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Abstract
Objectives: The main objective of this paper is to derive some of the
results of k−irreducible ideals, common right divisors and Euclidean Γ −
semiring. Methods: To establish the main results in Γ − semirings, we use
some conditions like commutativity, simple, semi subtractive, centreless,
multiplicative Γ−idempotent, strong multiplicative Γ−idempotent, additively
cancellation and the concept of common right divisor and Euclidean norm.
Findings: First we study some results regarding k−irreducible ideals and
define a α− generated ideal by any element of R. In connection with different
conditions, we characterize some results of irreducibility in ideals, primary
ideals, common right divisors and Euclidean norms.Novelty: An α− generated
ideal by any element of R, say a, denoted by< aα > is k−ideal if R is simple, semi
subtractive and additive cancellative. Again, the conditions mentioned above
are used to prove that every k−irreducible ideal of a Γ− semiring R is primary
ideal of R. Furthermore, the concept of Euclidean Γ− semiring developed to
establish various results in the theory of Γ− semirings.
Keywords: k-Irreducible Ideal; Common Right Divisor; Euclidean Norm;
Primary Ideals; Noetherian Γ-Semirings

1 Introduction
Thefirst mathematical structure we encounter is the set of non-negative integersN with
usual addition and multiplication provides a natural example of a semiring. For a given
positive integer n, the set of all n×n matrices over a semiring R forms a semiring with
usual matrix addition andmultiplication over R. But the situation for the set of all non-
positive integers and for the set of all m× n matrices over a semiring R are different.
They do not form semirings with the above operation, because multiplication in the
above sense are no longer binary compositions. This notion provides a new kind of
algebraic structure known as a Γ− semiring. In 1995, an author (1) as a generalization
of a semiring as well as Γ−ring introduced the concept of Γ− semiring. Sharma and
Ranote (2), Sharma and Gupta (3) introduced the concept of a commutative, simple,
additive idempotent and multiplicative Γ−idempotent Γ−semiring and studied the
consequences of imposing these conditions on a Γ−semiring R.

https://www.indjst.org/ 2425

https://doi.org/10.17485/IJST/v16i31.1336
https://doi.org/10.17485/IJST/v16i31.1336
https://doi.org/10.17485/IJST/v16i31.1336
 trpangotra@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
www.iseeadyar.org.
https://www.indjst.org/


Sharma & Sharma / Indian Journal of Science and Technology 2023;16(31):2425–2430

It is worthy to be note here that many authors in different aspects also focused the study of Γ−semirings with irreducible,
prime andprimary ideals.Themain aimof this study is to generalize some fundamental results of k− irreducible ideals, common
right divisors and Euclidean norm of Γ−semirings proved in (4–6) and investigate the conditions for which k− irreducible ideals
of R becomes primary ideals of R and for commutative Γ−semirings, the notions of left and right Euclidean norms coincides.
Finally, we introduce the concept of Principal left k− ideal Γ−semiring ((PLKI) Γ−semiring.

1.1 Preliminaries

For the definition of Γ−semiring and their identity elements 0 and 1, centreless, simple, semi subtractive,
noetherian Γ−semiring, k−ideal, maximal ideal, smallest k−ideal, multiplicative Γ− idempotent, strong multiplicative
Γ− idempotent and additive cancellable, one can refer to (2). Now we include some necessary preliminaries for the sake of
completeness. An ideal I of R is said to be prime ideal if for ideals A and B of R with AΓB ⊆ I then either A ⊆ I or B ⊆ I . For
an ideal I of a commutative Γ−semiring R, the prime radical of I, r(I) is defined as r(I) =

(
x ∈ R | (xα)n−1x ∈ I } for some

positive integer n and for all α ∈ Γ. An ideal P of R is said be a primary ideal if xαy ∈ P, for α ∈ Γ and x,y ∈ R, then either x ∈ P
or (yβ )n−1y ∈ P for all β ∈ Γ and some positive integer n. or An ideal P of a Γ− semiring R is said be a primary ideal if for any
two ideals A and B of R,AΓB ⊆ P implies that either A ⊆ P or B ⊆ r(P). A proper k−ideal Q of R is said to be k−irreducible
ideal of R if for any two k−ideals, I and J of R,Q = I∩J implies that either Q = I or Q = J and strongly k−irreducible ideal of
R if for any two k− ideals, I and J of R, I ∩ J ⊆ Q implies that either Q = I or Q = J.

Remark: LetRwill denote a commutativeΓ− semiring with 0 and identity 1.Wewill use this notation throughout this paper
unless otherwise stated.

2 Methodology

Following (4–6), we will establish some results of irreducible ideals and principal ideals by using some conditions on
Γ−semirings. Further, we propose an algorithm on Euclidean norm that based on elements of Γ−semirings with conditions of
strong identity and multiplicative Γ−idempotent and it will provide other class of Euclidean norms.

3 Results and Discussion

3.1 k-irreducible ideals in a Γ−semiring

In this section, we characterize some of the results of k−irreducible ideals by using some conditions such as simple,
multiplicative Γ− idempotent, strong identity, additive cancellative and α− generated set by an element of R in Γ− semirings.

Lemma 4.1.1. Let R be a simple and multiplicative Γ− idempotent Γ− semiring with strong identity then any ideal I of R is
a k−ideal.

Proof. Let x ∈ I and x+y ∈ I for any y ∈ R. Since R is multiplicatively Γ− idempotent, so there exists α ∈ Γ and y ∈ R such
that yαy = y. Now, y= 1αy = (x+1)αy = xαy+ y =xαy+ yαy = (x+ y)αy. But x+ y ∈ I and I is an ideal so y ∈ I . Hence,
I is a k− ideal.

Lemma 4.1.2. Let Q be a k− ideal of a Γ− semiring R, then the set (Q : a) = {r ∈R | aΓr ⊆ Q} is a k− ideal.
Proof. Let y,z ∈ (Q : a) such that x+y = z.Then aΓy ⊆ Q and aΓz ⊆Q.This implies that for allα ∈ Γ, we have aαy,aαz ∈Q.

Now as x+y = z, so aαx+aαy = aαz . But Q is a k−ideal so aαx ∈ Q, for all α ∈ Γ. This implies that aΓx ⊆ Q so x ∈ (Q : a).
Hence, (Q : a) is a k−ideal.

The proof of the followingTheorems are simple and straightforward, so we only give the statements.
Theorem 4.1.3. Let R be a Γ− semiring. If Q is a maximal k−ideal of R, then it is a k−irreducible ideal.
Theorem 4.1.4. Every prime k−ideal of R is strongly k−irreducible ideal of R.
Theorem 4.1.5. If Q is strongly k−irreducible ideal of R then it is k−irreducible.
Corollary 4.1.6. If Q is a prime k−ideal then it is k−irreducible.
Theorem 4.1.7. Let R be a noetherian Γ− semiring. If I is a k−ideal of R and r ∈ R\{0} such that r ̸∈ I , then there will be

a k−irreducible ideal M of R such that I ⊆ M and r ̸∈ M .
Theorem 4.1.8. Let R be a Noetherian Γ− semiring. If I is a proper k−ideal of R then it is equal to the intersection of

k−irreducible ideals of R which contains I.
Proof. Let for any indexed set ∆,(Qi | i ∈ ∆} be the family of k−irreducible ideals of R such that I ⊆ Qi for each i ∈ ∆. Now,

it is clear that I ⊆
∩

i∈∆ Qi. Rest to prove
∩

i∈∆ Qi ⊆ I . Let
∩

i∈∆ Qi ̸⊆ I , then there exists an element say r such that r ∈
∩

i∈∆ Qi
and r ̸∈ I . So byTheorem 4.1.7, there will be a k−irreducible ideal, say Q, such that I ⊆ Q and r ̸∈ Q. But then Q will be one of
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Qi and r ̸∈ Q implies that r ̸∈
∩

i∈∆ Qi, which is a contradiction. Hence, we can’t find such an element so that r ∈
∩

i∈∆ Qi and
r ̸∈ I . Therefore,

∩
i∈∆ Qi ⊆ I . Hence, I =

∩
i∈∆ Qi.

Definition 4.1.9. Let R be a Γ− semiring. If a ∈ R and α ∈ Γ then the set defined by< aα >r= {aαr | for all r ∈ R}, will be
termed as a rightα− generated ideal by a. Similarly,< αa >l= {rαa for all r ∈ R} is a left ideal ofR. In case if R is commutative
then both (left and right) ideals will be the same. Therefore, in case of commutativity, we will denote this ideal by< aα >.

Theorem 4.1.10. Let R be centreless, semi subtractive and additive cancellative Γ− semiring then for any a ∈ R,Q =< aα >
is a k−ideal of R.

Proof. Let y,z ∈ Q such that x+y = z for any x ∈ R. Then y = aαs and z = aαt for some s, t ∈ R. Since R is semi subtractive,
so there will be an element, say u ∈ R such that either u+ s = t or u+ t = s. If u+ s = t then x+ y = z = aαt = aα(u+ s) =
aαu+aαs = aαu+y.This implies that x = aαu , since R is additively cancellative. Therefore, x ∈ Q. Further, if u+ t = s, then
aαt = z = x+y = x+aαs = x+aα(u+ t) = x+aαu+aαt. This implies that x+aαu = 0. Therefore, x = aαu = 0 ∈ Q, since
R is centreless. Hence, Q is a k−ideal.

Theorem 4.1.11. Let K and L be two ideals of a Γ− semiring R. Then r(Sl(K∩L)) = r(Sl(K)∩Sl(L)) = r(Sl(K))∩ r(Sl(L))
The following theorem is proved in (6) for semirings.
Theorem 4.1.12. Let R be a centreless, semi subtractive, additively cancellative and commutative noetherian Γ− semiring,

then every k−irreducible ideal of R is primary ideal of R.
Proof. Let Q be a k− irreducible ideal of R and let aβb ∈ Q such that b ̸∈ Q,a,b ∈ R. Now, we construct two ideals I and J

of R such that I =<
(
(aβ )m−1a

)
α >+Q and J =< bα >+Q, for α ,β ∈ Γ. Now, byTheorem 4.1.10, <

(
(aβ )m−1a

)
α > and

< bα > are k−ideals ofR, therefore I and J, being sumof k−ideals are also k− ideals. Now, it is clear thatQ⊆ I∩J. Let y∈ I∩J.
Then y =

(
(aβ )n−1a

)
αz+ q for some z ∈ R and q ∈ Q. Again, aβJ ⊆ Q, since aβb ∈ Q. So aβy ∈ Q, since y ∈ J. Therefore,

aβy = ((aβ )na)αz+aβq ∈ Q. Also, aβq ∈ Q, since Q is an ideal. Thus, it follows that ((aβ )na)αz ∈ Q, since Q is a k−ideal.
Further, let us construct a new set An =

(
x ∈ R |

(
(aβ )n−1a

)
αx ∈ Q

}
.Now, it is clear that An is an ideal of R and A1 ⊆ A2 . . . is

an ascending chain of ideals in R, since R is noetherian, therefore An = An+1 = . . . for some n ∈ Z+. Again, ((aβ )na)αz ∈ Q.
This implies that z ∈ An+1 = An. Therefore,

(
(aβ )n−1a

)
αz ∈ Q, which implies that y ∈ Q. Thus, I ∩ J = Q. Now by Theorem

4.1.11, we have r(Sl(I ∩ J) = r(Sl(I)∩ Sl(J)) = r(Sl(I))∩ r(Sl(J)). Therefore, r(Sl(I ∩ J)) = r((Sl(I))∩ r((Sl(J)). Now as
Q = I ∩ J, so Q = Sl(Q) = Sl(I ∩ J), since Q is a k−ideal so Q = Sl(Q). Thus, r(Q) = r(Sl(I ∩ J)) = r(Sl(I))∩ r(Sl(J)). As
Q is k− irreducible so r(Q) is also k− irreducible. Again, r(Q) = Q, since r(Q) is k− irreducible. So Q = r(Sl(I))∩ r(Sl(J)).
Now b ∈ J implies that b ∈ r(Sl(J)). But b ̸∈ Q therefore Q ̸= r(Sl(J)). Therefore, Q = r(Sl(I)), since Q is k-irreducible. So
(aβ )n−1a ∈ I implies that (aβ )n−1a ∈ r(Sl(I)) = Q. Hence Q is primary.

Common Right Divisor of a Γ – semiring
In this section we characterize the results regarding right divisors RD(x), common right divisors CRD(x) and greatest

common right divisors GCRD(x) in a Γ−semiring R. An element x of R is unit if and only if there exists an element y of R
and α ∈ Γ satisfying xαy = 1 = yαx. The element y of R is called the inverse of x in R. Let us denote the set of all elements of R
having inverse in R byU(ΓR). This set is non-empty since 1 ∈U(ΓR) and not all of R.

Let x be an element of a Γ−semiring R. Then the set of all right divisors of x in R is RD(x) = {y ∈ R | x ∈ RΓy} = {y ∈
R | RΓx ⊆ RΓy}. Since y ∈ RD(y), for all y ∈ R, so it is clear that y ∈ RD(x) if and only if RD(y) ⊆ RD(x). Note that if R is a
Γ−semiring and y ∈ RD(x) then there exists an element r ∈ R, such that x = rαy, for all α ∈ Γ.

Lemma 4.2.1. Let R be a simple Γ− semiring with a strong identity. If y ∈ RD(x) then x+ y = y.
Proof. Let R be a simple Γ− semiring and y ∈ RD(x), then there exists an element r of R and α ∈ Γ such that x = rαy. Thus

we have x+ y = rαy+ y = (r+1)αy = 1αy = y.
If x is an element of a Γ− semiring R thenU(ΓR)⊆ RD(1)⊆ RD(x). If x ̸∈U(ΓR) and RD(x) =U(ΓR)∪{x} then x is said

to be irreducible from the right. Irreducibility from the left is defined similarly.
Definition 4.2.2. Let X be a nonempty subset of a Γ− semiring R. Then the set of common right divisors of X isCRD(X) =

∩{RD(x) | x ∈ X}= {y ∈ R | RΓX ⊆ RΓy}. An element y ∈CRD(X) is the greatest common right divisor (GCRD) of X if and
only ifCRD(X) = RD(y)

Example 4.2.3. Let R be a Γ−semiring. If R = M2(N), where N is a set of all nonnegative integers and Γ =

{[
1 0
0 1

]}
then

the only elements of R having determinant 1 which are irreducible from the right are
[

1 1
0 1

]
and

[
1 0
1 1

]
.

Theorem 4.2.4. Let R be a Γ− semiring and X be a nonempty subset of R then an element y ∈ R is a GCRD of X if and only
if RΓX ⊆ RΓy and if z ∈ R satisfies RΓX ⊆ RΓz then RΓy ⊆ RΓz

Proof. Let y be a GCRD of X . Then y ∈CRD(X) and so y ∈ RD(x) for all x ∈ X . Thus, RΓx ⊆ RΓy for all x ∈ X . This implies
that RΓX ⊆ RΓy. Further, if RΓX ⊆ RΓz for some z ∈ R then z ∈CRD(X) = RD(y) and so RΓy ⊆ RΓz . Conversely, assume that

https://www.indjst.org/ 2427

https://www.indjst.org/


Sharma & Sharma / Indian Journal of Science and Technology 2023;16(31):2425–2430

RΓX ⊆ RΓy and z ∈ R satisfies RΓX ⊆ RΓz . Now let y ∈CRD(X). This implies that RD(y)⊆CRD(X). Again, if z ∈CRD(X)
then RΓX ⊆ RΓz and so RΓy ⊆ RΓz . Therefore, z ∈ RD(y), gives thatCRD(X)⊆ RD(y). Hence,CRD(X) = RD(y). That is, y
is GCRD of X .

Corollary 4.2.5. LetR beΓ−semiring. If every left ideal ofR is principal ideal then every non-empty subset ofR has a GCRD.
Lemma 4.2.6. Let R be a Γ−semiring and x,y and z are the elements of R. If m is a GCRD of {x,y} and n is a GCRD of {z,m}

then n is a GCRD of {x,y,z}.
If x and y are the elements of a Γ−semiring R then clearlyCRD({x,y})⊆CRD({x+y,y}. We now investigate the conditions

for having equality.
Theorem 4.2.7. Let R be a Γ-semiring, thenCRD({x,y}) =CRD({x+y,y}) for all x,y ∈ R if and only if every principal left

ideal of R is k− ideal.

3.2 Euclidean Norm of a Γ− semiring

A left Euclidean norm f defined on a Γ−semiring R is a function f : R\{0} −→ N( set of all non-negative integers) satisfying
the condition that if x,y ∈ R with y ̸= 0 then there exist elements q and r of R and α ∈ Γ satisfying x = qαy+ r with r = 0
or f (r)< f (y). A right Euclidean norm f defined on a Γ−semiring R is a function f : R\{0} −→ N satisfying the condition
that if x,y ∈ R with y ̸= 0 then there exist elements q and r of R and α ∈ Γ such that x = yαq+ r with r = 0 or f (r)< f (y). A
Γ−semiring R is left (right) Euclidean if and only if there exists a left (right) Euclidean norm defined on R. For commutative
Γ−semiring, the notions of left and right Euclidean norm coincides.

Theorem 4.3.1. Let R be Γ−semiring. If f is a left Euclidean norm defined on R then there exists another left Euclidean
norm g defined on R such that g(x)≤ f (x) for all x ∈ R\{0} and g(y)≤ f ( rαy) for all r,y ∈ R and α ∈ Γ satisfying r αy ̸= 0.

Proof. Let g(x) = min{ f (rαx) | rαx ̸= 0}, for all 0 ̸= x ∈ R and α ∈ Γ.Then clearly g satisfies both conditions. Now to show
that g is a left Euclidean norm on R. Let x and y be non-zero elements of R satisfying g(x)≥ g(y). Then there exists an element
r1 ∈ R and α ∈ Γ such that g(y) = f (r1αy). This implies that f (x) ≥ f (r1αy). Therefore, there exist elements q,r ∈ R and
α ,β ∈ Γ such that x = qβ (r1αy)+ r2 where either r2 = 0 or f (r2)< f (r1αy) = g(y). Hence, g is a left Euclidean norm on R.

If (R, f ) is a left Euclidean Γ− semiring we can without loss of generality, assume that f satisfies the condition that
f (y)≤ f (r2αy) for all 0 ̸= y ∈ R,r2 ∈ R andα ∈ Γ such that r2αy ̸= 0. A left Euclidean norm satisfying this condition said to be
Γ− submultiplicative. A left Euclidean norm f defined on aΓ− semiringR isΓ−multiplicative if and only if f (xαy) = f (x) f (y)
for all x,y ∈ R and α ∈ Γ such that xαy ̸= 0. That is, f is Γ−multiplicative if and only if it is a Γ-semigroup homomorphism
from R\{0} to N(set of non-negative integers).

Theorem 4.3.2. Let R be a Γ−semiring with a strong identity. Let Γ− submultiplicative Euclidean norm be defined by
f : R\{0} −→ N and if M f = {r ∈ R | f (r)} is a minimal element of image f then 1 ∈ M f and if x ∈ M f then there exists an
element q ∈ R and α ∈ Γ satisfying qαx = 1.

Proof. Let 0 ̸= x ∈ R then by definition of Γ− sub multiplicative f (1) ≤ f (xα1) = f (x) so 1 ∈ M f . Again if x ∈ M f then
there exist elements q and r of R and α ∈ Γ satisfying 1 = qαx+ r with either r = 0 or f (r) < f (x). But f (r) < f (x) is not
possible by minimality. Hence qαx = 1

Theorem 4.3.3. Let R be a strong multiplicative Γ−idempotent Γ−semiring with a strong identity. Let Γ− submultiplicative
Euclideannormbe defined by f : R\{0}−→N and ifM f = {r ∈R | f (r)} isminimal elements of image ( f ) thenM f ∩I×s (ΓR)=
{1} andU(ΓR)⊆ M f , equality holds if R is commutative.

Proof. Let z ∈ M f ∩ I×s (ΓR) then byTheorem 4.3.2, there exists an element q ∈ R and α ∈ Γ satisfying 1 = qαz . Now, since
z ∈ I×s (ΓR) so z = 1β z = (qαz)β z = qα(zβ z) = qαz = 1, for all β ∈ Γ. Thus, M f ∩ I×s (ΓR) = {1}. Further, if x ∈U(ΓR) then
there exists an element y ∈ R and α ∈ Γ satisfying 1 = yαx, so f (x) ≤ f (yαx) = f (1). Since 1 ∈ M f , thus equality holds and
x ∈ M f . Hence,U(ΓR)⊆ M f . Finally, if R is commutative, then byTheorem 4.3.2 equality holds.

Remark 4.3.4. Let x be an element of a Γ- semiring R. An element y of R is an additive inverse of x if and only if
x+ y = 0 = y+ x. We will denote the additive inverse of an element x, if it exists, by−x. Let us denote the set of all elements of
R having additive inverse by A(ΓR)

Theorem 4.3.5. Let R be a commutative cancellative Γ− semiring with strong identity and f be a Γ− sub multiplicative
Euclidean norm defined on R. Then f (x) = f (−x) for all x ∈ A(ΓR) (set of all elements having additive inverse).

Proof. Let us assume that the result is not true and X be a non-empty set of all non-zero elements x
′ of A(ΓR) satisfying

f
(

x
′
)
> f

(
−x

′
)
. Let x ∈X be such that f (−x) is minimal. Then there exist elements q and r of R and α ∈ Γ satisfying x =

qα(−x)+r where either r = 0 or f (r)< f (−x). Let r ̸= 0 then qα(−x)+(−x)+r = 0.Therefore, z= qα(−x)+(−x)∈V (ΓR)
and −[qα(−x)+ (−x)] = r. Further, z ̸∈ X , otherwise there is a contradiction to the choice of x. Thus, f (z) = f (r), which is
not possible otherwise by Γ− submultiplicity f (r) = f (z) = f ([q+1]α(−x))≥ f (−x).Thus, r = 0. Hence, x = qα(−x).Then
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qαx+ x = qα(x+(−x)) = qα0 = 0 and so −x = qαx+ x+(−x) = qαx. This implies that f (−x) ≥ f (x), contradicting the
assumption that x ∈ X . Hence X must be empty.

Definition 4.3.6. A function f : R −→ S, where R and S are Γ−semiring is said to be a Γ−morphism of Γ− semiring if
(i) f (x+ y) = f (x)+ f (y)
(ii) f (xαy) = f (x)α f (y) for all x,y ∈ R and α ∈ Γ.
Theorem 4.3.7. Let R be a Γ− semiring. If h : R −→ S be a surjective Γ−morphism of R and f is a left Euclidean norm on

R then there exists a left Euclidean norm g on S defined by g(z) = min
(

f (x) | x ∈ h−1(z)
}
for all 0 ̸= x ∈ S.

Proof. Let m and n be elements of S with n ̸= 0. Then there exist elements x,y ̸= 0 of R such that h(x) = m and h(y) = n.
Further, choose y so that g(n) = f (y). Since f is a left Euclidean norm on R, so there exist elements q and r of R and α ∈ Γ
satisfying x = qαy+ r where either r = 0 or f (r) < f (y) = g(n). Thus, m = h(x) = h(q)αn+ h(r), where either h(r) = 0 or
g((h(r))≤ f (r)< f (y) = g(n). Hence, g is left Euclidean norm on S.

Theorem 4.3.8. Let R be a Γ−semiring and f be a left Euclidean norm defined on R then every left k−ideal of R is the
principal ideal.

Proof. Let f be a left Euclidean norm on R and let J be a left k−ideal of R. Then { f (x) | x ∈ J} has minimal element say f (y).
Let x ∈ J \RΓy then there exists an element r ∈ R\{0} and α ∈ Γ such that x = qαy+ r and f (r)< f (y). But r ∈ J since J is
k−ideal, contradicting the minimality of f (y). Hence, J = RΓy, so is the principal.

Definition 4.3.9. A Γ−semiring for whichTheorem 4.2.7 holds will be called Principal left k−ideal (PLKI) Γ−semiring.
Theorem4.3.10.LetR be a left euclideanΓ− semiring thenR is (PLKI)Γ− semiring if and only if there exists a left Euclidean

norm f defined on R satisfying the condition that x = qαy+ r for r ∈ R\{0},α ∈ Γ and f (r)< f (y) then x ̸∈ RΓy.
Proof. By Theorem 4.3.1, we know that there exists a left Euclidean norm f defined on R satisfying the condition f (s) ≤

f (rαs) for all r,s ∈ R\{0}. Let x = qαy+ r for r ∈ R\{0},α ∈ Γ and f (r)< f (y). If x ∈ RΓy then as R is (PLKI) Γ−semiring,
therefore we must have r = zαy for some z ∈ R and α ∈ Γ. Therefore, f (r) ≥ f (y), which is a contradiction. Hence, x ̸∈ RΓy.
Conversely, let x,y ∈ R and t ∈ CRD({x+ y,y}). Then we can write x+ y = mαt and y = nαt for m,n ∈ R and α ∈ R. By the
choice of f , we know that f (x) ≥ f (t). Therefore, either x = qαt or x = qαt + r for some 0 ̸= r ∈ R satisfying f (r) ≤ f (t). If
x = qαt + r then mαt = (n+q)αt + r, which again contradicts the stated condition.Thus, we must have x = qαt so t ∈ RD(x).
Since t ∈ RD(y), so by the choice of t we have t ∈CRD({x,y}). Hence, R is PLKI −Γ− semiring.

Theorem 4.3.11. Let R be a left euclidean (PLKI) Γ− semiring with strong identity and X be any non empty subset of R.
Then X has a GCRD.

Proof. Let X = {x,y}. if x = y = 0 then 0 is a GCRD of {x,y}, so the result is obvious. So, without loss of generality,
let y ̸= 0. Since R is a (PLKI) Γ− semiring, so by Theorem 4.3.10, that there exists a left Euclidean norm f defined on R
satisfying the condition that if x = qαy+ r for r ∈ R \ {0},α ∈ Γ and f (r) < f (y) then x ̸∈ RΓy. By repeated application
of f we can find elements q1, . . . ,qn+1 and r1, . . . ,rn of R \ {0} and α,α1 . . .αn ∈ Γ such that x =q1αy+ r1,y = q2α1r1 +
r2, . . . ,rn−2 = qnαn−1rn−1 + rn,rn−1 = qn+1αnrn and f (y) > f (r1) >· · · > f (rn) (The process of selecting the qi and ri must
terminate after finitely many steps, since there are no infinite decreasing sequences of elements of N ), working backward,
we have rn−2 = (qnαn−1qn+1 +1]αnrn,rn−3 = (qn−1αn−2qnαn−1qn+1+(qn−1 +qn+1]αnrn and so on until we establish that
rn ∈ CRD({x,y}). Conversely, let ∈CRD({x,y}). By Theorem 4.3.10, we have m ∈ RD(r1) ,m ∈ RD(r2) . . . ,m ∈ RD(rn). So
RD(rn) =CRD({x,y}). Hence, rn is a GCRD of {x,y}.

4 Conclusion
Not all the results that hold good for ideals in rings may be true for the ideals in semirings as well as in Γ − semirings
and even for the k− ideals in Γ− semirings. Various mathematicians while generalizing the Lasker−Noether’s Theorem for
semirings ignored this fact. For k−ideals in semirings, Lescot (5) established weak primary decomposition as a result in 2015.
Following this, here we includes k−irreducible ideals, common right divisors and Euclidean Γ− semiring and characterize
some fundamental results by using the conditions like commutativity, simple, semi subtractive, centreless, multiplicative
Γ−idempotent, strong multiplicative Γ−idempotent and additively cancellative etc. We define several conclusions of
irreducibility in ideals, common right divisors and Euclidean norms in relation to these various conditions.The ideas described
in this article have a lot of potential for nourishing and one can investigate them further in polynomial Γ−semirings, the
primary ideals of Γ−semirings, and by utilizing the concept of Dale Norm in antisimple Γ-semirings.
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