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Abstract
Objectives: To maximize the identification and improve the accuracy of
classifying the bloodstain in a hyperspectral image (HSI) at the crime scene,
a 3-D discrete wavelet transform (3-D DWT) Dense CNN deep learning model
is proposed in this work. Methods: This work proposes the use of a 3-D
DWT to pre-process HSI data to effectively extract both spatial and spectral
informationwhilemaintaining robust feature representation capabilities. Then,
3-D CNN that integrates dense connections attaches great importance to the
reuse of features for classification. The experiment was carried out with the
initial training/testing ratio set to 10/90 of the data samples, and we compared
the results with four different state-of-the-art CNN architectures. Findings:
The experimental results show that the 3-D DWT Dense CNN deep learning
model achieves 97% classification accuracy, smoother classification maps, and
more discriminable features for hyperspectral image classification. Novelty
andApplication: Thiswork provides a deep learning 3Ddense CNNmodelwith
the 3-D DWT and achieves improved identification of bloodstains at a messy
crime scene. The proposed model requires a smaller number of trainable
parameters, less computational power, so it can be used in the field of forensic
science, where substance classification at the scene is important.
Keywords: Hyperspectral Imaging; Blood Strain Classification; Discrete
Wavelet Transform (DWT); 3D CNN; Dense Connection; Forensic Science

1 Introduction
Bloodstain identification is a crucial aspect of forensic investigation at a crime scene. A
variety of techniques are available for this purpose, including chemical enhancement
techniques and the use of light sources with 15-30 nm bandwidths, which increase
the contrast between a trace and its background. Many of these techniques, however,
are either destructive or subject to human interpretation. Although various chemical-
based blood identification techniques produce excellent results, but they damage blood
samples collected from crime scenes, rendering them unusable for DNA extraction or
retesting (1).
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To avoid contamination of sample over the time various non-contact, non-destructive techniques have been developed and
used in the field of forensic science. Different spectroscopic techniques such as Raman, Reflectance, Electron Paramagnetic
Resonance (EPR), Nuclear Magnetic Resonance (NMR), and Infrared (IR) spectroscopies such as Attenuated Total Reflectance
Fourier Transform IR spectroscopy (ATR-FTIR) are used by practitioners. For bloodstain identification, IR and Raman-based
techniques yield promising results (2). All these spectroscopy techniques are used the spectral information of bloods and did
not consider spatial information or image area under observation.

HSI is appropriate for non-contact identification of evidence, reducing the risk of contamination and trace destruction. HSI
combines conventional imaging and spectroscopy to produce a three-dimensional data set containing both spatial and spectral
information of a crime scene. HSI is like a stack of images, each acquired at a specific spectral band. HSI, like spectroscopy,
is available in various range of the electromagnetic spectrum, such as ultraviolet (UV), visible (Vis), near infrared (NIR), mid
infrared (IR), and even thermal infrared (3).

The HSI technique is an excellent technique that extracts from a specimen both spectral and spatial information, producing
a three-dimensional data set. It combines spectroscopy technique with conventional imaging, obtaining hyperspectral images
by measuring numerous narrow wavelength regions with high resolution.

Human blood has distinct spectral characteristics that can be identified in hyperspectral data. Haemoglobin is the main
component in blood that absorbs and scatters light in a characteristic manner, resulting in distinct absorption features in the
visible and near-infrared (NIR) regions of the electromagnetic spectrum. By examining the spectral reflectance of different
pixels in the image across various wavelengths, it is possible to detect the presence of blood. Reflected spectra with resolutions
as low as 10 nm can be treated as miniature spectrographs which can be used to detect very small droplet of blood on the crime
senses (4).

The advantages of using HIS in-crime scene investigation include faster data acquisition, reduce need of trained laboratory
technician, no specimen preparation, reduced human error, no trace destruction, no specimen preparation, and the ability to
produce consistent visual results.

Recent studies in the field of HSI classification in remote sensing and other applications show that Deep Learning improves
accuracy. HSI is primarily concerned with three-dimensional data, and DL models have exploited spectral, spatial, and both
spectral-spatial features. Aside from kernel and dimension reduction methods, DL methods automatically extract features
and solve non-linearity problems. Convolutional Neural Networks (CNNs), Long Short Term Memory Networks (LSTMs),
Multilayer Perceptron (MLPs), Deep Belief Networks (DBNs), and other DL models are commonly used for HIS classification.
In HIS classification CNN gives better accuracy among the various deep learning methods (5).

In (6), the paper presents a non-destructive method for bloodstain identification using HSI that can identify blood samples
with aging up to 3 days. In the work stated PCA was used with SVM, KNN, AN, and RNN.

In (7), author compares the performance of different deep learning architectures 1D CNN, 2D CNN, 3D CNN, RNN with
baseline results of Support Vector Machine (SVM) to identify the bloodstain.The various deep learning methods show 74-94%
accuracy with training and testing sample of 75-25%.

In (8), the paper proposes the use of a fast and compact hybrid CNN to process HSI data for bloodstain ID classification.The
experiment’s results were compared with state-of-the-art 3D CNNmodels and show 90% accuracy with a restricted sample size
of 5%.

The CNN models typically produce a large number of learnable parameters, so the training process needs a lot of samples
with labels on them in order to ensure classification accuracy. There aren’t many labelled samples available because collecting
labelled samples for HSI is expensive. In recent years numbers ofmethods are proposed for HIS classification with limited labels
training samples (9).

As a result, some models, like fast dense spectral-spatial convolution (FDSSC) (10) and multiple spectral resolution (MSR)-
3-DCNN (11), included the residual or dense connection to obtain multi-level features.

The classification performance of HSI is improved by applying feature reduction techniques through feature extraction
and feature selection approaches. Among the existing HSI feature extraction techniques, the three-dimension discrete wavelet
transform (3-DDWT) transformation has received a lot of attention due to its improved ability to extract robust spatial-spectral
features of various scales and orientations (12). Integrating 3D DWTwith dense CNN outperforms existing state-of-the-art HSI
classification approaches (13).

Our study focused on the combining the advantage of 3-D DWT for spectral component as preprocessing and Dense CNN
network for compactness and strong capacity of learning to improve HSI classification performance. In total, our approach
reduces the network complexity, calls for fewer parameters, shortens training and testing times, and achieves high classification
performance with little training data.
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2 Methodology
In our study, we focused on the 3-D DWT, and a slim and compact CNN network structure.The use of 3-D DWT enhances the
interpretation and scale analysis capabilities of followed Dense CNN model. As a result, the combined usage of CNN and 3-D
DWT can produce features with improved resilience against changes in scale and orientation. The flowing subsection explain
the implementation of 3-D DWT Dense CNN classification model.

Let’s make a HSI cube, denoted as X ∈ R H × W × B. Where, H and W represent the height and width of the spatial
dimensions, respectively, while B indicates the number of spectral bands. To represent different blood and blood-like substances,
a one-hot label vector Y = (y1, y2,..., yC ) ∈ R1×1×C, is used, where C signifies the total number of categories.

2.1 General Overview of the Proposed Approach

Fig 1. Overview of Implemented framework for HIS Classification

Figure 1 depicts the implemented framework for HSI classification. First, 3-D DWT is used as a preprocessing operation for
HSI, which can extract spatial and spectral features simultaneously. In the spectral dimension, the principal component analysis
(PCA) algorithm is used to reduce dimensionality and extract the most informative components. Because 3-D CNN requires
both spectral and spatial information, the HSI cube is cropped into small, overlapped patches as samples. Finally, a 3-D CNN
with dense connection modules extracts 3-D feature graphs from image patches and assigns each pixel to one of a few classes.

2.2 3-D Discrete Wavelet Transform

The three-dimensional discrete wavelet transform (3DDWT) is a mathematical tool for analysing three-dimensional data such
as volumetric images or video sequences. It adds a dimension to the concept of the 2D discrete wavelet transform, allowing data
to be decomposed along spatial, temporal, or spectral dimensions.

The 3DDWTworks by breaking down a three-dimensional signal intomultiple frequency sub bands and capturing both low
and high-frequency components.This is accomplished using three stages of 1-DDWT.Thefirst two stages of 3-DDWTare used
to extract features from spatial content, and the final one is for the spectral dimension. In our experiment the down-sampling
step is left out during 1-D DWT. So the size of the filtered cubes remains the same as original input cube.

The Haar wavelet is used as the fundamental wavelet in our strategy. We use a filter bank (L, H) comprising low-pass and
high-pass filter coefficients, abbreviated as l[k] and h[k], respectively, to construct the 1-D discrete wavelet transform (DWT).
We construct eight unique filtered hyperspectral cubes by convolving these filters with the hyperspectral cube along three
dimensions. This procedure can be depicted as follows:

X (h,w,b) = (L h⊕H h)⊗ (L w⊕H w)⊗ (L b⊕H b)
Where⊕ denote space direct sum and⊗ product.
After pre-processing with two-level 3-DWT on HIS cube, 15 filtered HIS cubes were obtained. Then, in the spectral

dimension, the 15 hyperspectral cubes are concatenated. Finally, a new hyperspectral cube, denoted as X ∈ R H × W ×15
B, is obtained.

2.3 3-D Densely connected CNN

After extracting spatial and spectral information using 3-D DWT in the proposed approach in the next step, while maintaining
the same spatial size, the PCA algorithm is applied to the wavelet cube across spectral bands.The spectral band count decreased
from 15B to d. The most informative components are extracted using the PCA algorithm, which also substantially decreases
the computational load on CNN. The labels of the small overlapped 3-D image patches created from the HSI cube are then
determined by the central pixel of each patch.The extracted overlapped patches are used to subdivides into the training samples
and the testing samples for the implemented network.

Figure 2 displays the proposed 3 D dense CNN framework for HSI classification. Our CNN architecture is based on 3-D
CNN and includes dense connectivity. Our model’s first three layers are 3-D convolutional layers; with 8 convolutional kernels
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Fig 2. Flow chart of 3-D Dense CNN framework

of dimension 3 x 3 x 5 for al3-D input feature. Then, three 3-D convolutional layers with dense connection are added. Three-
dimensional convolution layers with 16 filters are used throughout, and with the kernel size 3 x 3 x 3. Batch normalization is
used after each 3D convolution to regularize the learning process and that also helps to avoid overfitting. The last convolution
layer block with 16 filters and kernel size 1 x 1x 1 followed by 3-D pooling. Finally, 3D cubes are flattened to the classes. Finally,
the 3-D feature cubes are flattened to 1-D, and the flattened layer is mapped to the number of classes using two fully connected
layers. Dropout is employed in fully connected layers. The activation function was rectified linear units (ReLUs) after each
convolution layer, and the optimizer ’Adam’ is used to optimise the soft-max loss function after final fully connected layers are
used.

Table 1.The layer wise summary of the implemented architecture with window size 9 x 9
Layer Output Shape Parameter
Input Layer (9,9,15,1) 0
Conv3D_1 Batch Normalization_1 (7,7,9,8) (7,7,9,8) 512 32
Conv3D_2 Batch Normalization_2 (5,5,5,8) (5,5,5,8) 2888 32
Conv3D_3 Batch Normalization_3 (3,3,3,8) (3,3,3,8) 1736 32
Conv3D_4 Batch Normalization_4 (3,3,3,16) (3,3,3,16) 3472 64
Concatenation_1 (3,3,3,24) 0
Conv3D_5 Batch Normalization_5 (3,3,3,16) (3,3,3,16) 10384 64
Concatenation_2 (3,3,3,40) 0
Conv3D_6 Batch Normalization_6 (3,3,3,16) (3,3,3,16) 17296 64
Concatenation_3 (3,3,3,56) 0
Conv3D_7 Batch Normalization_7 (3,3,3,16) (3,3,3,16) 912 64
Flatten 16 0
Dense_1 256 4352
Dropout_1 256 0
Dense_2 128 32896
Dropout_2 128 0
Dence_3 7 903

Total Trainable Parameters=75,703

The layer wise summary of the implemented architecture with window size 9 x 9 is shown in Table 1. The total number of
parameters of the proposed model is 75,703.

2.4 Bloodstain detection dataset

Our experiments make use of hyperspectral images from the dataset described in (14) which is freely available to the public
under an open license (the dataset can be assessed from https://zenodo.org/record/3984905). The dataset used in this paper
has hyperspectral images of six different parts of one mock-up crime scene.The latter A-F are used to identify the different HSI
frame as shown Figure 3.

Images in datasets are acquired using a SOC710 hyperspectral camera in a spectral range of 377–1046 nmwith a total of 128
bands. As suggested by (Romaszewski et al., 2021) (14), we remove the noisy bands (0–4), (48–50) and (122–128), leaving 113
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Fig 3. Illustration of the dataset, the mock-up of a forensic scene with locations of images A-F

bands.
Annotated hyperspectral images of blood and six other visually similar (artificial blood, tomato concentrate, ketchup,

beetroot juice, poster, and acrylic paint) substances are included in the dataset. Images in the dataset were captured over several
days to capture changes in spectra related to the time-related decay process of blood substances. Datasets images ware annotated
hyperspectral pixels according to the visible substance, so each HSI can be treated as labelled examples.

Out of the six different images of the mock-up scene E, ‘Comparison’, is chosen for the experiment in this paper. Scene-E
‘Comparison’ RGB rendering image and its ground truth image are shown in Figure 3 (b) and Figure 3 (c) respectively. In scene-
E, a trace of real blood and bloods look alike substances with eight different backgrounds is present. Scene-E ‘Comparison’ has
wood, plastic, metal, and some red-hued fabric. These materials are arranged in vertical fashion, and blood and blood-like
substances are placed horizontally on them. The image provides challenging and diverse environments for finding blood.

3 Results and Discussion

3.1 Experimental configuration

We use a hardware environment comprised of the Google Colab cloud platform and GPUs to evaluate the performance of our
3DDWTCNNarchitecture.We keepmost of the environmental parameters constant when comparing different state-of-the-art
methods. The entire dataset is divided into a 10%/90% split, with 5% used for training and 5% used for validation (i.e., 5% +
5% = 10%). The remaining 90% is considered a blind set (i.e., test set) for the final model evaluation.

As a feature extraction PCA is used in 2DCNN,3DCNN, Hybrid CNN, and 3D Dense models. In 3D DWT DENSE CNN
model DWT is applied before PCA. The structure of DENSE and DWT DENSE keeps identical for comparison.

The Adam optimizer was given an optimum learning rate of 0.001 with a momentum of 0.9. As an activation function “relu”
is used for all convolution layers except the last layer in each model. The last convolution layer used “softmax” is used. The
HSI cube dimensions of 9 x 9, 11 X 11 and 13 x13 were used to maintain the validity of the results for different deep learning
algorithms. The model has been trained for a total of 10 epochs.

3.2 Experimental Result

For comparing the performance of 3D DWT DENSE with a few training samples, we consider four state-of-the-art methods,
including 2DCNN, 3DCNN, and Hybrid models. To evaluate the performance of above models, we use the overall accuracy
(OA), average accuracy (AA), and Kappa coefficient, and we report the averaged results in Table 2 after ten independent runs
in all experiments. Result shows that for HIS cube size of 9 x 9 3D DWT DENSE CNN model outperform all implemented
methods. Where’s for 11 x 11 and 13 x 13 HIS cube size along with the 3D DTWDENSE CNNmodel Hybrid CNN (3 layer of
3D CNN followed by a 2D CNN) also show good performance.
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Table 2. Classification Accuracy Using 2DCNN, 3DCNN, Hybrid CNN, 3D Dense, and DWT-DENSE Performance

Methods
Window

9 x 9 11 x 11 13 x 13
OA AA kapp OA AA kapp OA AA kapp

2DCNN 83.44 78.40 81.55 83.02 78.10 82.01 84.03 93.80 83.67
3DCNN 93.68 91.96 92.96 93.95 88.45 91.93 90.35 86.71 89.26
Hybrid 96.05 95.04 95.54 96.12 95.87 95..34 96.59 96.20 96.01
DENSE 94.44 92.95 93.12 93.12 92.43 93.58 92.87 90.12 92.01
DWTDENSE 97.07 97.24 97.41 96.67 95.80 95.06 96.50 96.41 96.23

Table 3 shows Overall accuracy (OA), precision (P), recall (R), and F1score (F1) are computed during training the model to
verify the performance of the proposed DWT DENSE CNN model when the mock-up scene E is used. It shows 97% overall
accuracy. 3D DTWDENSE CNNmodel shows 99% precision for blood classification in mockup scenes.

Table 3. Blood Stain Classification Results using A Discrete Wavelet Transform and Dense CNN with window size 9 x 9
Sample Precision Recall F1-Score
Blood 0.99 0.95 0.97
Ketchup 0.99 0.99 0.99
artificial blood 0.92 0.97 0.95
poster paint 1.00 1.00 1.00
tomato concentrate 0.98 0.90 0.94
acrylic paint 0.98 0.99 0.98
Accuracy 0.97
Macro avg. 0.98 0.97 0.97
Weighted avg 0.97 0.97 0.97

The performance of the proposed models has been evaluated using confusion matrices of the E scenario, as depicted in
Figure 4. The 3D DWT DENSE CNN method achieves an average accuracy (AA) of 96.9% in classifying blood traces from
other red hues, as depicted in Figure 3. In addition to the AA, the proposed method attains an overall accuracy (OA) of 97%.

Fig 4.The confusion matrix using 3D DTWDENSE CNNModel
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Fig 5. (a) Original Image frame “scene-E” with annotation (b) predicted Ground Truths using 3D DWTDWNSE CNNmodel

In addition, Figure 5 displays the classification accuracy for graphical maps (i.e., Ground Truths) attained by the 3D DWT
DENSE CNN.

4 Conclusion
In this study, blood stains with various backgrounds and blood-like substance were detected using 2DCNN, 3DCNN, Hybrid
CNN, Dense CNN, and 3D DWT DENSE CNN. The categorization performance of blood strain in mock crime senses was
greatly enhanced by 3D DWT DENSE CNN, one of the several deep neural network models that had been applied. The total
classification accuracy demonstrates the possible application of HIS to identify blood at complicated crime scenes without the
need for a skilled lab technician or any destructive chemical techniques.The classification accuracy for the HSI using 3D DWT
DENSE CNN is 97% overall.

A comparison of implemented models shows that the 3-D DWT can extract more discriminative features and that the
dense connection module can be used to optimize the classification architecture of CNN. Combining dense 3-D CNN and 3-D
DWT ensures classification performance, the network structure is made light and compact, and robust feature representation
is possible. The experimental findings confirmed the advantages of our approach, which is particularly clear when the HSI has
fewer training samples, a complicated background, and more visually comparable categories. As a future scope of the model
can be tested with different images form same datasets utilizing transfer learning.

Future research should examine additional datasets for testing and evaluating ourmodel, as well as applying transfer learning
methods for HSI classification.
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