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Abstract

Objectives: To present a suitable RESTful service-based software defect
prediction approach that employs Machine Learning (ML) algorithms to identify
software defects. Methods: The proposed approach is designed to provide a
flexible solution for predicting software defects using various machine-learning
techniques. It leverages RESTful web service-based class-level software metrics,
including code complexity metrics, size metrics, coupling metrics, and cohesion
metrics, and uses these metrics to train various ML models, such as Logistic
Regression, Random Forest Classifier, LightGBM, XGBoost, and Support Vector
Machines. Findings: We have proposed a correlation co-efficient method for
feature selection and reduced it from 98 features to 25 features. With the
granularity of class-level metrics of the RESTful service-based Elastic Search
Engine's dataset, we achieved the highest F-measure score of 0.677 using
the LightGBM Machine Learning model. The existing work was done using
the 10-fold cross-validation and achieved an F-measure of 0.5817 using the
Decision Table model. Novelty: Most of the existing works carried out by
various researchers using publicly available NASA PROMISE datasets which
were generated long ago on legacy programming languages and further no
updates were taken into consideration. This could lead to data source bias,
meaning the findings and models developed may not be representative of
software systems from different domains or industries. The proposed work
carried out is using a newly generated RESTful software defects-based dataset
and publicly available: Bug Hunter Dataset. The Bug Hunter dataset aims to
cover a wide range of projects and software systems from different domains
and industries. This diversity allows researchers to develop defect prediction
models that are more generalizable and applicable to real-world scenarios and
specific organizations or domains. Apart from the original author, as of now,
no one used this dataset for software defect prediction. In the proposed work
we have used one of the Bug Hunter Datasets called Elastic Search Engine —
a RESTful Service-based software. We have applied different feature selection
methods and achieved the best results using the Correlation Coefficient
technique and achieved the best F-Measure of 0.677 using LightGBM with a
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hold-out validation approach whereas, in the existing work, the 10-Fold cross-
validation technique was used and achieved 0.5817 as the highest F-measure
using the Decision Table machine learning model. There is future scope for
working with other Machine Learning Models for exhaustive comparison with
the proposed model.

Keywords: Software Defect Prediction; Feature Reduction; Correlation
Coefficient; Machine Learning; RESTful Service Software; LightGBM; Random
Forest; SVM

1 Introduction

The NASA PROMISE repository dataset, may not cover the entire spectrum of software
projects. It is biased toward certain programming languages, application domains, or
project sizes. This lack of diversity could limit the generalizability of the findings to other
software projects. The dataset lacks crucial contextual information about the software
projects, such as the development process, team dynamics, or business requirements.
Context plays a significant role in software defect prediction, and the absence of
this information can limit the applicability of the results to real-world scenarios.
The dataset’s age may impact its relevance, as software development practices and
technologies evolve. Models trained on older data might not be effective in predicting
defects in more modern software projects. Imbalanced class distributions, where the
number of defective instances is significantly smaller than the non-defective ones, are
common in defect prediction datasets. This imbalance can affect the performance of
machine learning algorithms, making it challenging to accurately predict defects. To
deal with these problems, the proposed research work focused on RESTful Services
- a modern web development, which enables the integration and communication of
diverse software systems. RESTful services have become a standard in modern web
development, enabling the integration and communication of diverse software systems.
Using RESTful services as a basis for software defect prediction allows the analysis
of defects in the context of distributed and interconnected software components.
In this approach, data collection from RESTful services could be more challenging
than traditional software defect prediction, as it involves monitoring the interactions
between different services and extracting relevant features. Novel data collection and
feature extraction techniques may have been developed to handle this specific scenario.
RESTful services interact with various data sources and may produce different types
of data (e.g., structured, semi-structured, unstructured). Dealing with heterogeneous
data sources and effectively using them for defect prediction poses unique challenges,
requiring specialized data processing techniques. Elastic Search Engine is a distributed,
RESTful search and analytics engine capable of addressing a growing number of use
cases. As the heart of the Elastic Stack, it centrally stores your data for lightning-
fast search, fine-tuned relevancy, and powerful analytics that scale with ease. Software
Defect Prediction (SDP) is an important aspect of Software Engineering to identify bugs,
which is a crucial part of software quality assurance. Predicting bugs is a challenging task
for the developer that requires the analysis of large amounts of software data, such as
source code, log files, bug reports, and many other software artifacts. ML Models can
be used to analyze this data and predict software defects with a good F1-Score.
Machine Learning algorithms can be applied to various types of source code metrics
analysis, dynamic code analysis, and logs. These algorithms can be trained on various
features extracted from these data sources. Several machine learning algorithms have
been used for software defect prediction, including Logistic Regression, Decision Trees,
Random Forests, Support Vector Machines, LightGBM, and Neural Networks. These
algorithms are shown to get high accuracy in predicting defects, and their performance
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can be improved by combining them into hybrid models. To significantly improve the software quality and reduce the cost
of software development by enabling early defect prediction. Overall, the use of machine learning algorithms for software
defect prediction has the potential to significantly improve software quality and reduce the cost of software development by
enabling early detection of software defects. There is a requirement for a comprehensive evaluation of several machine learning
algorithms to perform defect prediction. However, this paper proposed defect prediction models with few machine learning
algorithms like Logistic Regression, Random Forest, LightGBM, and SVM, and the results are compared.

Rudolf Ferenc et al.(!) presented a bug hunter database based on open-source Java projects which are freely available
containing source code elements and validated bug prediction using different machine learning algorithms and evaluated bug
prediction with the F Measure over 0.74. Ramesh Ponnala et al.?) studied various research articles relevant to software defect
prediction using machine learning algorithms and summarized the current state of the art for the decade. Object-oriented
dynamic metrics (OODM) are essential to measure the software application’s efficiency. Ramesh Ponnala et al.®) proposed a
hybrid model to address class imbalance problems in SDP using ML Models. To balance the target variable various sampling
techniques were applied and a balanced dataset was used for defect prediction using classification algorithms along with feature
reduction techniques, and Random Forest with Oversampling techniques gave better results using two different datasets JUnit
and Netty. A. Nageswara Rao Moparthi et al. ® proposed a new hybrid model for defect prediction classification called Hybrid
Phase Based Ensemble Classifier for the Pattern (HPBECPD). M.R. Ahmed et al.®) proposed software fault prediction using
6 machine learning algorithms. They used a 10-fold cross-validation technique to evaluate the performance of ML models
with 3 NASA repository datasets and results achieved 98-100%. Faseeha Matloob et. al® did systematic research on 46 papers
and discovered that frequently employed hybrid models are random forest, boosting, and bagging. Zhenyu et al.”) proposed
an ensemble learning approach using Stacking algorithms with ANN, KNN, and Random Forest with K fold cross-validation
techniques and proved that their proposed ensemble model gave better results compared to individual models. Santhosh Singh
Rathore et al. ® gave a method that dynamically selects learning techniques to predict the no. of defects in software and showed
that it is the best prediction for the identified subset as a test dataset which is better than individual learning techniques and
boosting bagging. Ramesh Ponnala et al ® proposed an ensemble model with Random Forest, SVM, and LightGBM to predict
defects using Spring Framework-based open-source Java project’s dataset and achieved the highest ROC Curve of 0.853 and
suggested working with more advanced techniques like Deep Learning model in software defect prediction.

2 Methodology
2.1 Data Collection

Z. Téth et al. constructed Bug Hunter Dataset 1% source code metrics database of various large, popular, and publicly available
open-source Java projects which are available on GitHub. The bug hunter dataset consists of 15 open source projects with static
source code metrics, code duplication metrics, and code smell metrics, and the level of bugs considered are class, method, and
file. In this paper, we use Elastic Search Engine, a popular RESTful search engine-based dataset with class-level metrics. After
feature engineering, the authors have given a dataset of size 24994 rows and 98 features. As per the dataset the last feature is the
Number of Bugs, as we are working to get a prediction of defect or not, we mapped the Number of bugs as a defect or not with
binary values 0 and 1. We mapped the value 0 for zero number of bugs and the value 1 for more than zero as a number of bugs.
So that we can have a target or dependent variable named defect. This reconstructed dataset can be used to train the machine
learning classification models as binary classification models.

2.2 Approach

We have worked with an Elastic Search Engine-class level dataset with 3 different approaches for feature reduction like
Correlation Coefficient, 10-Fold Cross-Validation with PCA (n_components=6), and based on explained variance PCA with
25 components. We used the following machine learning algorithms for the classification of defects.

o Logistic Regression

o Random Forest Classification

o Support Vector Machine with RBF Kernel
« LightGBM

Feature reduction using the correlation coefficient is a common technique to identify and select the most relevant features for a
machine learning model. In this procedure, we calculate the correlation coefficient between each feature and the target variable
“defect” and select the features with the highest correlation values. By setting a correlation threshold value of 0.8, we can control
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the number of features selected for the reduced dataset. Adjusting the threshold allows us to balance between feature reduction
and retaining meaningful information for accurate modeling.
The following Figure 1 depicts the overall workflow of the methodology used in this research work.

Pre Selected Standard
Dataset ‘ Processing ‘ Features Scaler

Evaluation Metrics- ROC, F1 Score, — Logistic Regression, Random
Accuracy, Precision, Recall Forest, LightGBM, and SVM

Fig 1. Research Workflow of Proposed Method

As per the above Figure 1, a dataset with 98 features will be pre-processed using a correlation coefficient and selects the top
25 features with the threshold value 0.8 to determine which features to select. Features with a correlation coefficient greater than
this threshold will be considered relevant. Then these 25 features will be scaled to a range using StandardScaler normalization
techniques to overcome outliers and trained by different models by splitting the main dataset as train and test split into 80:20
i.e., 80% of dataset samples are used for training and 20% of samples are used for testing. So that 20004 rows will be taken
as train data and 4990 as test data. In future research work there is scope of working with more ML models and compare the
present model results. The following Figure 2 shows hold-out validation approach of proposed ML models using the dataset.

Train & test sets

LightGBM (ElasticSearch with Corre... ~ Random forest (ElasticSearchwith .. SVM (ElasticSearch with Correlatio...  Logistic Regression (ElasticSearch...

Generated on 2023/02/24 10:43:08 2023/02/24 10:43.08 2023/02/24 10:43:08 2023/02/2410:43:08
Trainsetrows 20004 20004 20004 20004

Testset rows 4990 4990 499 499

Fig 2. Hold-Out Validation Approach of ML Models

3 Results and Discussion

To compare the different machine learning models, we used accuracy, precision, recall, and F Measure metrics that are defined
as follows:

o Accuracy: The accuracy is the proportion of correct predictions made by the model. It is the most commonly used metric
for classification problems.

TP+TN Number of Correct Predictions

or Accuracy = —
TP+TN+FP+FN Total Number of Predictions
o Precision: Precision is the proportion of true positive predictions among all positive predictions made by the model. It

measures how many of the predicted positive instances are actually positive.

Accuracy =

(1)

TP

P .. _
recision 7TP+FP

2)
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o Recall: Recall is the proportion of true positive predictions among all actual positive instances. It measures how many of
the actual positive instances were predicted as positive.

TP
Recall = ———— (3)
TP+ FN

o F Measure: F1-score is the harmonic mean of precision and recall. It is used when you want to find the balance between
precision and recall.

2 x precision * recall
F Measure = — (4)
precision+ recall

where TP (True Positive) is the number of classes that were predicted as defect and observed as defect, FP (False Positive) is
the number of classes that were predicted as defect but observed as not defect, FN (False Negative) is the number of classes that
were predicted as non- defect but observed as defect ). We evaluated the Elastic Search Engine dataset by applying correlation
coefficient and, Principal Component Analysis to reduce the number of features from the 98 features. The following graph
represents the correlation coefficient based on selected features using Random Forest and LightGBM Machine-Learning models.

Fig 3. Variable importance of Random Forest

******

Fig 4. Variable importance of LightGBM

Figure 3 and Figure 4 reveal that the CBO, CLOC, Design Rules, LLOC, LOC, NA, NG, NLM, NLPM, NM, NOI, NOS,
NPM, RFC, TCLOC, TLLOC, TLOC, TNA, TNLM, TNLPM, TNM, TNOS, TNPM, WMC, and WarningMinor features are
selected as top 25 based on correlation coefficient by LightGBM ML Model. By considering these 25 features, we have trained
the machine learning models and achieved the following evaluation metrics (Figure 5).

The following figures (Figure 6) depict the confusion matrix and relevant metrics in the form of a visualization.
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METRICS SUMMARY OF 4 ALGORITHMS USING CORRELATION
COEFFICIENT BASED FEATURE REDUCTION
m LightGBM (FR with Correlation Coeffiency)
m Random forest (FR with Correlation Coeffiency)
W SVM (FR with Correlation Coeffiency)
Logistic Regression (FR with Correlation Coeffiency)

R
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Fig 5. Metrics summary using Correlation Coefficient

Confusion matrix

00%

a. Random Forest b. Logistic Regression

Confusion matrix

aaaaa

c. LightGBM d. SVM

Fig 6. Correlation Coeflicient based Confusion Matrix and relevant metrics visualization of 4 ML models

From the Figure 6 confusion matrix, different metrics like Accuracy, Precision, Recall, and F1 Score are evaluated for the
4 different ML models'"). When we compare this with the existing work carried out by Rudolf Ferenc et al. ("), in which they
worked out with class-level metrics using the 10-Fold cross-validation technique and achieved 0.5817 as the highest F measure
using the Decision Table machine learning model. In the proposed work we have worked with feature selection methods
Correlation Coefficient with train-test split of 80:20 on selected models, Principal Component Analysis with 10-fold cross-
validation and the Correlation Coefficient feature selection method gave the best result with 25 features. We have achieved
0.677 as the highest F- Measure using LightGBM and the second highest F-measure 0.675 using the Random Forest machine
learning model. Apart from the correlation coefficient techniques we have worked with a 10-fold cross-validation technique
with 6 principal components and Principal Component Analysis using explained variance with 25 principal components. From
all these 3 approaches correlation coefficient with 25 features gave the highest F measure in defect prediction and all these
approaches were carried out using Dataiku, an everyday Al tool free version.
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4 Conclusion

In this research work, we worked with a publicly available Dataset: Elastic Search Engine Dataset, which is a RESTful service-
based open-source project. We have worked with different feature selection methods like PCA, 10-fold cross-validation, and a
correlation coefficient method, in which correlation coefficient feature selection reduced it from 98 features to 25 features and
achieved the highest F measure score of 0.677 using the Light GBM machine learning model with the granularity of class-level
metrics of Elastic Search Engine using hold-out Validation approach whereas the exiting work done by Rudolf et al. (1), they got
0.5817 with 10-fold cross-validation technique using Decision Table algorithm.

4.1 Limitations and Future Scope

With the Elastic Search Engine Dataset, apart from the original author, we are the first to work on it. The Proposed work is
compared with the only one result, however there is a future scope of working with more ML models and compare the results
for a more comprehensive analysis. In future work, there is a scope for working with RESTful service-based runtime log files,
which will be useful to get the runtime metrics. There is another scope for working with the Prometheus tool to get run-time
metrics and create datasets for defect prediction on modern state of art software applications.
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