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Abstract

Objective: The main objective of this study is to identify the optimal operating
conditions by determining the point of least variation on response variables,
crucial for various aspects of product quality such as yield or strength.
Method: Newton-Raphson method is used and the solution to these formulas
are obtained numerically using R-software. The parameters in the context
of A-optimal designs is a necessary step i.e., 6= (o, B, u). Findings: Our
findings show that A-optimal designs outperform conventional design criteria
in terms of lowering parameter estimate variance. Moreover, we illustrate how
the A-optimal designs can lead to a more efficient allocation of resources
statistical models, optimizing the use of time and resources while ensuring
robust statistical conclusions. Novelty and Applications : In the context
of generalized linear models, most of the recent studies were on logistic
regression models and many of them focused on optimal experimental designs
with concentration on D optimality. In this research, Poisson regression models
were considered for A-optimization with square root link. This approach proves
to be particularly valuable as it accounts for the model's dependence on
unknown parameters, making it a useful technique for practical applications.
Suggestions: This methodology is quite general and may be applied to find
A-optimal designs for other models, like the Compound Poisson, Gamma and
inverse Gaussian model, with log link or other types of optimal designs.
Keywords: AOptimality; Poisson Regression Model; Square Root Link;
Experimental Design; Parameter Estimation

1 Introduction

Optimal experimental designs are increasingly being used to save money while
obtaining the most accurate statistical results. The focus of this research is on model-
based optimum designs, which entail the use of a statistical model with unknown
parameters in conjunction with a design criterion. These designs are based on
probabilistic constructs and use a criterion stated as a convex function of Fisher’s
information matrix (", This method seeks to find a design that minimizes the criterion
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within the constraints of the design space. For implicit models into optimal approximate design principles, one can refer to
design resource by?. Additionally, the practical applications and optimality criteria of optimal design concepts across various
fields have been highlighted and recent contributions in this area include works by -9,

In recent years, the field of biomedical ” and clinical trials has paid more attention to optimal experimental designs for
Poisson regression models. The dependence of design support points on unknown parameters of the Fisher information matrix
is a significant difficulty in the building and evolution of design for generic nonlinear models ®-'*) for non-linear optimal design.
The best designs for generalized linear models can’t be found without knowing the parameters !>, Locally optimal designs
for multivariate generalized linear model was given by !3). (415 for count data with Poisson models and the Rasch Poisson
model and with gamma block effects.

In order to reduce sampling uncertainty, the A-Optimality Criterion has been successfully applied in the best experimental
design. Pool-based active learning of Poisson regression classifiers has been added to its list of uses. The A-Optimality Criterion
has appealing theoretical properties, and practical evaluations have shown how well it supports active learning for the square
root link regression model. The fundamental idea behind determining optimal operating conditions involves identifying the
point of minimal variance in response variables, which correspond to various quality attributes of a product, such as yield or
strength.

It is highly beneficial that the optimal design is based on the unknown true model parameters for the Poisson regression
model. One possible solution to this problem is to use A-Optimal designs for scaled data, which are aimed particularly at
calculating the percentile of the response curve. Non-linear predictors are frequently used in pharmacokinetics research. Despite
significant advances in optimum experimental design, a significant research gap exists in the domain of A-optimality design.
While other optimality criteria, such as D-, V E-, and G-optimality(3’16‘20) have received a lot of attention, A-optimality is still
relatively unknown. @122 provide detailed discussions on optimal designs for linear mixed effect models. *>?* suggested an
alternate approach to optimal design for non-linear regression models. Several researchers have investigated several optimal
designs to improve parameter estimation in generalized linear models, including ®*. However, non-linear models provide more
theoretical and computational challenges than linear models do. As a result, designing optimally for generalized linear models
has become increasingly challenging. Generalized linear models have applications in experimental domains like constructions,
clinical trials psychology, and engineering (+72%27), As a result, more research is required to determine the best designs for these
models.

1.1 Comparative study

In this section, we will look at the essential components, advantages, limitations, and practical challenges related with A-optimal
designs with a comparative study. A-optimal designs provide a useful framework for designing experiments and optimizing
collecting data efforts in a variety of domains. Their capacity to maximize the precision of parameter estimations makes them
a vital tool for increasing the quality of statistical analyses and facilitating informed decision-making.

(19) In this paper they have demonstrated how its output can be used to find new analytic A-optimal design. While the
optimization of experimental designs for Poisson regression models has gained a lot of attention, there is still a significant
research gap when it comes to A-optimal designs customized to the square root link function. When it comes to optimality
criteria, the existing literature has primarily concentrated on traditional gamma and inverse Gaussian models with inverse link
function. Filling this research gap is critical for realizing the full potential of the square root link function and enabling analysts
to better understand the complexities of count data while determining statistically robust inferences. As they have mentioned
that this methodology is quite general and may be applied to find analytical A-optimal designs for other models, like the Poisson
model with the log link, square root link function, or other types of optimal designs, we have done the comparative study with
this paper.

(7)1n this article, they have compared A-optimal screening designs to D-optimal screening designs. They have provided the
evidence that the A-optimality criterion produces more desirable screening designs than the D-optimality criterion, and that
A-optimal designs generally perform better in terms of other optimality criteria than D-optimal designs. D optimal designs
aims to minimize the determinant of the variance-covariance matrix directly. However, in some cases, this can lead to extreme
values and instability. A-Optimal designs takes a slight different approach by minimizing the trace of the inverse of the variance-
covariance matrix. This approach balances efficiency and stability. Therefore in our study we have focused on A-optimality in
order to estimate the parameters with high precision.

In"); used the quasi-information as an approximation to the Fisher information. V-criterion, which aims to minimize the
mean variance of prediction of the mean response, is used to compute optimal experimental designs. And they have achieved
locally optimal designs using this criterion in two unique scenarios: a Poisson linear regression model with random intercepts
or random slopes. However, the literature on A-optimal designs for Poisson regression models using square root link remains
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conspicuously sparse. This gap signifies the absence of tailored methodologies for generating A-optimal designs that leverage
the unique statistical properties of the square root link function. Addressing this gap is crucial to expand the applicability of A-
optimal designs, enabling researchers in fields such as ecology and epidemiology to make more accurate and efficient inference
from their count data.

2 Methodology

A-Optimal design is a concept in experimental design and statistics. It is the method of selecting experimental settings or
data points in such a way that the variance of parameter estimations in a statistical model is minimized. In other words, A-
Optimal designs are intended to provide the most efficient and precise estimation of model parameters based on the available
data. It should be noted that A-Optimal designs are only one form of optimality criterion in experimental design. Other criteria
include D-Optimal, E-Optimal, and G-Optimal designs, each having its own focus and mathematical properties. The optimality
criterion chosen is determined by the study objectives and the properties of the statistical model being utilized.

Even if the volume of a confidence ellipsoid is small (as strived for using D-optimality criterion) all variances of the
parameter estimates are not necessarily small. As an alternative, A-optimality strives for minimizing the sum of the variances
of the parameter estimators. The diagonal elements of inverse of the standardized information matrix are proportional to the
asymptotic variance of the ML estimator of 6. The design that minimizes

¥ {M (& 0)}=tr [M~!(&, 0)] is called A- Optimal.

LetY,Ys... Y, beindependent Poisson-distributed response variables for n experimental units, with each Yi’s density written
as

A
( e_l

e i A >0
x!

Then, using the given “square root link” function g, the expected value of response Yi is related to the predictors Xi:
ElY;/xi] = w = g(x,B) =g(n)
Where,
u=n?
B is a set of parameters that must be estimated. The variance of the response is calculated as follows
Varlti/x] = V(u,)

Beyond the mean and variance relations stated above, the expected information is independent of the distribution’s form. The
jk™ element of the expected information matrix for GLMs are as follows:

Noxioxi (O )2
o ijrAj i
=1 V(i) <9Th‘>

1

In matrix notation this would be

I=X'WX

o <8yi>2
bV \ o

As a result, the asymptotic variance covariance matrix matrix.
The simplest form of Poisson model using the square root link function is given as follows.

Where W is a diagonal matrix having values

p=n?

https://www.indjst.org/ 3409


https://www.indjst.org/

Swetha & David / Indian Journal of Science and Technology 2023;16(39):3407-3413

2.1 A- Optimal design with Square root link
The linear predictor is defined by
n(x) =o+px—p)? (1)

The introduction of parameters in the context of A-optimal designs is a necessary step since A-optimal designs seek to minimize
the variance-covariance matrix of parameter estimations. Parameters are 6= (o, 3, i).

Where o controls the height of the response, 8 denotes width of the curve, i denotes optimum response.

The square root link

n(x) = /Hi (2)

The information matrix under the Poisson model, is a given observation at x

1(6,%) = v(x) <agéx)> <8géx))/

Where,
1
(agéx>) = (xi—li)z
—2B (xi— )
And

=75 (55 -

Finding the point of maximum or minimum response, i.e. estimating the parameters, is a key application for this model. The
optimal design is a set of points and weights that best optimize the selected criterion function; the criterion function is often
connected to the precision of parameter estimations, such as the size of a confidence interval of parameter estimators’ sum of
the variance. The standardized information matrix is employed in the criterion function. The standardized information matrix
for a certain design is the weighted total of the contributions from each of the n design points.

I

w315 (4) ()

1 (xij_“)z _Zﬁj(xij_ﬂ)
Z?Wiﬂz (xij*/-‘)2 (Xi,'*li)4 *Zﬁ(xij*/-‘f
_Zﬁj(xij_u) —ZB(xij—N)3 4B2j(xij_ﬂ)2
There are several methods to the practice of determining the optimal design. These include algorithms, analytical, numerical
and graphical methods.

3 Results and Discussion

From Eq (1), we have the linear predictor to be

P(y=| 2,B.1) =n(x) = a+Blx—p)?

In the square root link predictive model, the response variable y represents class labels. The parameter U, referred to as the
“location parameter;” is assigned the value of x such that P(y=|yx, 8, it). The parameter x, known as the “scale parameter;’
indicates the change in probability relative to x. In our experiments involving square root link predictive modeling, the Poisson
regression employs more than two parameters. The model takes the following parametric form,

POy =|1,B) = 7*(x) = (¢ —?) (4)

The term x 8 denotes the dot product of two vectors: x, the predictors, and f3,the model parameters. In this paper, we choose
to approach the model from a regularization standpoint rather than adopting the Bayesian viewpoint. Our Gaussian priors
on the parameters do not incorporate any domain-specific knowledge but can be regarded as a plausible interpretation of the
parametric form of the regularization.
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3.1 Parameter Estimation

For the Square Root Link Poisson Regression Predictive Model, an objective function is derived. The true parameter values are
denoted as f3, while the maximum likelihood (M) estimates of the model parameters are represented as f3. assuming that the
parameterization of the model has no effect on the response distributions, the true parameters can be determined to be those
that approach as the training set size increases. The regularized Inverse regression model’s observed Fisher information matrix
is designated by the notation I (X, 8 )¥vhere X denotes the training set predictor matrix, often called the design matrix. The
observations x,, are vectors formed from the rows of the training set matrix X. The objective function to minimize the variance.

et Var (0 (908)) = Lo B 0 (45) )~ (408)’ ®

In other words, we want the model predictions over the entire pool to be as close as possible to the predictions of the “true”
model, in the squared loss sense, which minimizes the prediction variance over a single observation.
Using the Taylor series approximation we have:

Var (G (xﬁl,,ﬁ)) ~ Var (c’nﬁ—ﬁ)) zc’nI(X,E)—lc,, (6)

Defining A,=c,¢’, and A=Y n A, we drive a formula for minimizing the variance over the pool:

Y dIXB)-la= Y tr{A,,[(xﬁ—l}

ne Pool ne Pool (7)

:tr{AI (X,E—l} = 9(X,y)

The objective functions for A-optimally in square root link predictive regression involve a matrix that provides the A matrix.
In the literature, this matrix is often denoted as A (0) to explicitly indicate its dependency on the model parameters (or the
labeling of the training set), which we have not explicitly included in our notation. Instead, we utilize the notation ¢ (X, y) to
demonstrate the criterion’s dependency on the response value of the link function. Considering the parameters values to be
=1 and = -0.6 and the corresponding x value is, x=1.06017, we have the following solution,

Y{M(E,0)=[tr M (£,0)] =0.714

In the table we have considered the parameters 6= (a, 3, it). Here for fixed x=1.06017 and =0 and for varying 8 and u
values, we have got the above table values. Newton-Raphson method is used and the solution to these formulas are obtained
numerically using R-software.

Figure 1 For fixed o:=0, and for varying f and u values were considered, Our findings show that when dealing with optimal
designs using a square root link function, there is a linear relationship between the function of mean values and predicted
values; that is, as the function of mean values increases, the predictors decrease, resulting in the emergence of an asymptotic
information matrix.

(Beta =0.1)

— (Beta=0.3)

- —(Beta =0.5)
- - (Beta=0.7)
- -- (Beta =0.9)

Linear Predictor

Fig 1. A-Optimal design (linear predictor vs mean values)
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Table 1. Support points of the locally A-Optimal design for the Poisson model for various values of ;

Wi B =0.1 B =03 B =0.5 B =0.7 B =0.9

0.989999 0.000492 0.001477 0.002461 0.003446 0.004431
0.980292 0.000638 0.001914 0.003190 0.004466 0.005742
0.970774 0.000799 0.002397 0.003995 0.005594 0.007192
0.961438 0.000974 0.002924 0.004874 0.006823 0.008773
0.943296 0.001365 0.004097 0.006829 0.009561 0.012293
0.934479 0.001579 0.004739 0.007899 0.011058 0.014218
0.925826 0.001804 0.005414 0.009024 0.012633 0.016243
0.917331 0.002040 0.006120 0.010201 0.014282 0.018362
0.908991 0.002285 0.006856 0.011427 0.015998 0.020569
0.908991 0.002285 0.006856 0.011427 0.015998 0.020569
0.900801 0.002539 0.007619 0.012699 0.017778 0.022858
0.892757 0.002802 0.008408 0.014013 0.019618 0.025224
0.884856 0.003073 0.009220 0.015367 0.021514 0.027661
0.877093 0.003351 0.010055 0.016758 0.023462 0.030165
0.869465 0.003636 0.010910 0.018184 0.025457 0.032731
0.791615 0.007212 0.021636 0.036060 0.050484 0.064909
0.783593 0.007649 0.022948 0.038247 0.053546 0.068845
0.775570 0.008099 0.024298 0.040498 0.056697 0.072896
0.767548 0.008562 0.025688 0.042813 0.059939 0.077064
0.751503 0.009527 0.028582 0.047637 0.066692 0.085747
0.743480 0.010029 0.030087 0.050146 0.070204 0.090262
0.735458 0.010543 0.031631 0.052718 0.073806 0.094893
0.727435 0.011071 0.033213 0.055356 0.077498 0.099640

4 Conclusion

The study identifies the optimal operating conditions by determining the point of least variation on response variables. We
accomplished this by employing a standardized information matrix concerning the asymptotic variance of maximum likelihood
(ML) estimators. The results reveal that when dealing with optimal designs utilizing a square root link function, there exists
linear relationship between the function of mean values and predicted values. To elaborate, as the function of mean values
experiences an increase, the predictors decrease, consequently leading to the emergence of an asymptotic information matrix.
This investigation successfully estimated the minimum variance of the surface point. This approach proves to be particularly
valuable as it accounts for the model’s dependence on unknown parameters, making it a useful technique for practical
applications and as we have mentioned that this methodology is quite general and may be applied to find A-optimal designs for
other models, like the compound Poisson, Gamma and inverse Gaussian model, with log link or other types of optimal designs.

Our future study is to investigate how A-optimal designs can be adapted to accommodate more complex statistical models,
such as non-linear models or models with multiple response variables. This could involve developing new algorithms or
optimization techniques. So that it can advance the field of A-optimal design and contribute to its broader applicability across
various scientific and engineering disciplines.
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