
INDIAN JOURNAL OF SCIENCE AND TECHNOLOGY

RESEARCH ARTICLE

 

 

OPEN ACCESS

Received: 24-05-2023
Accepted: 30-08-2023
Published: 03-10-2023

Citation: Rahim KH, Thiagarajan M
(2023) M/M(a,b)/1 Model Of
Interdependent Queueing With
Controllable Arrival Rates. Indian
Journal of Science and Technology
16(37): 3100-3109. https://doi.org/
10.17485/IJST/v16i37.1259
∗
Corresponding author.

rahimkhmaths@gmail.com

Funding: None

Competing Interests: None

Copyright: © 2023 Rahim &
Thiagarajan. This is an open access
article distributed under the terms
of the Creative Commons
Attribution License, which permits
unrestricted use, distribution, and
reproduction in any medium,
provided the original author and
source are credited.

Published By Indian Society for
Education and Environment (iSee)

ISSN
Print: 0974-6846
Electronic: 0974-5645

M/M(a,b)/1 Model Of Interdependent
Queueing With Controllable Arrival
Rates
K H Rahim1∗, M Thiagarajan1

1 Department of Mathematics, St. Joseph’s College (Autonomous), Affiliated to Bharathidasan
University, Tiruchirappalli, 620002, Tamil Nadu, India

Abstract
Objectives: Instead of only providing individualized one-on-one assistance,
some studies in the literature on queueing theory describe systems that
provide services in batches. This study introduces controllable arrival rates
and interdependency in such a system’s service and arrival processes and then
obtains the queueing system’s probabilities and characteristics. It also verified
the obtained results numerically. Methods: Controlling the arrival rates by
faster and slower arrival rates are expected for the input, with Poisson (each
time Poisson occurrence has one arrival) being the default assumption. The
general bulk service rule dictates that the service be delivered in batches.
Service begins only when the count of customers in the queue approaches
or surpasses a and the capacity b (≥a ≥ 1). For brevity, a batch’s service
time distribution is assumed to be exponential and is not dependent on
the batch size. Then, all the steady-state probabilities are derived using a
recursive approach. Findings: We used M/M(a,b)/1 as the notation. For this
model, steady-state solutions& characteristics are derived and explored. All the
probabilities are expressed in terms of P0,0(0). The expected count of customers
and waiting time depends on the interdependency, service rate, faster arrival
rate, and slower arrival rate. According to each parameter, all the results are
verified.Novelty: There areworks related to bulk service in queuing theory, but
this is a new approach to give a bridge between bulk service and controllable
arrival rates along with interdependency in the arrival and service process.
Keywords:M/M(a; b)/1 Queueing System; Bulk Service; Controllable Arrival
Rates; Steady States; Interdependent Model; Stochastic Processes

1 Introduction
In several real-world settings, queueing models serve as a foundation for the efficient
design and analysis of diverse technological systems and estimations of system
behavior, such as customer waiting time, the estimated number of customers, etc.
Bailey was the first to propose bulk service (1954) (1). Over time, the bulk service
literature has expanded. These concepts are applicable in various contexts, including
the transportation industry, where mass transit cars, elevators, and carriers are all-
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natural batch servers. Numerous real-life systems, such as those for telecommunication services, voice or data transfer,
production, etc., may confront queuing issues. Messages to be conveyed over computer communication networks may consist
of an arbitrary number of packets. Now this model is applicable in situations where arrivals are regulated by nonmanual robotic
systems, similar to the scenarios encountered in bulk services.

When customers arrive, most queuing models immediately begin providing service. However, here in bulk service, service
starts only when the count of customers reaches number a. Nevertheless, service will not commence until the number of
customers surpasses a. The single-server bulk service models have prompted queue theorists to examine the performance
characteristics of queuing systems in which a particular distribution does not constrain the service pattern.The extant literature
on bulk service queuing theory encompasses investigations into both customer behaviour within the queue and the behaviour
and attributes of the system’s servers (1–7). Presently, the challenge lies in devising a novel approach to the arrival rate that can
be controlled in accordance with the rate’s speed.

Numerous academics have significantly contributed to the bulk service queueing models due to their widespread
applications. In queueing theory, several researchers deal with different types of services with other parameters and various
arrivals in different models. Here it is a combined model as bulk service with control in arrivals. In previous studies, J. Medhi
(2002) discussed bulk service systems (8). Neuts M. F contributed to the idea of bulk queues in the literature in 1967 (9). A.
Srinivasan and M. Thiagarajan (2006) researched the controllable arrival rates in various queueing models (10) in that study,
discussing the concept of the speed of arrival rates in some queueingmodels. Various studies have been conducted on queueing
systems to elucidate the concept of bulk service. These investigations provide a comprehensive understanding of queueing
systems, such as k-stage bulk service, heterogeneous bulk service, group service for impatient customers, performance analysis
of dependent bulk service queues with server breakdowns, multiple vacation transient behaviours of bulk service queueing
systems with standby servers, and others (11–17). Additionally, Anyue Chen, Xiaohan Wu & Jing Zhang (2020) proposed
”Markovian bulk-arrival and bulk-service queues with general state-dependent control” (18). Finally, the present study deals
with controllable arrivals by dividing the faster and slower rates in the bulk service queuing system, and it connects or makes a
bridge between the bulk service to controlled arrivals. So all the probabilities can split according to the speed of arrivals with
this concept. This interdependent model can apply to model the real-world situation to new queueing models. This model has
controls for both service and arrival.

This study made an effort to examine the M/M(a,b)/1 model of interdependent queuing with controllable arrival rates.
We defined the model and steady-state equations and derived model properties. We produced numerical data for system
performance metrics to conform to the analytical conclusions and facilitate sensitivity analysis. Following is a summary of
the queueing model research. This study describes the model and then the steady-states, formulation, and notation. After that,
it covers the properties of the models and then provides illustrative findings for system performance indicators to conform to
the analytical conclusions and simplify the sensitivity analysis.

2 Methodology

2.1 Model Description

This queuing system constitutes a single server and a limitless waiting space.The arrival and service completion process {X1(t)}
and {X2(t)} of the system follow a bivariate Poisson process and are correlated, given that,

P(X1(t) = x1, X2(t) = x2)

= e−(λ j+µ−2ε)∑min{x1,x2}
s=0 (εt)s [(λ j − ε) t]x1−s [(µ − ε)t]x2−s 1

s!(x1 − s)!(x2 − s)!
(2.1)

where xi= 0, 1, 2,…(values of i is 1 and 2); λ j > 0; j = 0,1; µ > 0; 0≤ ε <min (λ j,µ); j = 0, 1.
The parameters µ, ε, λ 0,and λ 1describe
µ = the mean service rate.
ε = the mean dependence rate ( the covariance of {X1(t)} & {X2(t)}).
λ0 = the mean faster arrival rate.
λ1 = the mean slower arrival rate.
FCFS is the queue discipline. Based on size [a, b], services are provided in batches. When the queue length reaches or

surpasses a, and the capacity is b (≥a≥1), does service begin. A batch’s service time distribution is considered exponential
with parameter µ . The states of the system are denoted by (j, n), with n is the number of units in the queue, and j = 1 indicates
the server in this system is busy serving a batch of size m (a≥m≥b), and j = 0 shows idle server.We consider the system’s states.

Denote, P j,n(t) = Pr[the state of the system (j, n) at t (time)].
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P j,n(t) is non zero Only for j = 1, n≥0, and j = 0; 0≤ n≤a -1.
The movement in the system specified in the arrival rate describes,
(i) As the system size increases from below F, the arrival rate, which was λ0 until F- 1, goes downhill to λ1 and stays there

for the next up jump of the system size.
(ii) As the size of the system falloff to f(0⩽ f⩽ F) from above, the rate of arrival, which was λ1until f + 1, is more significant

to λ0 and remains λ0 throughout the subsequent falling to 0 and rising to F-1. This procedure is repeated again and again.
Now, the steady-state probabilities (SSP) are as follows.
Let P0,n(0), describe the SSP that there are queued n customers when idle server and the system is at a faster arrival rate.
Let P0,n(1), describe the SSP that there are queued n customers when idle server and the system is at a slower arrival rate.
Let P1,n(0), describe the SSP that there are queued n customers when the busy server and system are at a faster arrival rate.
Let P1,n(1), describe the SSP that there are queued n customers when the busy server and system are at a slower arrival rate.
Clearly, the process N(t); t≥ 0, where N(t) is the system size at time t, is a Markov chain with state space
{0,1, 2,…,f -1 f, f + 1,f+ 2,…,F -2,F -1,F,F+ 1,…} and F < a < b

Fig 1.The schematic representation of the model

3 Results and Discussion

3.1 Steady-State Equations

The steady state means the states of any queuing system at the probability of the count of the clients in any queueing system
being independent of time t. In ”Fundamentals of queueing theory,” Donald Gross and Carl M. Harris explained steady-state
equations and illustrated them in some models (11). Here we can see that P j,n(0) exists only when n = 0,1, 2, f-1, f; P j,n(1) exists
only when n = F, F + 1,…∞: both P j,n(0) & P j,n(1) exists elsewhere where j = 0, 1 .

Assume that the steady state exists.
Let, Pi,n = lim

t→∞
Pi,n(t)

The steady-state equations become

−(λ0 +µ −2ε)P1,n (0)+(λ0 − ε)P1,n−1 (0) = 0

(n = 1,2,3 . . . f −1) (3.1)

−(λo+µ −2ε)P1, f (0)+(λ0 − ε)P1, f−1 (0)+(µ − ε)P1, f+b (1) = 0 (3.2)

−(λ0 +µ −2ε)P1,n (0)+(λ0 − ε)P1,n−1 (0) = 0

(n = f +1, f +2, . . . ,F −1) (3.3)

https://www.indjst.org/ 3102

https://www.indjst.org/


Rahim & Thiagarajan / Indian Journal of Science and Technology 2023;16(37):3100–3109

−(λ1 +µ −2ε)P1, f+1 (1)+(µ − ε)P1, f+1+b (1) = 0 (3.4)

−(λ1 +µ −2ε)P1,n (1)+(λ1 − ε)P1,n−1 (1)+(µ − ε)P1,n+b (1) = 0

(n = f +2, f +3, . . .F −1) (3.5)

−(λ1 +µ −2ε)P1,F (1)+(λ1 − ε)P1,F−1 (1)+(λ0 − ε)P1,F−1 (0)+(µ − ε)P1,F+b (1) = 0 (3.6)

−(λ1 −µ +2ε)P1,n (1)+(λ1 − ε)P1,n−1 (1)+(µ − ε)P1,n+b (1) = 0

(n = F +1,F +2 . . .) (3.7)

−(λ0 +µ −2ε)P1,0 (0)+(λ0 − ε)P0,a−1 (0) = 0 (3.8)

−(λ1 +µ −2ε)P1,0 (1)+(λ1 − ε)P0,a−1 (1)+(µ − ε)∑b
j=a P1, j (1) = 0 (3.9)

−(λ0 − ε)P0,0 (0)+(µ − ε)P1,0 (0) = 0 (3.10)

−(λ0 − ε)P1, f+1 (0)+(µ − ε)P1, f+1 (1) = 0 (3.11)

−(λ0 − ε)P0,n (0)+(λ0 − ε)P0,n−1 (0)+(µ − ε)P1,n (0) = 0

(n = 1,2,3, . . . , f−1) (3.12)

−(λ0 − ε)P0, f (0)+(λ0 − ε)P0, f−1 (0)+(µ − ε)P1, f (0)+(µ − ε)P1, f (1) = 0 (3.13)

−(λ0 − ε)P0,n(0)+(λ0 − ε)P0,n−1(0)+(µ − ε)P1,n(0) = 0

(n = f+1, f+2, . . . ,F−2) (3.14)

−(λ0 − ε)P0,F−1 (0)+(λ0 − ε)P0,F−2 (0) = 0 (3.15)

−(λ1 − ε)P0, f+1 (1)+(µ − ε)P1, f+1 (0) = 0 (3.16)

−(λ1 − ε)P0,n (1)+(λ1 − ε)P0,n−1 (1)+(µ − ε)P1,n (1) = 0

(n = f +2, f +3, . . . ,F −1) (3.17)

−(λ1 − ε)P0,F (1)+(λ1 − ε)P0,F−1 (1)+(λ0 − ε)P0,F−1 (0)+(µ − ε)P1,F (1) = 0 (3.18)

−(λ1 − ε)P0,n (1)+(λ1 − ε)P0,n−1 (1)+(µ − ε)P1,n (1) = 0

(n = F+1, F+2, . . . ,a−1) (3.19)
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3.2 Computation Of Steady-State Solutions

Let λ0−ε
µ−ε = ρ0,

λ1−ε
µ−ε = ρ1 and both ρ0 and ρ1 less than 1 then all the steady states exist.

Now, from equation (3.11)

P1,0 (0) = ρ0P0,0 (0) (3.2.1)

Recursively using equation (3.2.1) in equations (3.1),(3.2) and (3.3), we get

P1,n (0) =
ρ0

n+1

(ρ0 +1)n P0,0 (0)

(n = 1,2,3, . . . ,F−1) (3.2.2)

Let E denote the displacement operator and it is given by

EPi, j (x) = Pi, j+1(x)

From equation (3.6),(3.7) and (3.8)

−(ρ1 +1)EP1,n−1(1)+ρ1P1,n−1(1)+Eb+1P1,n−1(1) = 0

(n = f+1, f+2, f+3 . . .)

Or A(EP1,n (1)) = 0
With characteristic equation,

A(z)≡ zb+1 − (ρ1 +1)z+ρ1 = 0

Now, let A1 (z) =−(ρ1 +1)z and A2 (z) = zb+1 +ρ1
From the circle |z|= 1−ξ such that ξ is arbitrarily small. Now, z = (1−ξ )eiθ It could be delineated as in the contour of the

here-mentioned circle |A2 (z) 2 (z)< (A1 (z)|Then by Rouche’s theorem, A1(z) and A1(z) + A2(z), the total count of zeroes will
be the same inside of the circle |z|= 1−ξ Here A1(z) is only one zero within the circle. So the number of zeros of A(z)≡A1(z)
+ A2(z) also only one within |z| = 1− ξ .This zero of A(z) will be unique and real, implies and implied by ρ = 1

b ρ1 < 1, and
this is denoted by ω(0 < ω < 1) and the other roots are denoted by ω1,ω2,ω3 . . .ωb |ωi| ≥ 1, then ω satisfies the equation

bρ = ρ1 =
ω
(
1−ωb

)
1−ω

= ω +ω2 +ω3 + · · ·+ωb

When 0 < ρ < 1, we have ρ ≤ ω ≤ ρ
2

b+1 It will lead to finding the value for ω .
Thus P1,n (1) = αωn +∑b

i=1 αiωn
i for n= 0,1,2… where α ′

i s are constants.
Again ∑∞

n=0 P1,n (1)< 1 Wemust have αi = 0∀i which implies P1,n (1) = αωn

From equation (3.11)

P1,r+1 (1) =
ρ0

f+3

(ρ0 +1) f+1 P0,0 (0) (3.2.3)

Now,

P1,n (1) =
(

ρ2
0

ω(ρ0 +1)

) f+1

ωnP0,0 (0)

(n = f +1, f +2, . . .)

From equation (3.2.2) and (3.2.4)

P1,n = P1,n (0)+P1,n (1)
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∞

∑
n=0

P1,n =
F−1

∑
n=1

P1,n (0)+
∞

∑
n= f+1

P1,n (1)

From equation (3.8), we have,

P0,a−1(0) =
(ρ0 +1)P0,0(0)

(3.2.5)

From equation (3.12) n= a-1,a-2,…,1 recursively using (3.2.5) we get,

P0,n (0) =

(
(ρ0 +1)− (ρ0 +1)

((
ρ0

(ρ0 +1)

)F

+

(
ρ0

(ρ0 +1)

)n+1
)}

P0,0 (0)

(n = 1,2,3, . . . ,F−1) (3.2.6)

Using equation (3.9) in (3.17), (3.18), and (3.19), we obtain,

P0,n (1) =
1
ρ1

(
ρ0

2

ω(ρ0 +1)

) f+1
(
(ρ1 +1)−

ωn+1
(
1−ωb−n

)
1−ω

)
P0,0 (0)

(n = f +1, f +2, . . . ,a−1) (3.2.7)

Now, P0,n = P0,n (0)+P0,n (1)

a−1

∑
n=1

P0,n =
F−1

∑
n =1

P0,n (0)+
∞

∑
n= f+1

P0,n (1)

We observed that every SSP of the system is defined by P0,0(0) values.

3.3 The Model’s Characteristics

Here expected and analytical results are derived for the system.
Now,P1,n +P0,n = 1 [

F−1

∑
n=1

ρ0
n+1

(ρ0 +1)n +
∞

∑
n= f

(
ρ0

2

ω (ρ0 +1)

) f+1

ωn

+
F−1

∑
n=1

{
(ρ0 +1)− (ρ0 +1)

((
ρ0

(ρ0 +1)

)F

+

(
ρ0

(ρ0 +1)

)n+1
)}

+
a−1

∑
n= f+1

1
ρ1

(
ρ2

0
ω (ρ0 +1)

) f+1(
(ρ1 +1)−

ωn+1
(
1−ωb−n

)
1−ω

)]
P0,0(0) = 1

⇒ MP0,0 (0) = 1 (3.3.1)

Where,
M = [

F−1

∑
n=1

ρ0
n+1

(ρ0 +1)n +
∞

∑
n= f

(
ρ0

2

ω (ρ0 +1)

) f+1

ωn

+
F−1

∑
n=1

{
(ρ0 +1)− (ρ0 +1)

((
ρ0

(ρ0 +1)

)F

+

(
ρ0

(ρ0 +1)

)n+1
)}
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+
a−1

∑
n= f+1

1
ρ1

(
ρ2

0
ω (ρ0 +1)

) f+1(
(ρ1 +1)−

ωn+1
(
1−ωb−n

)
1−ω

)]
Hence,

P0,0 (0) = M−1

Pλ (0) represents the probability that this system will have a faster arrival rate. And it is given by

Pλ (0) =
F−1

∑
n=0

(P0,n(0)+P1,n(0)) =

{
∑F−1

n=1

{
(1+ρ0)− (1+ρ0)

((
ρ0

(1+ρ0)

)F

+

(
ρ0

(1+ρ0)

)n+1
)}

+∑F−1
n=1

ρ0
n+1

(ρ0 +1)n

}
P0,0(0) (3.3.2)

Pλ (1) represents the probability that this system will have a slower arrival rate. And it is given by

Pλ (1) =
∞

∑
n= f+1

(P0,n(1)+P1,n(1))

=

[
a−1

∑
n= f+1

1
ρ1

(
ρ2

0
ω (ρ0 +1)

) f+1(
(ρ1 +1)−

ωn+1
(
1−ωb−n

)
1−ω

)

+∑∞
n= f

(
ρ2

0
ω (ρ0 +1)

) f+1

ωn

]
P0,0(0) (3.3.3)

Now, the probability that the count of units in the system between f and a - 1 can be expressed as

P( f ≤ n ≤ a−1) =
F−1

∑
n= f

P1,n(0)+
a−1

∑
n= f+1

P1,n(1)+
F−1

∑
n= f

P0,n(0)+
a−1

∑
n= f+1

P0,n(1)

P( f ≤ n ≤ a−1) = T P0,0 (0) (3.3.4)

Where,

T =

[
F−1

∑
n=1

ρ0
n+1

(ρ0 +1)n +
a−1

∑
n= f

(
ρ0

2

ω (ρ0 +1)

) f+1

ωn

+
F−1

∑
n=1

{
(ρ0 +1)− (ρ0 +1)

((
ρ0

(ρ0 +1)

)F

+

(
ρ0

(ρ0 +1)

)n+1
)}

+
a−1

∑
n= f+1

1
ρ1

(
ρ2

0
ω (ρ0 +1)

) f+1(
(ρ1 +1)−

ωn+1
(
1−ωb−n

)
1−ω

)]
Now,

Conditional probabilityP(0 | f ≤ n ≤ a−1) that this system is in a faster arrival rate when the size of the system lies between
f and a - 1 is given by

P(0 | f ≤ n ≤ a−1) =
∑a−1

n= f (P0,n(0)+ p1,n(0))

T P0,0(0)
(3.3.5)

Now,
Conditional probability P(1 | f ≤ n ≤ a− 1) that this system is in a slower arrival rate when the size of the system lies

between f and a -1 is given by

P(1 | f ≤ n ≤ a−1) =
∑a−1

n= f (P0,n(1)+P1,n(1))

T P0,0(0)
(3.3.6)
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The expected count of consumers utilizing this system Ls is indicated by the sum Ls0 -The expected count of units or customers
utilizing this system when the rate of arrivals is faster and Ls1 - The expected count of units or customers utilizing this system
when the rate of arrivals is slower.

Ls = Ls0 +Ls1

Where,

Ls0 = ∑F−1
n=0 n(P0,n (0)+P1,n (0)} (3.3.7)

Ls1 = ∑∞
n=0 n(P1,n (1)+P0,n (1)} (3.3.8)

Now, from Little’s formula to this model, the expected waiting time of the consumer utilizing the system can be computed by

ws =
Ls

λ̄
(3.3.9)

Where,
−
λ = λ0 (P0,n (0)+P1,n (0))+λ1 (P0,n (1)+P1,n (1))

When λ0 approaches to λ1, the
−
λ becomes λ .

3.4 Numerical Illustrations

In this section, the queuing system is numerically and graphically illustratedwith the values ofP0,0 (0) , Pλ (0) , Pλ (1),Ls and W sfor
various values of λ0, λ1, µ and ε . Using the above-obtained equations for each value.

Let f = 4, F = 8, a = 10 and b = 15

Table 1.Numerical Illustrations
λ0 λ1 µ ε P0,0 (0) Pλ (0) Pλ (1) Ls Ws

8 6 10 0.5 0.0799 0.7254 0.27455 61.9062 0.6182
8 6 12 0.5 0.0865 0.9311 0.062299 54.8724 0.5933
8 6 14 0.5 0.0919 0.9832 0.016718 50.1233 0.5755
8 5 12 0 0.0858 0.9571 0.042864 56.0607 0.6009
8 5 12 0.25 0.0861 0.9633 0.036681 55.7444 0.6001
8 5 12 0.75 0.0869 0.9741 0.025826 55.0734 0.5983
8 5 12 1 0.0873 0.9788 0.021158 54.7139 0.5973
7 5 10 0.25 0.0845 0.9126 0.087318 57.0325 0.6881
6 4 10 0.5 0.0905 0.9858 0.014193 51.5485 0.7775
5 3 9 0.5 0.0934 0.996 0.003946 49.3151 0.9214
8 6 9 0.5 0.076 0.37655 0.62345 66.8228 0.6346

.
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Fig 2. Ls by varying service rates, µalso, other parameters are unaltered

Fig 3. W s by varying service rates, µ also, other parameters are unaltered.

Fig 4. Ls by varying dependence rate, ε also, other parameters are unaltered

Fig 5. W s by varying dependence rate, ε also, other parameters are unaltered
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4 Conclusion
The present research presents a novel methodology to handle controllable arrival rates, which encompasses both faster and
slower rates in bulk service as well as interdependence in the arrival and service processes. Probabilistic outcomes and
associated traits are determined based on faster and slower arrival rates, thereby providing valuable insights for future research
endeavors. As a potential avenue for future research, this model exhibits the capacity to engage in mathematical modeling of
real-world scenarios. This particular model serves as a fundamental framework for the purpose of evaluating and advancing
comparable queuing models of this kind. This model encompasses the previous iterations as specific instances. For instance,
when the value of b becomes 1 with finite capacity this model is reduced to the M/M/1/K Interdependent queueing model with
controllable arrival rate by M. Thiagarajan and A. Srinivasan also when λ0approaches λ1And ε equals zero, this model refers
to the traditional M/M(a,b)/1 model described by J Medhi (2006) in Stochastic Models in Queueing Theory. The numerical
illustration demonstrates that. Ls and W s decreases as the service rate increases while all other parameters remain unaltered.
The average dependency rate increases; others are unaltered, Ls and W s drop. Simply this study is a bridge between bulk service
to controllable arrival rates. It is capable of further modifications.
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