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Abstract
Background/Objectives: Connectedness plays an essential role in applica-
tions of graph theory. Connected graphs are used to represent social net-
works, transportation networks, and communication networks. In this study,
various classes of commutative rings are explored to identify connected pro-
jection graphs. Methods: An investigation is carried out to exclude classes of
rings whose projection graphs possess isolated vertices and connectedness
is shown by establishing spanning subgraphs. Findings : Unipotent units and
zero-divisors are found non-isolated, in which zero-divisors include idempo-
tents and nilpotents. The element 2 is isolated if it is invertible. Necessary con-
dition for the rings to have connected projection graphs is derived. Projection
graphs of finite Boolean rings are connected andHamiltonian. The local rings of
integers modulo n with even characteristics are connected and contain span-
ning bistars. A criterion for certain class of nonlocal rings to have connected
projection graphs is described.Novelty: Study on projection graphs in the per-
ception of unipotent units is carried out, which is not done earlier in any other
algebraic graph.
Keywords: Unipotent; Von Neumann regular ring; Boolean ring; Spanning
subgraph; Bistar

1 Introduction
The structure of ring is studied by using graph theoretic tools. Graphs from rings are
defined with the help of algebraic relations between elements or substructures of rings.
During last thirty years,many authors published research articles on zero-divisor graphs
in different forms. To mention some of them, Abdulaziz et al. characterized rings using
generalized zero-divisor graph (1). In 2021 Vijay Kumar Bhat considered matrix ring of
order n over Zp and associated zero-divisor graph (2); Pradeep Singh et al. investigated
connectivity (3); Sriparna Chattopadhyay et al. studied Laplacian eigenvalues (4).

In this line, projection graph P1(R) of ring R with unital element 1 ̸= 0 is introduced
as graph with nontrivial elements of R as vertices and x ⊓ y(x,y\ are adjacent) iff xy
equals either x or y. Connectedness of P1 (R) is investigated in this paper.
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Several kinds of rings are considered for investigation and by method of exhaustion results are obtained. For rings of size
greater than four, it is proved that P1(R) is totally disconnected if R is domain. Zero-divisors and unipotent units are proved
as non-isolated. Local rings of characteristic 2 are characterized via connectivity of P1(R). Connectedness of projection graphs
of some local and nonlocal rings are established by showing the presence of spanning stars and bistars. Projection graphs of
Boolean rings are also proved to be connected.

One can refer (5) for basic concepts, properties and terminologies used in this article. “x ∈ R\{0,1} is called nontrivial”. “Any
x in R is Von Neumann regular if there is a with x = x2 a and R is Von Neumann regular ring (VNR) if every x in R is Von
Neumann regular (5)”. “A unit x is unipotent if there is nilpotent z such that x = 1+ z and ring whose units are all unipotents is
called UU ring (6)”. “Bistar Bk,k is graph obtained from K2 by joining centers of 2K1,n by an edge (7)”.

2 Results and Discussion
In this section a criterion for P1(R) to have no isolated vertices is determined. Subclasses of different kinds of rings with this
criterion are analyzed for identifying rings with connected projection graphs.

Proposition 2.1 If R is of cardinality four, then P1(R) is either totally disconnected or complete.
Proof: If R is with cardinality four, then R is one of non-isomorphic rings Z2 ×Z2, F4, Z4 and R

′ , where R
′ is ring of matrices(

x 0
y x

)
, x,y ∈ Z2. Now P1(Z2 ×Z2) ∼= P1(F4) ∼= K2, which is totally disconnected and, P1 (Z4) ∼= P1

(
R

′
)
∼= K2, which is

complete.
As a consequence of the above proposition R is considered as ring with five or more elements throughout this section.
Proposition 2.2 In P1(R), (i) zero-divisors are non-isolated.
(ii) Let x(̸= 2) be nonzero-divisor. Then x is non-isolated if 1− x is zero-divisor (equivalently, Ann(1− x) is nontrivial).
Proof: (i) Suppose x ∈ ZD(R)\{0} and xy = 0. If y equals x, then x2 = 0 and x(1− x) = x, where 1− x is nontrivial and

x⊓ (1− x).
If y is different from x, then x(1− y) = x, where 1− y is nontrivial and x⊓ (1− y) if 1− y ̸= x. Suppose 1− y = x. Then x is

idempotent. If xR ̸= {0,x}, there is nontrivial element z different from x in xR and z = xr for nontrivial element r of R, which
implies xz = x(xr) = xr = z. Thus, x⊓ z . If xR = {0,x}, consider nontrivial element z in (1− x)R different from 1− x. Now
z = (1− x)r for nontrivial r, which implies xz = 0 and x⊓ (1− z), which completes proof of (i).

(ii) If x is non-isolated, there is nontrivial y with xy = x or xy = y, which implies x(1− y) = 0 or y(1− x) = 0. Also, 1− x
and 1− y are nontrivial and x(1− y) = 0 does not hold. Therefore, y(1− x) = 0 must be true and hence 1− x is zero-divisor,
equivalently Ann(1− x) is nontrivial.

Suppose 1−x ∈ ZD(R), in other words, Ann(1−x) is nontrivial. Then (1−x)z = 0 for nontrivial z. Therefore, xz = z, where
z is different from x. Hence, x is non-isolated.

UU rings guarantee the existence of projection graphs without isolated units.
Proposition 2.3 (i) P1(R) is totally disconnected if R is domain.
(ii) Nilpotents (respectively, idempotents) are non-isolated.
(iii) If R is Boolean ring, P1(R) has no isolated vertex.
(iv) Unipotents are non-isolated.
(v) If R is UU, P1(R) has no isolated units.
(vi) If R is F2 [x]/(xk) (respectively, Z2k , for k ≥ 2), P1 (R) has no isolated units.
(vii) Let char R be 2k, k≥1. If U(R) is 2-group, P1(R) has no isolated unit.
Proof: (i) Suppose R is domain and x ∈ R\{0,1}. If xy = x (respectively, xy = y), then x(1− y) = 0 (respectively, y(1− x) =

0), which implies y = 1 (respectively, y = 0) since R has no zero-divisors. Hence, there is no y ∈ Zn\{0,1} adjacent to x. Thus,
P1(R) is totally disconnected.

Suppose R is not domain and x0y0 = 0 for x0,y0 ∈ R\{0,1}. If x0 = y0, then x2
0 = 0 and x0 (1+ x0) = x0, where 1+ x0 ∈

R\{0,1,x0}. If x0 ̸= y0, then x0 (1+ y0) = x0, where 1+ y0 ∈ R\{0,1,x0}.
Thus, x0 ⊓ (1+ y0).
(ii) As nilpotents and idempotents are zero-divisors, (ii) follows from Proposition 2.2 (i).
(iii) If R is Boolean, then every nontrivial element is zero-divisor and hence P1 (R) has no isolated vertices.
(iv) Let x be unipotent. Then x = 1+ z for nilpotent z. Suppose s is nilpotency index of z. Then zs = 0. If x0 denotes xs−1,

then xx0 = (1+ z)x0 = x0 and x⊓ x0.
(v) If R is UU, every unit is unipotent and thus no unit is isolated.
(vi) As F2[x]/(xk), Z2k are UU [page 450, 6], their projection graphs have no isolated units.
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(vii) SupposeU(R) is 2−group. Then R is UU ring byTheorem A (6), which shows P1(R) has no isolated unit.
In class of rings with char R ̸= 2, element 2 plays an important role in determining connected projection graphs.
Proposition 2.4 If char R is m(̸= 2), following are equivalent:
(i) 2 is non-isolated (ii) 2 is zero-divisor (iii) Ann(2) is nontrivial (iv) m is even (v)−1 is non-isolated.
Proof:2 is nontrivial by hypothesis.
(i)⇔(ii)
Suppose 2 is non-isolated. Then there is nontrivial x different from 2 with 2x = x or 2x = 2.
If 2x = x, then x = 0, which contradicts the choice of x. Therefore, 2x = 2 holds, which implies 2(1− x) = 0, where 1− x is

nontrivial, as desired.
Suppose 2 ∈ ZD(R). Then there is nontrivial y with 2y = 0, which gives 2 = 2(1−y), where 1−y is nontrivial and 1−y ̸= 2.

Hence, 2⊓(1− y), which shows that 2 is non-isolated.
(ii)⇔ (iii)
It is known that 2 is zero-divisor if its annihilator is nontrivial.
(ii)⇔ (iv)
Suppose m is even.
Then 1+ · · ·+1(m times) = 0 which implies 2+ · · · +2 (m/2 times) = 0.
Let 1+ · · ·+1(m/2 times) = x. Then 2x = 0, where x is nontrivial, which shows (iv) implies (ii).
If 2 is zero-divisor, there is nontrivial x with 2x = 0, which shows additive order of x is 2. Hence, 2 divides m and thus (ii)

implies (iv).
(ii)⇔ (v)
Suppose 2 is zero-divisor and 2x = 0. Then (−1)x = x, showing x⊓ (−1).
Suppose −1 is non-isolated and (−1)x = −1 or (−1)x = x. If (−1)x = −1, then x = 1. Therefore, (−1)x = x must hold,

which implies 2x = 0. Hence, (v) is equivalent to (ii).
Proposition 2.5 If P1(R) has no isolated vertex, then either char R is two or 2 is zero-divisor (equivalently, Ann(2) is not

trivial).
Proof: Suppose char R is not 2. If 2 is not zero-divisor, then by Proposition 2.4, 2 is isolated, which proves the result.
Illustration 2.6 (i) InP1(Z12),Ann(2)is not trivial and 2⊓7 and 11⊓6. (ii) InP1(Z21),Ann(2) is trivial and 2, 20 are isolated.
Theorem 2.7 Let char R be two.Then P1(R) has no isolated vertex if either x is zero-divisor (equivalently, Ann(x) = {0}) or

1− x is zero-divisor (equivalently, Ann(1− x) = {0}) for every nontrivial element x.
Proof: Suppose P1(R) has no isolated vertex.
Let x be nontrivial and xy = x or xy = y. Then either x or 1− x is zero-divisor.
Suppose P1(R) has isolated vertex x and, x is not zero-divisor. Then 1− x is zero-divisor by
Proposition 2.2 (ii) since x ̸= 2 by hypothesis.
Proposition 2.8 (i) Let R be local ring. If P1(R) has no isolated vertex, char R = 2k, k ≥ 1.
(ii) Let char R be 2. P1(R) has no isolated vertex if R = ZD(R)∪ (1+ZD(R)) .
Proof: (i) If char R = m,m is pk, k ≥ 1 by hypothesis.
Suppose P1(R) has no isolated vertex. If m is not two, then 2 is nontrivial element of R. Therefore, 2 is non-isolated and by

Proposition 2.4 m must be even, which shows that char R is 2k.
(ii) By hypothesis, x+ x = 0 for every x. Hence, by Proposition 2.7, P1(R) has no isolated vertex if either x is zero-divisor or

1+ x is zero-divisor for every nontrivial element x, which completes the proof.
Proposition 2.9 (i) Let R be local Artinian ring with char R = 2k, k ≥ 2. If R = 2R∪(1+2R), P1(R) contains spanning bistar

B|2R|−2,|2R|−2.
(ii) If R is Z2k+1 , k ≥ 2, P1(R)contains spanning bistar B2k−2,2k−2 with center (2k,1+2k ) .
Proof: (i) By hypothesis 2 is nilpotent. Suppose 2s = 0. If x0 denotes 2s−1, then x0 and 1+ x0 are nontrivial elements of 2R

and (1+2R), respectively. Now x0⊓y, for y∈(1+2R\{0}) and, (1+x0)⊓ z ) for z in 2R\{0}. Also, x0⊓ (1+ x0). Thus induced
subgraph on (2R∪ (1+2R))\(0,1} contains spanning bistar with center (x0,1+ x0), as desired.

(ii) By hypothesis, 2 is nilpotent and 2(k+1) = 0. Hence, (ii) follows from (i).
Illustration 2.10 If R is Z16, then 2 is nilpotent with degree of nilpotency 4 and P1(R) contains spanning bistar B6,6 with

center
(
x0 = 23,1+ x0 = 1+23

)
as in Figure 1.

Proposition 2.11 (i) If R is Z2(x]
(x4)

, P1(R) contains B2,2 as spanning subgraph.

If R is Z4 [x]/(x2), then P1(R) contains B6,6 as spanning subgraph.

https://www.indjst.org/ 57

https://www.indjst.org/


Arockiamary et al. / Indian Journal of Science and Technology 2023;16(SP3):55–63

Fig 1. P1(Z16)

Proof: (i) R\(0,1}={x, x2, x3, 1+ x, 1+ x2, 1+ x3}; x⊓ (1+ x3), x2 ⊓
(
1+ x3

)
, x2 ⊓

(
1+ x2

)
, x3 ⊓

(
1+ x3

)
, x3 ⊓

(
1+ x2

)
,

x3 ⊓ (1+ x).
Now let S={x, ,x2, x3}; T={1+ x, 1+ x2, 1+ x3}. Then, R\{0,1}=S∪T and P1 (R) contains B(S|−1,(T |−1 as its spanning

subgraph.
(ii) R\{0,1}={2, x, 2x, 3x, 2+ x, 2+ 2x, 2+ 3x, 3, 1+ x, 1+ 2x, 1+ 3x, 3+ x, 3+ 2x, 3+ 3x}, in which 2x is nilpotent

element with nilpotency 2.
Now Ann(2x)\{0}={2, x, 2x, 3x, 2+ x, 2+2x, 2+3x};
1+Ann(2x)\{0}={3, 1+ x, 1+2x, 1+3x, 3+ x, 3+2x, 3+3x};
Let S=Ann(2x)\(0}; T=1+Ann(2x)\(0}.ThenR\{0,1}=S∪T ; (2x)¬t for t∈T ; ( 1+2x¬s ) for s∈S. Hence,P1(R) contains

B(s|−1,(T |−1 with center (2x,1+2x) as its spanning subgraph.
Proposition 2.12 (i) Let R be VNR and 2 be zero-divisor. Then (i) P1(R) has no isolated vertices if R has finite unit group.
(ii) If R is finite reduced zero-dimensional ring with even characteristics, P1(R) has no isolated vertex.
Proof: (i) SupposeU (R) is finite and xt = 1 for every x ∈U (R). Then (1− x)z = 0,
where z=1+x+x2+· · · +xt−1 is nontrivial, showing that 1− x∈ZD(R) and hence x is non-isolated.
Now by hypothesis, for every nontrivial x, there is y with x2y=x, in which xy is nonzero. If xy ̸=x, x⊓ (xy).
If xy=1, x is unit and so is non-isolated by above discussion.
If xy=x and y ̸=x, x⊓ y.
If xy=x and y=x, x is idempotent and hence is non-isolated.
(ii) By assumption, R is VNR and so (ii) follows from (i)
Proposition 2.13 Let F be infinite field.
(i) If R=Z2×F , P1 (R) has no isolated vertices.
(ii) If R=F [x]\(x2), P1 (R) contains K|ZD(R)|−1,|ZD(R)|−1 together with infinite isolated vertices.
(iii) If R=Z [x]\(x2,mx), m ≥ 2, P1(R) contains Km−1,m−1 together with infinite isolated vertices.
Proof: (i) R\{0,1} has partition ({0}×F)∪({1}×F) and (0,x)⊓(0,1) for (0,x)∈{0}×F\{0} (respectively, (0,1)⊓(1,x)

for (1,x)∈{1}×F\{1}). Hence, P1 (R) contains no isolated vertices.
(ii) R = {a+bx | a,b ∈ F}; ZD(R)\{0}={ax | a ∈ F\{0}};
1+ZD(R)\{0}={1+ax | a∈F\{0}} and ax(1+ax) = ax for every a ∈ F\{0}. Thus induced subgraph on

X=(ZD(R)\{0})∪(1+(ZD(R)\{0})) is K|ZD(R)|−1,|ZD(R)|−1. Also, if set complement of X in R\{0,1} is denoted by W ,
thenW is infinite and it contains no edges, which completes proof of (ii).

(iii) R\{0,1} contains infinite number of elements and ZD(R)\{0}={x, 2x, · · · , (m−1)x};
1+ZD(R)\{0}={1+ x, 1+2x, · · · , 1+(m−1)x}.
Also, u⊓ v, for u∈ZD(R)\{0} ; v∈1+ZD(R)\{0}. Thus, P1(R) contains K|ZD(R)|−1,|ZD(R)|−1 and there are no other edges.
The Proposition below proves necessary condition for connectedness of P1(R).
Proposition 2. 14 Let char R be m. If P1(R) is connected, m is even.
Proof: If P1(R) connected, it has no isolated vertices and therefore the proof follows from Propostion 2.4.
Proposition2.15 If Di ̸∼= Z2 is domain and R=D1×D2,
(i) P1(R) contains two disjoint copies of complete tripartite graphs.
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(ii) x = (a,b) is isolated if a ∈ D1\{0,1} and b ∈ D2\{0,1}.
Proof:R\(0,1} has partition B∪S∪T∪W , where B={(0,1) ,(1,0)};
S = ({0}× (D2\{0,1}))∪ (D1\{0,1})×{1}
T = ((D1\{0,1})×{0})∪ ({1}× (D2\{0,1})) ;W = (D1\{0,1})× (D2\{0,1}) .
Now N (u) is determined by 1+Ann(u)\{0}, Ann(1−u)\{0} for every u as follows:
ZD(R)= ({0}×D2)∪(D1 ×{0}); Ann((0,y)) = D1 ×{0} for every y ∈ D2\{0};
Ann((x,0)) = {0}×D2 for every x ∈ D1\{0}; Hence, N ((0,1)) = ((D1\{0})×{1})∪ ({0}× (D2\{0}));
N ((1,0)) = ({1}× (D2\{0}))∪ ((D1\{0})×{0});
For y ∈ D2\{0,1}, N ((0,y)) = (D1\{1})×{1}; For x ∈ D1\{0,1}, N ((x,0)) = {1}× (D2\{1});
Therefore, from above discussion, for every x∈D1\(0,1}, y∈D2\(0,1},

Illustration 2.16 Let R = Z5 ×Z7. Then
S=((0}× (Z7\{0,1}))∪((Z5\{0,1})×{1}); T=((Z5\{0,1})× (0})∪((1}× (Z7\{0,1}));
W=(Z5\{0,1})×(Z7\{0,1}).
If x = (1,0), N (x) = ({1}×{2,3,4,5,6})∪ ({2,3,4}×{0}).
If x = (0,1), N (x) = ({2,3,4}×{1})∪ ({0}×{2,3,4,5,6}).
AlsoW contains 15 isolated vertices. Hence, P1 (R)∼= 2K1,5,3 ∪K15.
Proposition 2.17 If R = Z2 ×D, D ̸∼= Z2 is finite,
P1 (R)∼= 2K1,k, where k = |D|−2. Also, following statements hold:
(i) minimum and maximum degree are 1 and |D|−2, respectively.
(ii) domination number is 2.
(iii) Independence number is 2(|D|−2) .
(iv) number of connected components is 2.
(v) girth is ∞.
(vi) chromatic number is 2.
Proof: (i) R\{0,1}=B∪S∪T ; B=((0,1) ,(1,0)}; T=−; S={(1,b)|b ∈ D\{0,1}}.
If x∈T , N (x)={(0,1)} and N ((0,1))=T ; If x∈S, N (x)={(1,0)} and N ((1,0))=S.
Hence, P1 (R)∼= 2K1,m on (T ∪{(0,1)})∪ (S∪{(1,0)})with respective centers (0,1), (1,0), as desired.The degree of (0,1)

and that of (1,0) are same and is equal to |D|−2 and hence (i) is proved.
(ii) Every edge is incident either from (0,1) or from (1,0) and so {(0,1),(1,0)} is minimal dominating set. Hence,

domination number is 2.
(iii) X = T ∪S contains no edge and so X is maximal independent set. Hence, independence number is |X |, which is equal

to 2(|D|−2).
(iv) There are two connected components T ∪{(0,1)} and S∪{(1,0)}, which completes proof of (iv).
(v) P1(R) is acyclic and hence girth of P1(R) is ∞.
(vi) Let c1 and c2 denote two distinct colors. Define λ : R\{0,1}→ {c1,c2} by
−. Then λ is bijection on set of vertices and hence chromatic number is 2.
Proposition 2.18 If R1 has at least 3 elements and R = Z2 ×R1,
(i) P1(R) contains 2K1,|R1|−2 as its spanning subgraph.
(ii) P1(R) is connected if R1 has zero-divisors.
Proof: (i) As in previous proposition, if T denotes {0}×R1\{0,1}, S denotes {1}×R1\{0,1},
R\{0,1}= (T ∪{(0,1)})∪ (S∪{(1,0)}). Hence, P1(R) contains 2K1,|R1|−2 as its spanning subgraph.
(ii) From (i), T ∪{(0,1)} and S∪{(1,0)} are connected components. Suppose zz

′
= 0. Then (0,z) is in T and

(
1,1− z

′
)
is

in S∪{(1,0)}.
Also, (0,z)

(
1,1− z

′
)
=(0,z). Therefore, (0,z)⊓ (1,1− z′). Thus, P1(R) is connected.

Suppose that R1 has no zero-divisors. Then P1 (R)∼= 2K1,|R1|−2, which is not connected.
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Fig 2. P1 (Z2 ×Z8)

Illustration 2.19 If R = Z2 ×Z8,T = {0}×Z8\{0,1},S = {1}×Z8\{0,1} Also, z = 2 is zero-divisor in Z8 with 2(4) = 0
and (0,2)⊓ (1,5) as in Figure 2.

Proposition 2.20 Let x(̸=−1) be nontrivial element with 2x ̸= 0,1,−1. Then
(i) x⊓ (1− x) if either x ∈ Nil(R) or 1− x ∈ Nil(R) having nilpotency 2.
(ii) x⊓ (1+ x) if either x ∈ Nil(R) with 2 as nilpotency or x ∈U(R) with order 2.
(iii) x⊓ (1− x), x⊓ (1+ x) simultaneously if x ∈ Nil(R) with nilpotency 2.
(iv)( 1− x )⊓ ( 1+ x ) if either x is idempotent or x2 =−x.
(v) (−x)⊓ x if either x is idempotent or x(1+ x) = 0.
Proof: By choice of x, (1− x ), ( 1+ x ) and−x are distinct.
(i) Suppose x⊓ (1− x). I f x(1− x) = x, x2 = 0; I f x(1− x) = 1− x, (1− x)2 = 0
If x2 = 0, x(1− x)=x; If (1− x)2 = 0, 1− x = x− x2 = x(1− x), showing (1− x)⊓x.
(ii) Suppose x⊓(1+ x ). If x(1+ x)=x, x2=0; If x(1+ x) = 1+ x, x2 = 1.
If x2 = 0, x(1+ x) = x; If x2 = 1, x(1+ x) = 1+ x, showing(1+ x)⊓ x .
(iii) Proof follows from (i) and (ii)
(iv) Suppose (1− x)⊓ (1+ x). If (1− x)(1+ x) = 1− x, x is idempotent; If (1− x)(1+ x) = 1+ x, x2 =−x.
Suppose x2 = x. Then (1− x)(1+ x) = 1− x and, hence (1− x)⊓(1+ x).
Suppose x2 =−x. Then (1− x)(1+ x) = 1+ x and, hence ( 1− x )⊓( 1+ x ), as desired.
(v) Suppose (-x)⊓x. Then x(-x) =x or x(-x) =-x.
If x(−x) = x, x(1 + x) = 0; If x(−x) = −x, x is idempotent. If x is idempotent, x(−x) = −x. Also, if x(1+ x) = 0,

x(−x) =−x = x, which completes proof.
Remark 2.21 In Boolean ring R, (i) if x is nontrivial element, x is adjacent to every nontrivial element in xR other than x

itself.
(ii) nontrivial elements of R can be paired as (x,y), where x + y = 1 and xy = 0, called orthogonal complements. Also,

orthogonal complements are not adjacent.
Proposition 2.22 Let R be Boolean and (x,y) be pair of nontrivial orthogonal complements. Then
(i) z∈N (x) if ( 1− z ) ∈N(y).
(ii) N (x)∩ N(y) =∅.
(iii) Degree of x and that of y are same.
Proof: By hypothesis, x+y=1; xy = 0 ; 1− x, 1− y are nontrivial.
(i) Note that xz= x if y (1− z)=1− z. Also xz=z if y(1− z)=y. Hence (i) follows.
(ii) Suppose z ∈ N (x). If xz=z, yz = 0. If xz = x, (1−y)z = x. If yz = z (respectively, yz = y), x = 0 (respectively, z = 1), which

shows z ̸∈ N(y) and concludes N (x)∩N (y) =∅.
(iii) From (i), (ii), |N(x)|= |N(y)| .
Illustration 2.23 If R = Z3

2, then vertex set is
{(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1)}. The pairs of orthogonal complements and their neighbors are listed

below:
Proposition 2.24 Let R = Zk

2 . If k is 3, then P1(R) is
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Table 1. Pairs of orthogonal complements in R and their neighbors in P1 (R)
x y = 1− x N(x) N(y) deg(x) = deg(y)
(1,1,0) (0,0,1) (0,1,0) ,(1,0,0) (1,0,1) ,(0,0,1) 2
(1,0,1) (0,1,0) (1,0,0) ,(0,0,1) (0,1,1)(1,1,0) 2
(0,1,1) (1,0,0) (0,1,0) ,(0,0,1) (1,0,1) ,(1,1,0) 2

(i) Hamiltonian.
(ii) Eulerian.
(iii) P1(R) is 2- regular.
(iv) degree sequence is

(
2(6)

)
.

(v) bipartite graph.
(vi) planar.
If k is 4, then P1(R)
(vii) is bipartite.
(viii) Contains Hamiltonian cycle.
Proof: Suppose k is 3.Then using Table 1,P1(R) is drawn in Figure 3, fromwhich it is clear that (0,0,1)⊓(1,0,1)⊓(1,0,0)⊓

(1,1,0)⊓ (0,1,0)⊓ (0,1,1)⊓ (0,0,1), which is both Hamiltonian and Eulerian cycle. Degree of each vertex is found to be 2.
Hence,P1(R) is 2− regular and degree sequence is (2(6)). SinceP1(R) is 6−cycle, it is connected bipartite graph, which is planar,
proving (i) — (vi).

Fig 3. P1(Z3
2)

Suppose k is 4. Then
(vii) R\{0,1} = S1 U S2 U S3 is a partition, where S1 = {(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)} ;
S2 = {(1,1,0,0),(1,0,1,0),(1,0,0,1),(0,1,1,0),(0,1,0,1),(0,0,1,1)};
S3 = {(1,1,1,0),(1,1,0,1),(1,0,1,1),(0,1,1,1)}.
Also, Si contains no edge and every edge has one end in Si and other in S j for i ̸= j as shown in Figure 4. Hence, P1(R) is

3−partite.
(viii) P1(R) contains Hamiltonian cycle as drawn in Figure 5.
Boolean rings R are associated with connected P1(R).
Proposition 2.25 Let R = Zk

2 , k ≥ 3. Then
(i) P1(R) is connected.
(ii) diameter is either 3 or 4.
(iii) P1(R) is k-1 partite.
Proof: Let R = Zk

2 , k ≥ 3.
If k = 3, P1 (R)∼=C6 and hence it is connected and its diameter is 3.
Let k ≥ 4 and x,y be distinct nontrivial elements and w=x+y+xy. Now following two cases are considered.
Case (a) Suppose w is trivial.
Note that w ̸= 0. For, if w = 0, (1− x)(1− y) = 1, which is not possible since R has only one unit 1.
Suppose w=1.
If xy ̸= 0, x⊓ (xy)⊓ y is path between x and y.
If xy = 0, choose z, which is different from x, y with z=xr+yr′.
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Fig 4. P1 (Z4
2 )

Fig 5. Hamiltonian cycle in P1
(
Z4

2
)

Now xr
(

xr+ yr
′
)
=xr, yr

′
(

xr+ yr
′
)
=yr

′ and, hence x⊓ xr⊓ z⊓ yr
′ ⊓ y is path.

Case (b) Suppose w is nontrivial.
If w is different from x, y, x⊓w⊓ y is path.
If w is nontrivial and is x or y, x⊓ y.
Thus, P1(R) is connected and its diameter is 4, completing proof of (i) and (ii).
(iii) Obviously, nontrivial elements are zero-divisors, each of which is k−tuple with ’0’s and ’1s’. Define ∼ on R by x ∼ y if

number of ‘1’s in x and number of ‘1’s in y are same.
Then∼ is equivalence relation and R = ∪k

i=0Si and Si = [x]∼, x ∈ R, are mutually disjoint subsets of R.
Note that S0 = {(0,0, · · · ,0)} and Sk = ((1,1, · · · ,1)}. Therefore, Si, i ∈ {1, · · ·k−1} forms partition of vertices. If x, y ∈ Si

are k−tuples, they differ by at least one place and therefore xy is neither x nor y, which shows x, y are not adjacent. Hence, Si is
independent for every i, which shows that there are k−1 maximal independent sets, as desired.

3 Conclusion

Necessary condition forP1(R) to be connected is obtained. Connected projection graphs are obtained from local rings Z2k , F2[x]
(xk)

,
Z4[x]
(x2)

and also from nonlocal rings Z2 ×R1 with R1 having zero-divisors and Boolean rings Zk
2 , k ≥ 3. Connected projection

graphs are so special that whenever x⊓y, (1− x)⊓ (1− y) and vice versa. Unipotent units are non-isolated; Denseness of P1(R)
is assured by the unipotent property of units in R.
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