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Abstract
Objectives: In this paper, we have to establish a generalized common fixed
point theorem in cone rectangular metric spaces. Methods: In this paper, we
use the Banach contraction principle technique to establish the generalized
fixed point theorem. Findings: The paper presents a unique common fixed
point theorem for two weakly compatible self-maps satisfying expansive type
mapping in cone rectangular metric space without assuming the normality
condition of a cone. Our result extends and supplements some well-known
results in cone rectangular metric spaces. Novelty: The main novelty of this
article is to prove a common fixed theorem under expansive type conditions.
As a direct consequence, we give an example to illustrate our obtained result.
Keywords: Normal Cone; Cone Rectangular Metric Space; Coincidence Point;
Common Fixed Point; Weakly Compatible; Expansive Type Mappings

1 Introduction
In recent times fixed point theorems have gained importance because of their
numerous applications. Fixed point theorems have many applications in various fields
differential equations, topology, functional analysis, integral equations, operator theory,
game theory, computer science, logic programming, artificial intelligence, applied
Engineering, Telecommunications, Physics, Economics and Management.

In (1), introduced the concept of metric spaces. It is well-known that the classical
Banach Contraction Principle (2) is the fixed point theorem. Let X be a non-empty set.
An element x ∈ T is said to be a fixed point of a self-map T : X → X if T (x) = x. A
result giving a set of conditions on T and X under which Thas a fixed point is known
as a fixed point theorem. Several researchers proved the fixed point theorems in Metric
Spaces, Banach Spaces, Topological spaces, Fuzzy metric spaces and cone metric spaces
based on the Banach Contraction Principle.

In (3), introduced a class of generalized (rectangular) metric spaces by replacing the
triangular inequality of metric spaces with a similar one which involves four or more
points instead of three points. The author also improved Banach Contraction Principle
in such spaces. Recently many authors (4,5) proved the existence and uniqueness of a
fixed point for different types of mappings.
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In (6), introduced the concept of cone metric spaces by replacing the real number system in the definition of metric space
with an ordered Banach space. Recently many authors (7–9)have obtained coincidence and common fixed point results for self-
maps satisfying contractive conditions in cone metric-type spaces. In (10), introduced the concept of quasi-cone metric spaces
and established some Fixed Point Results in Quasi-cone metric spaces. Recently many authors (11–13)have obtained coincidence
and common fixed point results for self-maps satisfying contractive conditions in cone metric spaces.

In (14), introduced the concept of cone rectangular metric space by replacing the triangular inequality in the definition of
cone metric space with a rectangular inequality and proved the Banach contraction principle on these spaces. Recently many
authors (15–17)have obtained some fixed point results in cone rectangular metric spaces. In this paper, we prove a common fixed
point theorem for two weakly compatible self-maps under an expansive type condition in cone rectangular metric spaces with
a suitable example to illustrate our obtained result. Our main result generalizes many known results (15) in cone rectangular
metric spaces.

2 Preliminaries

Definition 2.1. (14)Let X be a non-empty set. The mapping dE : X ×X said to be cone rectangle metric space if it satisfies:
(1) θ < d(x,y), for all x,y ∈ X with x ̸= y and d(x,y) = θ if and only if x = y;
(2) d(x,y) = d(y,x), for all x,y ∈ X ;
(3) dE(x,y)≤ dE(x,w)+dE(w,z)+dE(z,y),
for all x, y ∈ X and for all distinct points u,v ∈ X −{x,y}.
Definition 2.2. (6)Let P be a subset of a real Banach space Eand θ is the zero vector of E.P is said to be a cone in E if it

satisfies the following properties:
(i) P is non-empty, closed and P ̸= {θ };
(ii) x, y ∈ P implies ax + by ∈ P, where a and b are positive real numbers;
(iii) The intersection of P and –P is {θ }
Definition 2.3. (6)A cone P is said to be a solid cone if an interior of P is a non-empty subset of E
Definition 2.4. (6) A partial order relation≤ with respect to a solid cone P ⊆ E is defined as x≤ y if y – x ∈P , for x, y ∈ E .
Definition 2.5. (6)A cone P is called a normal cone if there is a number k >1 such that for all x, y ∈ X, θ≤ x ≤ y implies that

||x||≤ k||y||.
Definition 2.6. (14) Let(X ,dE) be a cone rectangular metric space and P be a solid cone in E.Then the sequence {xn} is said

to converge to x if dE(xn, x)→ 0, as n → ∞.
Definition 2.7 (14)Let (X ,dE) be a cone rectangular metric space and P be a solid cone in E.Then the sequence {xn} is said

to be Cauchy if for all p > 0 we have dE (xn, xn+p)→ 0, as n → ∞.
Throughout this paper, P is not necessarily a normal cone in E, the relation x ≪ y stands for y x belongs to an interior of P

and R denotes the set of all Real numbers.

3 Main Results
Theorem 3.1: Let (X ,dE) be a cone rectangular metric space. If the mappings S and T: X→ X satisfy the following:

dE (Sx,Sy)≥ λ1dE (T x,Ty)+λ2dE (Sx,T x)+λ3dE (Sy,T x)+λ4dE (Sy,Ty) , (3.1)

for all x, y ∈ X , where λ1, λ2, λ3, λ4 ∈ R such that λ1 > 1 and 0 < λ2, λ3, λ 4< 1.
If T(X)⊆ S(X) and either of T(X) or S(X) is a complete subspace of X, then T and S have a unique coincidence point in X.

Further, if T and S are weakly compatible self-maps then they have a unique common fixed point in X .
Proof . We start the proof with an arbitrary point x0∈X . Since T(X)⊆ S (X)and let x1∈Xbe such thatTx0 = Sx1. Continuing

this process, we can construct a sequence {yn} in X such that yn= Sxn= Txn − 1, for all n≥ 1.
If ym − 1= ym, for somem≥ 1, then ym − 1 = Sxm − 1 = Txm − 1.That is, S and T have a coincidence point xm− 1 in X .Assume

yn − 1 ̸= yn, for all n≥ 1. Then from (3.1) it follows that,

dE (yn−1, yn) = dE (Sxn−1, Sxn)

≥ λ1dE (T xn−1,T xn)+λ2dE (Sxn−1,T xn−1)+λ3dE (Sxn, Ixn−1)+λ4dE (Sxn,T xn) ,

= λ1dE (yn,yn+1)+λ2dE (yn−1,yn)+λ3dE (yn,yn)+λ4dE (yn,yn+1) ,
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≥ (λ1 +λ4)dE (yn,yn+1)+λ2dE (yn−1,yn) ,

which implies that,
dE (yn, yn+1)≤

(
1−λ2

λ1+λ4

]
dE (yn−1, yn) ,

Hence,
dE (yn,yn+1)≤ λdE (yn−1,yn) ,∀n ≥ 1,whereλ = 1−λ2

λ1+λ4
< 1( as λ1 +λ4 +λ2 > 1) .

By induction for all n≥ 0,

dE (yn, yn+1)≤ λ ndE (y0,y1) , (3.2)

where 0 <λ< 1.
Using (3.1), (3.2), rectangular inequality and the facts that,
λ1 > 1,λ2 < 1,0 < λ3 < 1 and 0 < λ4 < 1, i.e., λ1 +λ2 +λ3 +λ4 > 1 and 0 < λ < 1, we get,

dE (yn−1, yn+1) = dE (Sxn−1,Sxn+1)

≥ λ1dE (T xn−1,T xn+1)+λ2dE (Sxn−1,T xn−1)+λ3dE (Sxn+1,T xn−1)+λ4dE (Sxn+1,T xn+1)

≥ λ1dE (yn,yn+2)+λ2dE (yn−1,yn)+λ3dE (yn+1,yn)+λ4dE (yn+1,yn+2)
Therefore,
λ1dE (yn,yn+2)≤ dE (yn−1,yn+1)−λ2dE (yn−1,yn)−λ3dE (yn+1,yn)−λ4dE (yn+1,yn+2)

≤ [dE (yn−1,yn)+dE (yn,yn+2)+dE (yn+2,yn+1)]

−λ2dE (yn−1,yn)−λ3dE (yn+1,yn)−λ4dE (yn+1,yn+2)

≤ d (yn,yn+2)+(1−λ2)dE (yn−1,yn)−λ3dE (yn+1,yn)+(1−λ4)dE (yn+1,yn+2)
which implies that,

dE (yn,yn+2)≤
(

1−λ2

λ1 −1

)
dE (yn−1,yn)−

(
λ3

λ1 −1

)
dE (yn,yn+1)+

(
1−λ4

λ1 −1

)
dE (yn+1,yn+2)

≤
(

1−λ2

λ1 −1

)
λ n−1dE (y0,y1)−

(
λ3

λ1 −1

)
λ ndE (y0,y1)+

(
1−λ4

λ1 −1

)
λ n+1dE (y0,y1)

=

(
1−λ2

λ1 −1
−λ

λ3

λ1 −1
+λ 2 1−λ4

λ1 −1

)
λ n−1dE (y0,y1)

=

(
1−λ2

λ1 −1
− λ3

λ1 −1
+

1−λ4

λ1 −1

)
λ n−1dE (y0,y1)

≤
(

2− (λ2 +λ4 +λ3)

λ1 −1

)
λλ n−1dE (y0,y1)

≤
(

1+λ1

λ1 −1

)
λ ndE (y0,y1)

Hence

dE (yn,yn+2)≤ αλ ndE (y0,y1) (3.3)

For the sequence {yn} we consider dE (yn, yn+p) in two cases.
If p is odd say 2m +1, for m≥ 1, then by using rectangular inequality and (3.2) we get,
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dE (yn,yn+2m+1)≤ dE (yn+2m+1,yn+2m)+dE (yn+2m,yn+2m−1)+dE (yn+2m−1,yn)

≤ dE (yn+2m,yn+2m+1)+dE (yn+2m−1,yn+2m)+dE (yn+2m−1,yn+2m−2)

+dE (yn+2m−2,yn+2m−3)+ · · ·+dE (yn+2,yn+1)+dE (yn+1,yn)

= dE (yn,yn+1)+dE (yn+1,yn+2)+ · · ·+dE (yn+2m−1,yn+2m)+dE (yn+2m,yn+2m+1)

≤ λ ndE (y0,y1)+λ n+1dE (y0,y1)+ · · ·+λ n+2m−1dE (y0,y1)+λ n+2mdE (y0,y1)

≤
[
1+λ +λ 2 +λ 3 + · · ·

]
λ ndE (y0,y1)

≤ λ n

1−λ
dE (y0,y1)

≤
[

α +
1

1−λ

]
λ ndE (y0,y1)

Hence,

dE (yn,yn+2m+1)≤
[

α +
1

1−λ

]
λ ndE (y0,y1) (3.4)

for all n ≥ 1,m ≥ 1andα = 1+λ1
λ1−1 ≥ 0.

If p is even say 2m, for m≥ 1, then by using rectangular inequality, (3.2), (3.3) and the fact that 0 <λ <1 we get,
dE (yn,yn+2m)≤dE (yn+2m,yn+2m−1)+dE (yn+2m−1,yn+2m−2)+dE (yn+2m−2,yn)

≤ dE (yn+2m−1,yn+2m)+dE (yn+2m−2,yn+2m−1)+ · · ·+dE (yn+4,yn+3)

+dE (yn+3,yn+2)+dE (yn+2,yn)

= dE (yn,yn+2)+dE (yn+2,yn+3)+dE (yn+3,yn+4)+ · · ·
+dE (yn+2m−2,yn+2m−1)+dE (yn+2m−1yn+2m)

≤ µλ ndE (y0,y1)+
[
λ n+2dE (y0,y1)+λ n+3dE (y0,y1)

+ · · ·+λ n+2m−2dE (y0,y1)+λ n+2m−1dE (y0,y1)
]

= αλ ndE (y0,y1)+
[
λ 2 +λ 3 + . . .+λ 2m−1]λ ndE (y0,y1)

≤ αλ ndE (y0,y1)+
[
1+λ +λ 2 +λ 3 + . . .

]
λ ndE (y0,y1)

≤ αλ ndE (y0,y1)+
λ n

1−λ
dE (y0,y1)

Hence

dE (yn,yn+2m)≤
[

α +
1

1−λ

]
λ ndE (y0,y1) (3.5)

for all n ≥ 1,m ≥ 1 and α = 1+λ1
λ1−1 ≥ 0

From (3.4) and (3.5) we have,
dE (yn,yn+p)≤

[
α + 1

Γ−λ

]
λ ndE (y0,y1) , for all n ≥ 1,m ≥ 1 and α = 1+λ1

λ1−1 ≥ 0
Assume that θ ≪ k. Since [

α +
1

1−λ

]
λ ndE (y0,y1)→ θ , n → ∞

Therefore for any k belongs to an interior of P, we can find a natural number N1such that for each n > N1, we have,[
α + 1

1−λ

]
λ ndE (y0,y1) ≪ k, for all n >N1 and p≥ 1 and hence, dE (yn,yn+p) ≪ k.

Therefore, {yn} is a Cauchy sequence in X. Since T (X) is a complete subspace of X, then there exists a point z ∈ T (X)⊆ S(X)
such that

lim
n→∞

yn = lim
n→∞

Sxn = lim
n→∞

T xn−1 = z.

Also, we can find x ∈ X such that z = Sx.
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Let θ ≪ k be given, we can choose natural numbers N2and N3 such that dE (z,yn−1) ≪ λ1k
2(λ1+1) , for all n >N2 and

dE (yn−1,yn) ≪ k
2 , for all n > N3. Let N= max {N2, N3}.

We have by (3.1),

dE (yn−1,z) = dE (Sxn−1,Sx)

≥ λ1dE (T xn−1,T x)+λ2dE (Sxn−1,T xn−1)+λ3dE (Sx,T xn−1)+λ4dE (Sx,T x)

≥ λ1dE (yn,T x)+λ2dE (yn−1,yn)+λ3dE (z,yn)+λ4dE (z,T x)

≥ λ1dE (yn,T x)

Hence, dE (yn, T x)≤ 1
λ1

dE (yn−1,z)
Using rectangular inequality we have,
dE(z,T x)≤ dE (z,yn−1)+dE (yn−1,yn)+dE (yn,T x)

≤ dE (z,yn−1)+dE (yn−1,yn)+
1
λ1

dE (yn−1,z)

=

[
1+

1
λ1

]
dE (z,yn−1)+dE (yn−1,yn)

Hence,

dE (z, T x) ≪ k
2
+

k
2
= k, i.e., dE (z, T x) = θ

Therefore, Sx = T x = z.
That is, z is a point of coincidence of S and T. If z* is another point of coincidence of S and T , then Sy = Ty = z*, for some y

∈X then

dE (z,z∗) = dE ( Sx,Sy)

≥ λ1dE (T x,Ty)+λ2dE (Sx,T x)+λ3dE (Sy,T x)+λ4dE (Sy,Ty)

≥ λ1dE (z,z∗)+λ2dE (z,z)+λ3dE (z∗,z)+λ4dE (z∗,z∗)

= (λ1 +λ3)dE (z,z∗)

Hence,
dE (z,z∗)≤ 1

λ1+λ4
dE (z,z∗)

Since, λ1 +λ4 > 1, we have, dE (z,z∗) = θ , i.e., z = z∗ .
That is, S and T have a unique point of coincidence in X . Suppose S and T are weakly compatible mappings, then we have, Sz

= STx = T Sx = T z.Therefore, Sz = T z = w (say).This shows that w is another point of coincidence between S and T.Therefore,
by the uniqueness of the point of coincidence, we must have z = w. Hence, z is a unique common fixed point of S and T in X .
Similarly,we can prove S and T have a unique common fixed point in X if S(X) is a complete subspace of X .

The following example supports Theorem 3.1.
Example 3.2: Let=

( 1
n : n ∈ (1, 2, 3, 4}

}
, E= R2 and P = {((x,y) : x,y ≥ 0)}isaconeinE.

Define dE : X ×X as follows:
dE(x,x) = (0,0), for all x ∈ X ,
dE

(
1, 1

2

)
= (3,6),

dE
(
1, 1

3

)
= dE

( 1
2 ,

1
3

)
= (1,2),

dE
(
1, 1

4

)
= dE

( 1
2 ,

1
4

)
= dE

( 1
3 ,

1
4

)
= (2,4),

dE(x,y) = dE(y,x), for all x,y ∈ X .
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Then it is clear that (X ,dE)is a complete cone rectangular metric space but not a cone metric space, since it does not satisfy
triangular inequality:

dE

(
1,

1
2

)
= (3, 6)> dE

(
1,

1
3

)
+dE

(
1
3
,

1
2

)
= (1, 2)+(1, 2) = (2, 4) , as (3, 6) (2, 4) = (1, 2) ∈ ,

Now we define the mappings S and T : X→ X as follows:

S(x) =


x if x ∈

{ 1
3 ,

1
4

}
1
2 if x = 1
1 if x = 1

2

and T (x) =

{
1
3 if x ̸= 1

4
1 if x = 1

4
Now consider,
dE(S(1/2),S(1))≥ λ1dE(T (1/2),T (1))+λ2dE(S(1/2),T (1/2))+λ3d( S(1),T (1/2))+λ4dE(S(1),T (1))
i.e., dE(1,1/2)≥ λ1dE(1/3,1/3))+λ2dE(1,1/3)+λ3dE(1/2,1/3)+λ4dE(1/2,1/3)
i.e., (3,6)≥ λ2(1,2)+λ3(1,2)+λ4(1,2)
i.e. (3,6)≥ (λ2 +λ3 +λ4)(1,2)
dE(S(1),S(1/3))≥ λ1dE(T (1),T (1/3))+λ2dE(S(1),T (1))+λ3dE(S(1/3),T (1))+λ4dE(S(1/3),T (1/3))
i.e., dE(1/2,1/3)≥ λ1dE(1/3,1/3))+λ2dE(1/2,1/3)+λ3dE(1/3,1/3)+λ4dE(1/3,1/3)
i.e., (1,2)≥ λ2(1,2)
dE(S(1/3),S(1))≥ λ1dE(T (1/3),T (1))+λ2dE(S(1/3),T (1/3))+λ3dE(S(1),T (1/3))+λ4dE(S(1),T (1))
i.e., dE(1/3,1/2)≥ λ1dE(1/3,1/3))+λ2dE(1/3,1/3)+λ3dE(1/2,1/3)+λ4dE(1/2,1/3)
i.e., (1,2)≥ λ3(1,2)+λ4(1,2)

i.e.,
dE(S(1/2),S(1/3))≥ λ1dE(T (1/2),T (1/3))+λ2dE(S(1/2),T (1/2))+λ3dE(S(1/3),T (1/2))

+λ4dE(S(1/3),T (1/3))

i.e., dE(1,1/3)≥ λ1dE(1/3,1/3))+λ2dE(1,1/3)+λ3dE(1/3,1/3)+λ4dE(1/3,1/3)
i.e., (1,2)≥ λ2(1,2)

dE(S(1/3),S(1/2))≥ λ1dE(T (1/3),T (1/2))+λ2dE(S(1/3),T (1/3))+λ3dE(S(1/2),T (1/3))
+λ4dE(S(1/2),T (1/2))

i.e., dE(1/3,1)≥ λ1dE(1/3,1/3))+λ2dE(1/3,1/3)+λ3dE(1,1/3)+λ4dE(1,1/3)
i.e., (1,2)≥ λ3(1,2)+λ4(1,2)
i.e., (1,2)≥ (λ3 +λ4)(1,2)

dE(S(1),S(1/4))≥ λ1dE(T (1),T (1/4))+λ2dE(S(1),T (1))+λ3dE(S(1/4),T (1))+λ4dE(S(1/4),T (1/4))
i.e., dE(1/2,1)≥ λ1dE(1/3,1))+λ2dE(1/2,1/3)+λ3dE(1/4,1/3)+λ4dE(1/4,1)
i.e., (3,6)≥ λ1(1,2)+λ2(1,2)+λ3(2,4)+λ4(2,4)
i.e., (3,6)≥ (λ1 +λ2)(1,2)+(λ3 +λ4)(2,4)

dE(S(1/4),S(1))≥ λ1dE(T (1/4),T (1))+λ2dE(S(1/4),T (1/4))+λ3dE(S(1),T (1/4))+λ4dE(S(1), t(1))
i.e., dE(1/4,1/2)≥ λ1dE(1,1/3))+λ2dE(1/4,1)+λ3dE(1/2,1)+λ4dE(1/2,1/3)
i.e., (2,4)≥ (λ1 +λ4)(1,2)+λ2(2,4)+λ3(3,6)

https://www.indjst.org/ 2515

https://www.indjst.org/


Reddy / Indian Journal of Science and Technology 2023;16(32):2510–2517

dE(S(1/2),S(1/4))≥ λ1dE(T (1/2),T (1/4))+λ2dE(S(1/2),T (1/2))+λ3dE(S(1/4),T (1/2))
+λ4dE(S(1/4),T (1/4))
i.e., dE(1,1/4)≥ λ1dE(1/3,1))+λ2dE(1,1/3)+λ3dE(1/4,1/3)+λ4dE(1/4,1)
i.e., (2,4)≥ λ1(1,2)+λ2(1,2)+λ3(2,4)+λ4(2,4)
i.e., (2,4)≥ (λ1 +λ2)(1,2)+(λ3 +λ4)(2,4)

dE(S(1/4),S(1/2))≥ λ1dE(T (1/4),T (1/2))+λ2dE(S(1/4),T (1/4))+λ3dE(S(1/2),T (1/4))
+λ4dE(S(1/2),T (1/2))

i.e., dE(1/4,1)≥ λ1dE(1,1/3)) + λ2dE(1/4,1) + λ3dE(1,1) + λ4dE(1,1/3)i.e., (2,4) ≥ λ1(1,2) + λ2(2,4) +
λ4(1,2)i.e., (2,4)≥ (λ1 +λ4)(1,2)+λ2(2,4)

dE(S(1/3),S(1/4))≥ λ1dE(T (1/3),T (1/4))+λ2dE(S(1/3),T (1/3))+λ3dE(S(1/4),T (1/3))
+λ4dE(S(1/4),T (1/4))

i.e., dE(1/3,1/4)≥ λ1dE(1/3,1))+λ2dE(1/3,1/3)+λ3dE(1/4,1/3)+λ4dE(1/4,1)
i.e., (2,4)≥ λ1(1,2)+λ3(2,4)+λ4(2,4)
i.e., (2,4)≥ λ1(1,2)+(λ3 +λ4)(2,4)
dE(S(1/4),S(1/3))≥ λ1dE(T (1/4),ℑ(1/3))+λ2dE(S(1/4),T (1/4))+λ3dE(S(1/3),T (1/4))

+λ4dE(S(1/3),T (1/3))
i.e., dE(1/4,1/3)≥ λ1dE(1,1/3))+λ2dE(1/4,1)+λ3dE(1/3,1)+λ4dE(1/3,1/3)
i.e., (2,4)≥ λ1(1,2)+λ2(2,4)+λ3(1,2)
i.e., (2,4)≥ (λ1 +λ3)(1,2)+λ2(2,4)
Then for every x, y ∈ X, the inequality (3.1) of
Theorem 3.1 holds for λ1 = 5

4 , λ2 = λ3 =
1
8 and λ4 =

1
16 . Since, S

( 1
3

)
= T

( 1
3

)
= 1

3 . It is clear that, T (X) ⊆ S(X) and we
have ST

( 1
3

)
= S

(
T
( 1

3

))
= S

( 1
3

)
= 1

3 and T S
( 1

3

)
= T

(
S
( 1

3

))
= T

( 1
3

)
= 1

3 . Therefore ST
( 1

3

)
= T S

( 1
3

)
.That is, Sand T are

commutes at coincidence point 1
3 .Therefore S and T are weakly compatible mappings.Therefore there exists a unique common

fixed point 1
3 of S and T.

With the suitable value of λ 1, λ 2, λ 3, and λ 4 we obtain the following results of (15) on cone rectangular metric spaces.
Corollary 3.3. (15) If the two self-maps S and T: X→X defined on cone rectangularmetric space (X ,dE) satisfy the following:

dE (Sx,Sy)≥ λ1dE (T x,Ty)+λ2dE (Sx,T x)+λ4dE (Sy,Ty) ,

for all x, y ∈ X, where λ 1, λ2, λ4 ∈ R such that λ1 > 1 and 0 < λ2, λ 4< 1.
If T (X)⊆ S(X) and either of T (X) or S(X) is a complete subspace of X , then T and S have a unique coincidence point in X.

Further, if T and S are weakly compatible self-maps then they have a unique common fixed point in X .
Corollary 3.4. (15) If the two self-maps S and T : X→X defined on cone rectangularmetric space(X , dE) satisfy the following:

dE (Sx,Sy)≥ λ1dE (T x,Ty) , f or all x,y ∈ X , where λ1 > 1.

If T(X) ⊆ S(X) and either of T(X) or S(X) is a complete subspace of X , then T and S have a unique coincidence point in X .
Further, if T and S are weakly compatible self-maps then they have a unique common fixed point in X .

4 Conclusion
Finally, we have obtained a most generalized unique common fixed point theorem for two weakly compatible self-maps under
an expansive type condition in a cone rectangular metric space without assuming the normality condition of a cone. Our result
is generalized results of (15) and supported by a suitable example.
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