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Abstract
Objective: To establish the presence of fixed point under a novel contraction
condition and a freshly defined distance function, we harness the concept of
triangular α orbital admissible mappings. Method: Consider two mapping in
quasi-metric space. These two mapping satisfy a new contraction condition
and also the triangular αorbital admissible condition. Define the sequences for
two mappings. Consider two cases for odd and even sequences. Show that a
fixed point is common for twomappings and then demonstrate its uniqueness.
Findings: Unique commonfixedpoint exists.Novelty: A new technique is used,
so the length of proof become very short as compare to theorems available in
literature.
Keywords: Quasi metric; Fixed point; α Orbital admissible; Function; κ Con-
traction

1 Introduction
The foundational principle of Banach Contraction, known for its precision and
efficacy, forms the bedrock of metric fixed point theory. It offers a systematic
approach for addressing a wide array of problems across mathematical sciences,
economics and engineering. Numerous authors have explored applications, extensions
and advancements of this principle in diverse directions. In various spaces such as b-
metric space, Cone metric space, Menger space, Fuzzy metric space, G-metric space,
Quasi metric space, researchers have established fixed point theorems.

Our focus lies on quasi-metric spaces, chosen due to their fewer constraints
compared to metric spaces, leading to distinct results. Recent work of authors (1)
and (2) have delved into quasi- metric spaces. The term “generalized contraction” was
introduced by (3), while (4) presented the concept of “almost z-contraction” within
metric spaces. In dislocated quasi-metric space, (5) has demonstrated a fixed point
theorem for Geraghty quasi-contraction type mappings, employing classical methods
for proof. (6) concentrated on quasi-partial b-metric space and established non-unique
fixed points. (7) employed the concept of quasi-triangular orbital admissible mapping
in a complete metric space, whereas we applied this concept in context of quasi-metric
spaces.
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The proposed study is distinguished from these findings because we need not require to prove Cauchy sequence as we have
added a concept of triangularα orbital admissible “κ–distance function”, along with a unique contraction condition and a novel
technique for proving the existences of a unique fixed point. Furthermore, our approach reduces the length of the proof for the
theorem, enhancing the efficiency of method outlined in this paper.

Definition (8): The mapping q : I × I → [0,∞) termed as Quasi Metric, if it fulfills:
(i) q(i, j) = 0 ⇔ i = j
(ii) q(i, j)≤ q(i, l)+q(l, j),∀i, j, l ∈ I
The couple (I,q) termed as quasi-metric space.
Definition (9): Consider a non- empty set I and a function α : I × I → [0,∞). Then the mapping F : I → I is triangular α

orbital admissible, if it is α orbital admissible plus.
α(i, j)≥ 1 and α( j,F j)≥ 1 ⇒ α(i,F j)≥ 1
Remark 1: In this context, it’s important to note that a metric space encompasses quasi-metric space as a subset, but opposite

relationship does not always hold.
Remark 2: The conclusions that hold true in quasi-metric space do not necessarily hold true in metric space.

Example: Let I = (0,∞) Define q(i, j) =
(

j, i ≥ j
j−i
4 , i < j

Here, we observe q(i, j) ̸= q( j, i), indeed it pertains the quasi-metric space rather than a metric space.
The objective of the current study is to define a new function, new contraction condition and also apply fixed point theory

to quasi-metric space.

2 Result and Discussion
We have defined κ- function as here under:

Definition: A function κ : (0,∞)→ (0,∞) is named as κ-distance function when κ satisfies κ (x∗) = 0 ⇔ x∗ = 0
Now, using new contraction condition, definition of κ -distance function and utilizing the concept of triangular α orbital

admissible, we prove the theorem, as stated below:
Theorem 2.1: Assume (I,q) metric space, F : I → I,G : I → I be triangular α orbital admissible mappings. The pair (F,

G) fulfilling the succeeding contraction for each i, j ∈ I .
(i) α(i, j)κ (q(Gi,F j)≤ κ {a1q(i, j)+a2q(i,Gi)+a3q( j,F j)+a4q(i,F j)+ a5q(Gi, j)}
(ii) α(i, j)κ (q(Fi,G j)≤ κ {a1q(i, j)+a2q(i,Fi)+a3q( j,G j)+a4q(i,G j)+ a5q(Fi, j)}
Also assume q(in, in+1) = 0 or q(in+1, in) = 0, for some n ∈ NU{0},∑5

i=1 ai ≤ 1. Then in is unique common fp of F,G.
Proof : Consider i0 ∈ I , the sequence {in} in I be defined by
F (i2n) = i2n+1 and G(i2n+1) = i2n+2 for all n ∈ NU{0}. (2.1.1)
Consider the following cases
Case 1: q(in, in+1) = 0. If n is even, the n = 2k for some k ∈ NU{0}∴ q(i2k, i2k+1) = 0 (2.1.2)
Now
κ (q(i2k+1, i2k+2)≤ α (i2k, i2k+1)κ {q(Gi2k,Fi2k+1)} ≤ κ {a1q(i2k, i2k+1)+

a2q(i2k,Gi2k)+a3q(i2k+1,Fi2k+1)+a4q(i2k,Fi2k+1)+a5q(Gi2k, i2k+1)}
= κ {a1q(i2k, i2k+1)+a2q(i2k, i2k+1)+a3q(i2k+1, i2k+2)+a4q(i2k, i2k+2)+

a5q(i2k+1, i2k+1)} , using (2.1.1)
= κ {(a3 +a4)q(i2k+1, i2k+2)}, using (2.1.2)
∴ q(i2k+1, i2k+2) = 0
Now

κ (q(i2k+2, i2k+1)≤ α (i2k+1, i2k)κ {q(Fi2k+1,Gi2k)}
≤ κ {a1q(i2k+1, i2k)+a2q(i2k+1,Fi2k+1)+a3q(i2k,Gi2k)+a4q(i2k+1,Gi2k)

+a5q(i2k,Fi2k+1)}
= κ {a1q(i2k+1, i2k)+a2q(i2k, i2k+2)+a3q(i2k, i2k+1)+a4q(i2k+1, i2k+1)

+a5q(i2k+2, i2k)}
= κ {(a2 +a5)q(i2k+2, i2k+1)}
using (2.1.2) and (ii) of definition (8)

∴ q(i2k+2, i2k+1) = 0
∴ q(i2k+2, i2k+1) = 0 = q(i2k, i2k+1)
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⇒ q(i2k+2, i2k+1) = 0 = q(i2k, i2k+1)⇒ i2k = i2k+1 = i2k+2, by (i) definition (8)

⇒ in = in+1 = in+2 ⇒ in = Gin = Fin+1
Hence in is common fixed point of F and G for even value of n.
Case 2: q(in, in+1) = 0. If n is odd, then n = 2k+1 for some k ∈ NU{0}
∴ q(i2k+1, i2k+2) = 0
Now

κ (q(i2k+2, i2k+3)≤ α (i2k+1, i2k+2)κ {q(Fi2k+1,Gi2k+2)}
≤ κ {a1q(i2k+1, i2k+2)+a2q(Fi2k+1, i2k+1)+a3q(i2k+2,Gi2k+2)+a4q(i2k+1,Gi2k+2)

+a5q(i2k+2,Fi2k+1)}
= κ {a1q(i2k+1, i2k)+a2q(i2k+2, i2k+1)+a3q(i2k+2, i2k+3)+a4q(i2k+1, i2k+3)

+a5q(i2k+2, i2k+2)}
= κ {(a3 +a4)q(i2k+2, i2k+3)}

∴ q(i2k+2, i2k+3) = 0
Now

κ (q(i2k+3, i2k+2))≤ α (i2k+1, i2k+2)κ {q(Gi2k+2,Fi2k+1)}
≤ κ {a1q(i2k+2, i2k+1)+a2q(i2k+2,Gi2k+2)+a3q(i2k+1,Fi2k+1)+a4q(i2k+2,Fi2k+1)

+a5q(Gi2k+2, i2k+1)}
= κ {a1q(i2k+2, i2k+1)+a2q(i2k+2, i2k+3)+a3q(i2k+1, i2k+2)+a4q(i2k+2, i2k+2)

+a5q(i2k+3, i2k+1)}
=κ {a5q(i2k+3, i2k+2)}
∴ q(i2k+3, i2k+2) = 0

⇒ q(i2k+3, i2k+2) = 0 = q(i2k+2, i2k+1)⇒ i2k+1 = i2k+2 = i2k+3

⇒ in = in+1 = in+2 ⇒ in = Gin =Fin+1.
Hence in is common fixed point of F and G for odd value of n.

3 Uniqueness of fixed point
κ (q(p1, p2)) = κ {q(Gp1,F p2)}, where p1 and p2 are distinct fixed points.

≤ κ {a1q(p1, p2)+a2q(p1,Gp2)+a3q(p2,F p2)+a4q(p1,F p1)+a5q(Gp1, p2)}
= κ {(a1 +a2 +a5)q(p1, p2)}

∴ q(p1, p2) = 0 ⇒ p1 = p2
F and G therefore share a single fixed point.
Example: Let I = R,q : I × I → (0,∞) ,α : I × I → (0,∞) defined by

α(i, j) =


1, for i, j ≥ 0, i ≥ j
1
20 , for i, j < 0, i ≥ j ,q(i, j) = 2(i− j)
0, otherwise

k (x∗) = x∗

1+ x∗
2

F : I → I , defined by F(i) = i
1+2i and G : I → I defined by G(i) = i

8 .

Let a1 = 0.2,a2 = 0.3,a3 = 0.1,a4 = 0.1,a5 = 0.2 ∴ ∑i=5
i=1 ai = 0.9 < 1.

Case 1: i, j ≥ 0, i ≥ j . Consider i = 2, j = 1 . Then in condition (i) of theorem 2.1
L.H.S. = -0.1818 and R.H.S. = 0.89.
Then in condition (ii) of theorem 2.1
L.H.S. = 0.43 and R.H.S. =0.89
Case 2: i, j ≥ 0, i ≥ j. Consier i=-1, j=-2. Then in condition (i) of theorem 2.1
L.H.S. = -1.0246 and R.H.S. = 0.9333
Then in condition (ii) of theorem 2.1
L.H.S. = 0.055 R.H.S. = 0.0952.
Therefore all conditions specified in theorem 2.1 are met and F(0) = G(0) = 0. Therefore 0 is unique common fixed point

for both F and G.
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4 Conclusion
A new function and a new condition in quasi metric space has given singular common fixed point statement. The idea of
triangular α orbital admissible function is useful to prove the result in very few steps. The theorem can be extended for four
mappings.
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