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Abstract
Objectives: A traditional Minimum Spanning Tree (MST) is quite complex for
large datasets concerning time and space complexities. So an Accelerated
MST (AMST) is proposed for scalable data. Methods: AMST uses the k-means
clustering to divide large data into a bunch of small-size data. The Delaunay
Triangulation is applied to find the relationship among the data in O(nlogn)
time for n points as compared to earlier approaches. A mid-point heuristic is
designed to combine all clustered MSTs to get the MST for the original data. A
refinement process is used for anymislaid ofminimumweight edges. Findings:
Several desirable properties of the AMST have been developed and compared
with the results of existing literature. AMST is quite competitive in terms of time
complexities, least weight error rate and accuracy for both large and small-size
datasets. The mathematical analysis of the time complexity O(nlogn) proves
that the proposed AMST has a 95% faster execution time than others. The
proposed AMST has the least Weight Error Rate than other approaches which
indicates that the cost is close to the exact Algorithms. The accuracy of the
AMST is an average of 93% in different clustering accuracy indices which is
similar to other approaches. Novelty: The execution time and accuracy prove
that a faster MST can be developed to construct pins wire length routing in the
promising field of VLSI (Very Large-Scale Integration) physical design.
Keywords:MST; Clustering; Delaunay Triangulation; Minimax Distance;
Spectral Clustering; MidPoint Heuristic

1 Introduction
In classical Graph theory, the construction of a Minimal Spanning Tree (MST) is
a very important aspect and attracts the attention of many researchers. It has been
studied widely in various fields of computer science and engineering such as computer
networks, routing, social networking, etc. In a plane for ’n’ collected data points, the
MST can be constructed with the following steps (1). A complete graph is formed using
n data points, and (2) the Kruskals or Prims algorithm is used to find the MST from
the complete graph.This approach is feasible computationally when the data points are
small in number. However, for a large number of data points, this approach becomes
expensive as the run time is very high. The idea for this study originated from the way
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MST is used as an input to the VLSI pins wire length routing process. Thus to deal with the MST problem for large data points
an obvious approach is to find an approximate MST with near near-optimal solution.

Nowadays, the advent of big data and internet connectivity of all applications has thrown a lot of challenges in handling data
efficiently as far as their requirements and customizations are concerned. For efficient handling of data, it needs to be clustered
or partitioned into manageable units.

To find the MST for large-scale data points various divide-and-conquer approaches were used in the existing literature. The
advantage of this approach is that a sub-problem can be handled independently without the intervention of other data sets. It
indicates that the MST problem can be parallelizable and be solved efficiently by exploiting the power of multicore systems.

A bi-means clustering algorithmwas used by Jothi et al. (1) to partition the datasets.The Euclidian distance was used between
all pairs of points in the dataset to partition it into different clusters. The adjacent cluster pair was determined by the distance
between all cluster center pairs, and edges between clusters were decided by a centroid-based nearest neighbor rule. Then the
MST was generated by an algorithm like Prim or Kruskal’s. The size of each partition being

√
n , the upper bound on the final

height of the recursion tree was log
√

n = O(logn). Similarly, the count of inter and intra-partition edges were both O
(

n
3
2

)
.

Finally, the time to construct this approximate MST was O
(

logn× n
3
2

)
.

Sandhu et al. (2) used k-means++ for the partitioning of the dataset. Then Prim’s algorithm was applied to each of the k-
clusters to find k-independent MSTs. Then these MSTs were joined to get the whole MST. Further, this MST was refined to get
the optimal MST. As the clustering process was faster and the time complexity was near about O

(
n

3
2

)
.

The disjoint set data structures were used to determine the minimum spanning tree of a graph by Khan et al. (3). A weight
was assigned to each node for finding the candidate edge which was initially set to ∞. If the weight of a node was greater than
the edge weight, the node’s weight value was updated to the edge weight. Then the nodes were traversed as per the cheapest
edge connected to it which was considered as the candidate edge. This process was used to find subgraphs of a given graph by
connecting the nodes with a candidate edge without cycles. These subgraphs were considered as a single node and connected
using the rest of the edges. These subgraphs were considered as a single node. This process was repeated until all subgraphs
were connected. The time complexity of this algorithm was the same as Boruvka’s Algorithm, Prim’s Algorithm and Kruskal’s
Algorithm but it fails for a dense graph that is required for large datasets.

Mishra et al. divided the dataset into subsets based on the dot product of the dispersion property and position vector (4).
A cluster with a high variance to its centroid was considered to be the best dispersion property. The MST of each cluster was
found andmerged as per themaximumcohesion and intra-similarity of data pointswithin adjacent clusters. To find the adjacent
cluster pairs, a minimal spanning tree of the cluster center was generated. This algorithm’s time complexity was O

(
n

3
2

)
.

Theworks in (1–4) obtained approximateMSTs of n data points with the complexityO
(

n
3
2

)
.This literature created a complete

graph to get the relationship among cluster points and appliedMST to each cluster thereby consuming the run time overhead of
the dense graph for each cluster. Due to this reason the run time overhead of their algorithm isO

(
n

3
2

)
. In short, the contribution

of the proposed work in this paper is as follows.
• A novel heuristic is proposed to find a suitable value of k for the k-means algorithm.
• Delaunay Triangulation is used to form a graph for each cluster as opposed to a complete graph.
•The AMST algorithm is proposed with complexity O(n logn) as opposed to the time complexity O

(
n

3
2

)
.

•Anew heuristic is proposed to find the secondMST capturing boundary points in order to optimize the initialMST formed
from earlier clusters.

The paper is organized into five Sections. Section 2 discusses some preliminary requirements for the development of AMST
and mentions an overview of the proposed algorithms followed by proofs of the supporting theorems. Section 3 shows the
experimental results and their comparison with existing works. Section 4 describes the concluding remark. All references are
mentioned in the Section 5.

2 Methodology
This Section discusses Delaunay triangulation and the k-means clustering algorithms that are necessary for the development of
proposedAcceleratedMSTas preliminaries.Theproposedmethod is then discussed, followed by themathematical justifications
behind it.
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2.1 Preliminaries

2.1.1 Delaunay Triangulation
A Delaunay Triangulation is made up of triangles for a set of points P, none of which are inside the circumcircle of another
triangle (5). One of the most important geometric structures is the Voronoi diagram, which is made up of Voronoi cells. The
Voronoi diagram’s vertices are the circumcenters of Delaunay triangles. As a result, the Voronoi diagram’s Dual is a Delaunay
Triangulation. In the case of a Voronoi diagram, a point can be considered as a neighbor of another if it is located within the
same Voronoi circle boundary or adjacent Voronoi cell. As a result, the triangles of Delaunay Triangulations are formed using
the closest points.

Let P be a maximal planner subdivision of a Delaunay Triangulation of n points in a plane. The exact number of triangles
and edges in P is determined by the number of boundary points m in the Voronoi diagram’s unbounded region. A Delaunay
Triangulation has 2n−2−m triangles and 3n−3−m edges.

Funke et al. (6) created a divide-and-conquer algorithm for computing triangulations in two dimensions, which is improved
by Nguyen et al. (7), Dinas et al. (8) and Mikhailov et al. (9). In this algorithm, a line recursively partitions the nodes into two
distinct subsets.The Delaunay triangulation is applied to each set, and then all sets are merged along the splitting line. In (10) an
approach is proposed to compute the merge operation in O(n) time. Hence, the final time complexity becomes O(logn).

Computationally, the Delaunay triangulation can be obtained more easily from a set of points in logarithmic time. In the
proposed approach Delaunay triangulation is used to get the reduced set of edges from a set of connected points, as a result,
the graph formed here has a smaller number of edges compared to a complete graph.

2.1.2 K-means Algorithm
A popular optimization problem is solved using the k-means algorithm (11). The goal is to group the data by minimizing the
squared error between all points and the centroid of a cluster (12). If µk is the mean of the clusterCk and xi is a point with it for
i = 1,2, ...,n and k is the number of clusters, the object function is as follows.

min∑k
j=1 ∑xi∈Ck

∥xi −µk∥2 (1)

Theobserved time complexity of the k-means algorithm isO(ndk+1) for a d-dimensional dataset (13).Most algorithms, including
Lloyd’s, demonstrate that the time complexity of the k-means algorithm is linear and is equal to O(nkdi), where i is the number
of iterations (14). Hence, it is useful for the clustering of large datasets.

2.2 AMST
The AMST is created in three steps for generating an approximate MST for a big dataset. In the first stage, the data is divided
into different clusters, and an initial MST is constructed, comprising all MSTs of these clusters.The loss of short-distance edges
during the connection phase of MSTs necessitates a refinement stage. Finally, AMST is created by combining the results of both
the stages. The following subsections briefly provide more information about the intermediate stages.

1. AMST Overview

• Divide-and-Conquer Stage

a) Divide Step. Partition of the n data points into k clusters using the k-mean algorithm.
b) Conquer Step. Construct a Delaunay Triangulation graph for k cluster points. Then find MST for individual clusters.
c) Combine Step. Connecting allMSTs of k cluster to form the first approximateMST, denoted asMST1 by using a connection

criteria.

• Refinement Stage

a) Re-Partition the dataset over the border of the cluster produced in the previous stage using a heuristics called Mid-Point-
Heuristics.

b) Generate the second approximate MST denoted as MST2 by using the Conquer and combine step of the Divide-and-
Conquer Step.

• Merging Stage

a) Create a graph GMST = MST 1 ∪MST 2
b) Get the AMST by applying Kruskals algorithm to GMST
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https://www.indjst.org/


Mohapatra et al. / Indian Journal of Science and Technology 2023;16(37):3110–3120

2.2.1 Divide-and-Conquer Stage
• Divide Step

At this stage, the given dataset of size n is partitioned into k = logn clusters using the k-means algorithm. This choice of
k = logn is different than k =

√
n taken in Zhong et al. (15). The proof of taking k = logn is discussed in Theorem 2 of Section

3. As discussed in Section 2.1.1, Delaunay triangulation has less number of edges than a complete graph. Hence, a Delaunay
graph is formed to get the Delaunay edges of the clustered points.

• Conquer Step

In this step for each cluster, a graph is formed using Delaunay Triangulation. AnMST is constructed using Kruskal’s algorithm
for each graph of a cluster.Themotivation behind the use of Kruskal’s algorithm is tominimize the runtime ofMST as the graph
by Delaunay triangulation has a 3n−3−m number of edges [refer Section 2.1.1]. Thus, a small graph is used where (E|< n2

as opposed to the complete graph used in earlier approaches (15), where E is the number of edges.

Table 1. Algorithm 1: Get MST1

Algorithm 1: Get MST1

Input: Data Set X comprising n points
Output:MSTs of clusters from X
1. Taking k ≈ log n, apply the k−means algorithm to X to obtain k clustersC =C1,C2, ...,Ckchoosing k seeds randomly from X
2. Construct a graph of each cluster using the Delaunay Triangulation
3. Apply Kruskal’s Algorithm to the graph of each cluster to get k MSTs: MST (Ci) f or 1 ≤ i ≤ k.
4. return k MSTs: MST (C1), MST (C2),... MST (Ck)

• Combine Step

A Delaunay Triangulation graph is formed using the centroids of each cluster and then an MST of the graph is obtained to
find the neighboring relationship between the clusters. A pair of adjacent MSTs are connected by an edge joining two vertices
belonging to respective MSTs sitting nearest to their neighbor cluster’s centroids. The MST generated by this step is called the
first approximate MST denoted by MST1. The detailed discussion of the generation of MST1 is described in Algorithms 1, 2
and 3 (Tables 1, 2 and 3).

Table 2. Algorithm 2: Joining MSTs
Algorithm 2: Joining MSTs
Input: k MSTs: MST , MST , ...MST
Output: Approximate MST of obtained fromMST(Ci) for 1≤ i≤ k
1. Find the centroid of each cluster Ci, 1≤ i≤ k.
2. Construct a graph of all centroids µ = , , ..., µk using the Delaunay Triangulation.
3. Find anMSTµ of the graph obtained from step 2 using Kruskal’s Algorithm to determine the neighboring relationship between clusters.
4. For each pair of clusters , that their center and are connected by e∈MSTµ , discovered the edge by Algorithm 3 (Get Connecter Edges),
that connects MST and MS T.
5. Join the set of edges found in step 4 to k MSTs: MST , MST , ..., MST to get the First approximate MST: MST1.
return {MST1}

• Refinement

TheMST1 obtained using the divide-and-conquer approach is suboptimal. Because some edges between the two adjacentMSTs
lead to optimality being missed while combining the MSTs. So a refinement of the dataset over the boundary is required to
capture those edges. Hence, a repartitioning of the dataset over the boundary is required. A mid-point heuristics is proposed
for repartitioning in the following subsection that obtains the second approximate MST called MST2.

• Re-Partition
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Table 3. Algorithm 3: Get Connecter Edges
Algorithm 3: Get Connecter Edges
Input: A neighbor pair MSTs,
Output: Connecter edge between
1. Find the nearest vertex a ∈ from the centroid of cluster .
2. Find the nearest vertex b ∈MST from the centroid of cluster .
3. return } // connecter edge.

To get a refined MST, the dataset is partitioned again by targeting all points that lie across the boundaries between a pair of
clusters. The initial centroid of this clustering process is the mid-points between two neighbour centroid µi and µ j of clusterCi
andC j respectively which lies across the boundary line of a pair of clusters.

A heuristic is used to calculate the mid-points. This is called Mid-Point heuristics and is defined in Algorithm 5. The mid-
points are calculated for some specific edges only. If an edge cost is less than or equal to the average cost of all edges in the graph
of all centroids, then the k-means clustering algorithm is applied to these mid-points. The clustering converges in one iteration
only for identifying missing edges between two adjacent clusters.

• Building of Secondary MST

The conquer and combine steps are similar to the Conquer Step and Combine Step of the divide-and-conquer Stage. The MST
generated in this stage is called the second approximate MST, termed MST2. The step-by-step procedures are described in
Algorithm 4 (Table 4 ).

• Merging

Thefirst and second approximateMSTs aremerged to produce a graph having 2(n−1) edges.TheKruskals Algorithm is applied
on this graph to get the Accelerated MST (AMST) whose cost is pretty close to the exact MST.

Table 4. Algorithm 4: Get MST2
Algorithm 4: Get MST2
Input: Centroid Set of Clusters and Dataset having n points
Output: Second Approximate MST of : MST2
1. Construct a graph of all Centroids using Delaunay Triangulation
2. Get the mid-point using Algorithm 5 (Mid-Point-Heuristics)
3. Apply k-means clustering over mid-point as seeds of clusters and run it for a single iteration
4. Construct a graph of each cluster using the Delaunay Triangulation
5. Apply Kruskal’s Algorithm to get MSTs for each cluster.
6. Join all MSTs by Algorithm 2 (Joining MSTs) to get the Second approximate MST: MST2.

Table 5. Algorithm 5: Mid-Point Heuristic
Algorithm 5: Mid-Point Heuristic
Input: A graph of Centroids µ of Clusters C
Output: A set of Mid-points
1. Find the Average Cost of all Edges in the given graph
2. Select edges having Cost≤ Average Cost of all edges in the graph
3. Compute the mid-point of Selected edges
4. return {A set of Mid-points}

2.3 Complexity Analysis

Before the complexity calculation of the AMST algorithm, it has been shown that the cost of Euclidian MST obtained from a
complete graph of n-points in a plane is the same as the cost ofMST obtained from theDelaunay Triangulation of these n-points.

https://www.indjst.org/ 3114
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Theorem 1: Given a set of n points in a plane. Let EMST (Euclidian MST) be computed in O
(
n2
)
time from the complete

graph and DMST (Delaunay Triangulation MST) of these n-points is provided as follows.
(i) Cost(EMST ) = Cost(DMST )
(ii) DMST can be computed in O(nlogn) time.
(i) Proof: Let e(u,v) ∈ EMST be arbitrary. On the contrary, let us assume ̸∈ DMST . Then two cases arise here.
(a) In the Delaunay Triangulation there exists e′ (u,v) ∈ EMST such that Cost (e) = Cost (e′). This implies Delaunay

Triangulation of m point has a parallel edge which contradicts the fact that the Delaunay Triangulation is a simple graph.
(b) If e(u,v) ̸∈ DMST then u is connected to v by any intermediate vertex w ∈ DMST ⊂ Delaunay Trangulation Graph. So

the path u to v must be shortest in DMST and also in Delaunay Triangulation Graph⊂ Complete Graph.
As aDelaunayGraph is a subgraph of the complete graph ofm points the shortest path from u to v is achieved throughw.This

implies d (u,w)+ d (w,v) = d (u,v) but this contradicts the triangle inequality d (u,w)+ d (w,u) > d (u,v) . Thus e ∈ DMST .
Since e∈ EMST is arbitrary.This proves that every edge e∈ EMST and also e∈DMST.HenceCost (DMST ) andCost(EMST )
are equal.

(ii) Proof : By Fortunes Algorithm, construction of Voronoi Diagram takes O(mlogm). Then Delaunay Triangulation takes
O(m logm). These two procedures take O(mlogm) .

The Delaunay Triangulation is a subgraph of a Complete Graph. So running time of the Kruskals algorithm on Delaunay
Triangulation will take time O(mlogm)+O

(
E△

)
, where E△ is the no of edges of Delaunay Triangulation. The no of edges

of E△3m−2−A where A is the no of points on the boundary of the Delaunay Triangulation (5). Then running time DMST is
approximated to O(mlogm+3m−2−A)≈ O(m logm).

Theorem 2: Let us Assume a dataset Dk is equally partitioned by the k-means algorithm by taking k = log n, constructing
Delaunay triangulation and then constructing k MSTs of each cluster by Prim’s algorithm. Then the overall runtime of
constructing MSTs is T = O(n logn).

Proof: Let F (k) be the total running time of the proposed AMST algorithm where k is the total number of clusters. Then
F (k) can be written as follows: F (k) =cost for creating k clusters + cost for creating k graphs using Delaunay triangulation +
cost for running Kruskal′s algorithm on k graphs.

F(k) = T (Clustering)+ k ∗ (T (Delaunay)+T (Kruskal′s)]
F (k) = nkdi+ k

( n
k log n

k +3nk−3−A+ n
k log n

k

)
Where

T (Clustering) = O( nkdi) (2)

is the time complexity for k-means clustering as per FMST (1).
T(Delaunay) is the time to compute the Voronoi Diagram for n

k points of a cluster Tv and the time to form Delaunay
triangulation for n

k points TD. Referring to Zhong et al. (15),

Tv = O
(n

k
log

n
k

)
,TD = O

(n
k

log
n
k

)
(3)

The time complexity of Kruskal’s algorithm is E logE. As Delaunay triangulation graph is applied to a cluster to get a linear
set of edges of

( 3n
k −3−A

)
for n

k vertex edges, where A is the number of points on the boundary of the Delaunay triangulation
graph.

T
(
Kruskal’s ′)= O

(n
k

log
n
k

)
(4)

Then

F(k) = nkdi+ k
(n

k
log

n
k

)
(5)

To get the optimal value of k, let us differentiate F (k) with respect to k and dF
dk = 0, F ′ (k)≈ ndi+ k

(
−n
k2

)
Taking di = 1 as stated in Zhong et al. (15),

F ′ (k)≈ n+ k
(
−n
k2

)
= 0 (6)

On solving the above Equation 6 it is found that k = 1. To prove k = 1, is the optimal of F (k) , Let us calculate.
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F ′′ (k) =−n
(
−1
k2

)
= n

k2 > 0

Since F ′′ (k) = n
k2 |k=1

n > 0
where k = 1 is the point of minimum for F (k). Since the number of clusters is assumed to be greater than 1, there could be

many choices for k for which F ′′ (k) = n
k2 > 0.

The choice could be k = 1,k =
√

n,k = logn and k = n
3
2 . Among these choices, the value k = logn is selected to make the

running time of AMST as O(nlogn). Interestingly this choice of k = logn suites the requirements of this work and it is cluster
optimal with the widely used Elbow method for k-mean algorithms.

Next combining the results of Equations 2, 3 and 4 it is found that If k = logn then the total running time (RT) is

F(k) = nkdi+ k ∗O
((n

k
log

n
k

)
+
(n

k
log

n
k

)
+

n
k

log
n
k

)
⇒ F (k) = nkdi+O

(
n log

( n
k

)
+3n−3k−Ak+n log

( n
k

))
⇒ F(k)≈ nkdi+n log

(n
k

)
(7)

Substituting k = logn and taking di = 1 in Equation 5 results in the following
F (k) =

(
O
(
nkdi+n log n

k

)
= 1, k = logn

⇒ F (k) = O
(

n logn+n log
n

logn

)
⇒ F (k) = O(n logn)

This proves the theorem 2.
Theorem 3: Let us assume a dataset Dk is linearly partitioned by taking k = log n, then the proposed algorithm´s time

complexity is T = O(n log n).
Proof: Let the total points in each cluster form an arithmetic series n1,n2, . . . ,nk with common difference ni −ni−1 = c for

a constant c. Now taking n1,= 0 as used in (15) the sum of the arithmetic series k∗nk
2 = n .

That is nk =
2n
k and c = 2n

k(k−1) .
Since all graphs are constructed using Delaunay Triangulation for each cluster i with nidata points instead of the complete

graph used in (15), the complexity of forming theMST for each cluster is O(nilogni)where(1 ≤ i ≤ k).Thus the total complexity
of constructing k-MSTs for k-clusters is:

T = n1logn1 +n2logn2 + ...+nklognk

⇒ T = clogc+2clog2c+ ...(k−1)c log (k−1)c

⇒ T = c (logc+2 log2c+ ...(k−1) log (k−1)c]

T = c∑k−1
i=1 i log(ic) (8)

By Wallis formula (16)

c∑k−1
i=1 i log(ic)≈ c

∫ k−1

1
x log(x− c)dx

≈ c
2
(k−1)2log(k−1)c (9)
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Putting c = 2n
k(k−1) in Equation 8, is results into,

c∑k−1
i=1 i log(ic)≈ n(k−1)

k
log

2n
k

(10)

Further taking k = logn in Equation 10 gives,

T ≈ n(logn−1)
logn

log
2n

logn
≤ nlogn

logn
(log(2n)− loglogn)≤ nlog2+nlogn = O(nlogn) .

This ensures the proof of Theorem 3.
It is interesting to note that the time complexity of the proposed AMST is O(nlogn), given by Theorem 3 is more

computationally efficient than the time complexity O
(

n
3
2

)
of others (1–4).

3 Result and Discussion
To test the efficacy of the proposed AMST against existing algorithms, the experiments are conducted on clustering datasets
namely Compound, Pathbased, S1, Joensuu, A3, T4.8k, Birch1 and Europe (17) as detailed below in Table 6. Algorithms of the
current work are implemented against algorithms of (1,2,15) in Python on an intel I3 machine with a processor speed of 3.70
GHz, Windows 10 Operating System having 8 GB RAM.

Table 6.Description of Datasets
Pathbased Compound S1 Joensuu A3 T4.8k Birch1 Europe

Data size 300 399 5000 6014 7500 8000 100000 169308
Dimension 2 2 2 2 2 2 2 2

A Weight Error Rate (ERweight) metric is used to test AMST and (1,2,14) against Kruskal’s algorithm. It is calculated using
Equation 11. In this equation, Wexact and Wappr are the cost of Kruskal’s algorithm and AMST respectively.

ERweight =
Wappr −Wexact

Wexact
(11)

A large dataset requires a partition approach that depends on the number of clusters k. A suitable value of k enables an algorithm
to produce an MST whose exactness is close to Kruskal’s MST. The AMST promotes choosing k = logn to justify the overall
running time of AMST as k = n logn. Interestingly the choice of k = logn produces less ERweight for large datasets as shown
in Figure 1.

In the current work, the proposed algorithm chosen k = logn to justify the overall running time of AMST as k = nlogn.
Interestingly, the value of k = logn produces less ER-weight for large datasets as shown in Figure 1.

Fig 1.Weight Error Rate Comparison
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The weight error rate versus datasets for various algorithms (1,2,15) is shown as a bar graph in Figure 1. The dataset is taken
along the X-axis and the weight error rate is represented along the Y-axis. In the graph the columns in blue, yellow, green and
violet color represent Zhong et al., Joithi et al., Sandhu et al. and the proposed AMST approach respectively. It is interesting to
note that for all datasets the column shown in violet has the least height or error rate. It means the proposed AMST edges match
Kruskal’s algorithm edges in a difference less percentage than existing algorithms discussed in (1,2,15). This close approximation
may be attributed to the Mid-Point Heuristic and ⌈logn⌉ number of clusters used in algorithms of current work. It may be
mentioned that the proposed Mid-point Heuristic and the choice of the number of clusters are quite different from their
counterparts used by the algorithms published earlier (1,2,15). It is seen that the Joensuu dataset has a higher weight error rate.
This is due to the layout of the data in the dataset.

Fig 2. Execution Time Comparison

The execution time of the proposed AMST is compared with earlier works (1,2,15) in Figure 2. The Datasets are taken along
the X-axis and the runtime statistics of theMST algorithms are taken along the Y-axis.The columns in blue, yellow, green, violet
and red color represent the runtime of Kruskal, Zhong et al., Jothi et al., Sandhu et al and AMST approach respectively. It is
deduced from the graph that the red column corresponding to AMST has the least height for all the datasets as compared to
other columns. Hence AMST outperforms other procedures.

Kruskal’s algorithms and (1,2,15) works are suitable for small-size datasets that are used in the above execution time
comparison. From the result, it is found that the speed-up of AMST and Zhong et al. (15) is better than the speed-up of existing
approximate MSTs (1,2,15). Thus Zhong et al (15) (FMST) is selected to compare with the run time of the AMST algorithm for
some scaled-up datasets in Table 7. The speed-up of FMST and AMST is broken down into the runtimes of Clustering, MST1,
MST2 and merging as the phases are quite similar.

Table 7. Comparison of Execution Time (In Sec.) of Different phases on
Datasets Approaches Clustering (In

Sec.)
MST1 (In Sec.) MST2 (In Sec.) Merging (in

Sec)
Total (In Sec.)

1 2 3 4 5 6 7

T4.8k
FMST 1.61 31.01 41.28 0.31 74.21
AMST 1.19 0.77 1.08 0.31 3.35

Birch1
FMST 33.17 89.91 95.96 0.93 219.97
AMST 30.69 4.52 5.96 0.85 42.02

Europe
FMST 136.28 614.1 545.63 1.42 1297.43
AMST 11.93 7.18 7.36 1.33 27.77

In Table 7, columns 1 and 2 show some large datasets and the corresponding approaches respectively. Columns 3 to column
7 contain the runtime measurement of the clustering, MST1, MST2, merging and total time in seconds respectively. It shows
that AMST has far better runtime statistics than FMST for the MST1 and MST2 phases which has measurable impacts on the
reduction of total runtime by 95%.

In the following the accuracy of MST as regards clustering for the proposed AMST are discussed against cluster-based MST
including FMST of Zhong et al using three indices such as Rand Index (18), Adjusted Rand Index (19) and Fowlkes Mallows
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Index (20). For fare comparison purposes a similarity matrix is generated using the minimax distance approach used by Kim et
al. (21) and Chehreghani (22). The generated similarity matrix is fed into Spectral clustering to get the clustering labels using the
approach of Chang and Yeung (23).

Table 8. Accuracy Test using Rand Index
Datasets Kruskals Zhong Jothi Sandhu AMST
Pathbased 0.84 0.93 0.82 0.75 0.94
Compound 0.98 0.98 0.98 0.98 0.98

Table 9. Accuracy Test using Adjusted Rand Index
Datasets Kruskals Zhong Jothi Sandhu AMST
Pathbased 0.643 0.86 0.614 0.509 0.86
Compound 0.962 0.962 0.96 0.973 0.96

Table 10. Accuracy Test using Fowlkes Mallows Index
Datasets Kruskals Zhong Jothi Sandhu AMST
Pathbased 0.764 0.907 0.745 0.715 0.907
Compound 0.971 0.971 0.97 0.979 0.971

The experimental results for the accuracy of MST based on clustering using the Rand Index, Adjusted Rand Index and
Fowlkes Mallows Index are presented in Tables 8, 9 and 10 respectively. For all these Table columns 1 includes datasets, and
column 2, 3, 4 and 5 shows the result based on the Kruskals algorithm, Zhong et al., Jothi et al. and Sandhu et al. respectively.
Whereas column 6 is the result of the proposed AMST. For the Rand Index from Table 8 it is clear that for the Pathbased
dataset, the proposed AMST clustering accuracy is 94% which is superior to the methods due to Kruskals (84%), Jothi et al.
(82%) and Sandhu et al. (75%) but comparable to the Zhong et al. method (93%). For the Compound dataset, Sandhu et al give
99% accuracy whereas all other methods give 98% accuracy. The 1% accuracy for the Sandhu et al. method may be attributed
to the nature of the Compound dataset and the k-means++ algorithm used in the work.

The Adjusted Rand Index in Table 9 shows that for the Pathbased dataset, the AMST obtains 86% accuracy which is as the
Zhong et al. method and better than others approach. For the compound dataset, the AMST has a 96% adjusted rand index
value as clustering accuracy, which is almost close to or the same as other approaches. Table 10 reflects a similar scenario to
the other table. The Fowlkes Mallows Index for Pathbased data AMST and Zhong et al. have 90% accuracy whereas Kruskal’s,
Jothi et al. and Sandhu et al. have 76%, 74%, and 71% respectively. For the Compound dataset, all method’s MST accuracy is the
same that is 97%. It is observed fromTables 8, 9 and 10 that the quality of theMinimum Spanning Tree resulting from proposed
AMST is enhanced in comparison to the approaches of (1,2,15) and Kruskal’s algorithm.

A run-time advantage of AMST for various small and large datasets is found in Figures 1 and 2 and Table 7.Thus considering
the trade off between the quality of MST and run time is 95% superior to most of the state-of-the-art algorithms discussed in
the paper (1,2,15).

4 Conclusion
The proposed AMST algorithm obtains an optimal MST for scalable datasets considering a Delaunay Triangulation approach.
The proposed algorithm has a promising speed-up of 95% as compared to the existing algorithms and the quality of the MST
is also close to the exact MST. The salient feature of the proposed AMST is time complexity is of the order O(nlogn)less than
a quadratic time. Hence, it can be used to find the adjacent points of a graph easily for a set of points in a planer graph. The
idea suggests that AMST can be utilized to construct pin routing in VLSI physical design with minimum interconnect wire
length. This will lead to minimum delay and thereby it will enhance the chip performance. This approach can be easily applied
to construct the optimal MST for any other graph theoretical approaches.
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