
with small Ars.

Ground truth Faster R-CNN Faster R-CNM OBB RetinaMNet OBB Mask RCNN Faster R-CNN OBB + RT

_.“-. e . I = .

ing pool .T‘l:mt: Ground track field ..‘hmlll Vehicle
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Fig 2. The results of the DOTA-v2.0 test-dev are visually represented, showcasing the performance of the five models specifically designed
for DOTA-v2.0

In summary, this research explores and compares different approaches and techniques in the field of object detection,
particularly focusing on oriented object detection and the challenges posed by geometric variations. Furthermore, it addresses
the impact of different models, such as Mask R-CNN, Faster R-CNN OBB + Rol Transformer, and Faster R-CNN OBB +
Dpool, on performance. Additionally, it highlights the importance of handling numerical instability caused by extremely small
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instances. The research findings are visually presented in Figure 2, providing a clear representation of the performance of various
networks.

4 Conclusion

The detection of oriented objects is tackled by the OBB (Oriented Bounding Box) head, which utilizes a regression approach,
while the mask head employs pixel-level classification for the same purpose. Although the mask head shows better results
and faster convergence, it comes at a higher computational cost. When evaluating the DOTA-v2.0 test-dev set, Mask R-CNN
outperforms Faster R-CNN H-OBB with a higher OBB mAP by 0.57 points. However, it is important to note that Mask R-
CNN operates slower than Faster R-CNN H-OBB, with a decrease in speed by 4 fps. It is worth mentioning that the process of
transferring the mask to the OBB is not taken into account in this particular comparison, which could potentially further impact
the performance and speed of Mask R-CNN. To visually showcase the performance of the five models specifically designed for
DOTA-v2.0, the results of the DOTA-v2.0 test-dev are graphically presented. These visualizations demonstrate the models’
capabilities in handling orientation and density variations, as well as instances with larger and smaller aspect ratios (Ars).
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