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Abstract
Objective/Background: In this paper, the concept of commutative ternary
right almost semigroups is introduced. The properties of ternary right
almost semigroups and commutative ternary right almost semigroups are
also discussed. Finally, regular only and the regularity are also explored in
ternary right almost semigroups.Methods: Properties of ternary right almost
semigroup have been employed to carry out this research work to obtain all
the characterizations of commutative ternary right almost semigroups, regular
and normal corresponding to that ternary semigroup. Findings: We call an
algebraic structure (S,+, .) is a ternary semigroup if (S, .) is a Semigroup, S is
a ternary semigroup under ternary multiplication. Let S be a groupoid. Then it
is a right almost semigroup (RA-semigroup), if we have a1 (a2a3) = a3 (a2a1) =

a2 (a1a3) , for all ai ∈ S,1 ≤ i ≤ 3. (i) RA-semigroup - R-cyclic if (a1a2)a3 =

(a3a1)a2 = (a2a3)a1, for all ai ∈ S,1 ≤ i ≤ 3. (ii) RA-semigroup - L-cyclic if a1(a2a3) =

a3(a1a2) = a2(a3a1), for all ai ∈ S,1 ≤ i ≤ 3. In this ternary structure we try to
study commutative ternary semigroups concept and obtain their properties.
Novelty: In this study, we define the notion of someproperties of commutative
ternary right almost semigroups, regular and normal. We also find some of
their interesting results.
AMS Subject Classification code: 20M12, 20N10
Keywords: Ternary semigroups; Ternary right almost semigroup;
Commutative ternary right almost semigroups; Quasi- commutative ternary
right almost semigroups; Regular ternary right semigroups and Normal
ternary right almost semigroups

1 Introduction

A. Anjaneyulu (1) extended the ideal theory of commutative semigroup to duo
semigroup. D.D. Arlderson and E.W. Johnson (2) used the term semigroup to mean a
commutative multiplicative semigroup with 0 and 1.Themultiplicative theory of ideals
in a commutative is a highly developed area of research in ternary semigroup. Ronnason
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Chinram,Wichayaporn Jantanan, Natee Raikham, Pattarawan Singavananda (3) introduced covered left ideals and covered right
ideals of a ternary semigroup. We here study some results of a ternary semigroup containing covered left ideals and give the
conditions for every proper left ideal of a ternary semigroup to be a covered left ideal. The theory of ternary algebraic system
was introduced by D.H. Lehmer (4) in 1932, but earlier such structures were studied by Kasner who gave the idea of n− ary
algebras. (5) F.M. Sioson introduced the notion of regular ternary semigroup. Y. Sarala, A. Anjaneyulu and D. Madhusudhana
Rao initiated the study of quasi commutative, pseudo commutative and normal ternary semigroups. We define the notion of
ternary semigroup to some properties of commutative ternary right almost semigroups, regular and normal. We also find some
of their interesting results.

2 Methodology
In this article, some properties of commutative ternary right almost semigroups, some characterizations of the quasi
commutative ternary right almost semigroups, regular ternary right almost semigroups and normal ternary right almost
semigroups are discussed.

3 Results and Discussion

This section the deals preliminary concepts and some basic results of ternary right almost semigroups (6–8).
Definition 3 .1. A class S with an operation between triplets of elements is called a triplex if the following postulates hold.
Postulate I.(a.b.c)d.e = d.(a.b.c).e = d.e(a.b.c)

= (a.b.d).c.e = (a.b.e).c.d = (a.c.d)b.e

= (a.c.e).b.d = (a.d.e)b.c = (b.c.d).a.e

= (b.c,e).a.d = (b,d.e).a.c = (c.d.e).a.b

provided a,b,c,d,e and all the expressions belong to S.
Postulate II. If a,b,c ∈ S, then there is an element x of S such that a.b.x = c.
The number of elements in S is called the order of triplex and is specified, when necessary, by adding one of the postulates:
Postulate III1 . S contains ′ n ′ elements.
Postulate III2 .S contains infinitely many elements.
According as III1, or III2 holds, the triplex is called finite or infinite.
Definition 3.2.A ternary semigroup is a nonempty set S togetherwith a ternary operation (a1,a2,a3)→ (a1a2a3) , satisfying

the associative law of the first kind

((a1a2a3)(a4a5)) = (a1(a2a3a4)a5) = (a1a2(a3a4a5))

for all ai ∈ S,1 ≤ i ≤ 5.
Definition 3.3. Let S be a groupoid. Then it is a right almost semigroup (RA-semigroup), if we have

a1 (a2a3) = a3 (a2a1) = a2 (a1a3) ,

for all ai ∈ S,1 ≤ i ≤ 3.
(i) RA-semigroup - R-cyclic if (a1a2)a3 = (a3a1)a2 = (a2a3)a1, for all ai ∈ S,1 ≤ i ≤ 3.
(ii) RA-semigroup - L-cyclic if a1(a2a3) = a3(a1a2) = a2(a3a1), for all ai ∈ S,1 ≤ i ≤ 3.
Remark 3.4. A groupoid S is medial if for all ai ∈ S,1 ≤ i ≤ 4, S satisfies medial (or) bi-symmetry law,
(i.e)(a1a2)(a3a4) = (a1a3)(a2a4) , for all ai ∈ S,1 ≤ i ≤ 4.

Example 3.5 . Let
{[

0 0
0 0

][
1 0
0 1

][
1 0
0 0

][
0 1
0 0

][
0 0
1 0

][
0 0
0 1

]}
.

Then S is a ternary semigroup under usual multiplication.
Example 3.6 . Let S = {0,1,2,3,4,5} and abc = (a ∗b)∗ c for all a,b,c ∈ S, where ′∗′ is defined in the following table:
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∗ 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 1 1 1 1
2 0 1 2 2 1 1
3 0 1 1 1 2 2
4 0 1 4 5 1 1
5 0 1 1 1 4 5

Then (S, ∗) is a ternary semigroup.
Definition 3.7. A ternary right almost semigroup S is said to be commutative if
abc = bca = cab = bac = cba = acb for all a,b,c ∈ S.
A ternary right almost semigroup S is said to be quasi commutative if for any a,b,c ∈ S, there exists a natural number ′ n ′

such that

abc = bnac = bca = cnba = cab = ancb.

Definition 3.8. A ternary right almost semigroup S is said to be normal if abS = Sab for all a,b ∈ S.
Definition 3.9. A ternary right almost semigroup S is said to be right pseudo commutative if
abcde = abdec = abecd — abdce = abedc = abced for all a,b,c,d,e ∈ S.
Example 3.10. Let S = {a,b,c,d,e} be a set. Define a ternary operation ‘.’ on S. where ′.′ is defined by the following table:

. a b c d e
a a a a a a
b b a a a a
c a a a a a
d a a a a a
e a b c d e

Then (S, .) is a right pseudo commutative ternary right almost semigroup.
Definition 3.11. An element ‘a′ of a ternary right almost semigroup S is said to be right identity if saa = s for all s ∈ S.
Definition 3.12. An element ′a′ of ternary right almost semigroup S is said to be identity or unital if saa = s for all s ∈ S.
Example 3.13. Let Z−

0 be the set of all non-positive integers. Then with the usual ternary operation ‘.’, Z−
0 forms a ternary

right almost semigroup with the identity element−1.
Theorem 3.14. Any ternary right almost semigroup S has almost one identity.
Note 2.The identity of ternary right almost semigroup is usually denoted by ′1′ (or) ′e′.
Definition 3.15. (9) An element ′a′ of a ternary right almost semigroup S is said to be right zero of S if bca = a for all b,c ∈ S.
A ternary right almost semigroup S is said to be right zero ternary right almost semigroup if every element of S is right zero

element.
Definition 3.16. An element ′a′ of a ternary right almost semigroup S is said to be zero of S if bca = a for all b,c ∈ S.
A ternary right almost semigroup S is said to be zero ternary right almost semigroup if every element of S is zero element.
Example 3.17. Let 0 ∈ S and ∥S∥ > 2. Then S with the ternary operation ′.′ defined by
x.y.z =− is ternary right almost semigroup with 0 (zero).
Result 3.18. Any ternary right almost semigroup S has at most one nonzero element.
Definition 3.19 . An element ′a′ of a ternary right almost semigroup S is said to be an idempotent if a3 = a.
Note 3.The set of all idempotent elements in a ternary right almost semigroup S is denoted by I(S).
Definition 3.20.An element ′a′of a ternary right almost semigroup S is said to be a proper idempotent element provided ′a′

is an idempotent and which is not an identity of S when identity exists.
Definition 3.21.A ternary right almost semigroup S is said to be an idempotent ternary right almost semigroup or a ternary

band if every element of S is an idempotent.
Definition 3.22 . A ternary right almost semigroup S is said to be a right cancellative if
xab = yab => x = y.
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Definition 3.23 .An element ′a′ of a ternary right almost semigroup S is said to be a regular if there exists x,y ∈ S such that
axaya = a.

A ternary right almost semigroup S is said to be a regular ternary right almost semigroup if every element of S is regular.
Result 3.24. Every idempotent element of a ternary right almost semigroup S is regular.
Definition 3.25. An element ′a′ of a ternary right almost semigroup S is said to be a right regular if there exists x,y ∈ S such

that a = xya2.
An element ‘a’ of a ternary right almost semigroup S is said to be intra regular if there exists x,y ∈ S such that a = xa5y.
Definition 3.26 .An element ′a′ of a ternary right almost semigroup S is said to be completely regular if there exists x,y ∈ S

such that axaya = a and axa = aax = xaa = aya = aay = yaa = axy = yxa = xay = yax .
A ternary right almost semigroup S is said to be completely regular ternary right almost semigroup if every element of S is

completely regular.
Result 3.27. Let S be a ternary right almost semigroup and a ∈ S. If ′a′is a completely regular element in S, then ‘ a ′ is right

regular in S.
Result 3.28. If S is a commutative ternary right almost semigroup, then S is a quasi-commutative ternary right almost

semigroup.
Result 3.29. If S is a quasi-commutative ternary right almost semigroup, then S is a normal ternary right almost semigroup.
Result 3.30. Every commutative ternary right almost semigroup S is a normal ternary right almost semigroup.
Result 3.31. If S is a commutative ternary right almost semigroup, then S is a pseudo commutative ternary right almost

semigroup.

4 Ternary right almost Semigroups Satisfying the Identity abc=ba

In this section we prove some properties of ternary right almost semigroups satisfying the identity abc = ba (10–12).
Theorem 4.1. A quasi-commutative ternary right almost semigroup S is a commutative ternary right almost semigroup if

all elements of S are idempotent.
Proof. Let S be a quasi-commutative ternary right almost semigroup.
Then

abc = bnac−bca = cnba = cab = ancb (1)

for all a,b,c ∈ S,
where ′n′ is a natural number.
Since a ∈ S ⇒ a3 ∈ S
⇒ aa3 = aa ⇒ a4 = a2 ⇒ a5 = a3 = a ⇒ a5 = a, a7 = a, . . . .

In generally we write this a2n+l = a for n = 1,2,3, . . . .
From result 3.21, every idempotent element of S is regular.
Here ′a′ is regular. Then there exists x,y ∈ S such that a = axaya .
Now, we have to prove that S is commutative,
i.e., abc = bca = cab = bac = cba = acb for all a,b,c ∈ S .
From Equation (1) it is enough to prove that
bnac = bac, cnba = cba, ancb = acb for n = 1,2,3, ....
Consider bnac = bbn−1ac,

= b2n+1bn−1ac, (since b = b2n+1)
= bb3n−1ac,
= bb3n−2bac,
= bb3n−2b2n+1ac,
= bb3n−2bb2nac,
= bb3n−2bb2n−1bac,
= bxbybac, (x = b3n−2 and y = b2n−1)
= bac (Since ‘b’ is regular)

bnac = bac,

Similarly, cnba = cba, ancb = acb.
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Therefore, abc = bca = cab = bac = cba = acb for all a,b,c ∈ S .
Hence, S is a commutative ternary right almost semigroup.
Theorem 4.2. If a regular ternary right almost semigroup S satisfies the identity abc = ba for all a,b,c ∈ S, then S is a

commutative ternary right almost semigroup.
Proof. Let S be a regular ternary right almost semigroup. Then for every a ∈ S, there exists x,y ∈ S such that a = axaya.

Given that S satisfies the identity abc = ba for all a,b,c ∈ S, we have to prove that S is a commutative ternary right almost
semigroup,

i.e., abc = bca = cab = bac = cba = acb for all a,b,c ∈ S .
Consider abc = a(bcx)cyc ( c = cxcyc)

= ac(bcy)c (bcx = cb )

= (ac)cbc ( bcy = cb )

= c(abc)bc (ac = cab)

= cb(abc) (abc = ba)

= (cb)ba (abc = ba)

= b(cab)a (cb = bca)

= (ba)ca (cab = ac)

= ab(xca) ( f or all x ∈ S, ba = abx)

= a(bcx) (xca = cx )

= acb (bcx = cb)

abc = acb (1)

Consider acb = (acb)ubvb = c(aub)vb(b = bubvb and acb = ca)

= c(uav)b (aub = ua)

= ca(ub) (uav = au)

= c(abu)v (ub = buv)
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= c(bav) (abu = ba)

= cab

acb = cab (2)

Consider cab = (cab)ubvb = a(cub)vb (b = bubvb and cab = ac)

= a(ucv)b (cub = uc)

= ac(ub) (ucv = cu)

= a(cbu)c (ub = buc)

= (abc)c (cbu = bc)

= bac (abc = ba)

cab = bac (3)

Consider bac = b(acx)cyc = bca(cy)c (c = cxcyc and acx = ca)

= bc(ayc)xc (cy = ycx)

= (bcy)axc (ayc = ya)

= c(bax)c (bcy = cb)

= c(abc) (bax = ab)

= cba (abc = ba)

bac = cba (4)
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Consider cba = (cba)xaya = b(cxa)ya (axaya = a and cba = bc )

= b(xcy)a (cxa = xc )

= bc(xa) (xcy = cx)

= b(cax)y (xa = axy)

= b(acy) (cax = ac)

= bca (acy = ca )

cba = bca (5)

From Equations (1), (2), (3), (4) and (5) we get abc = acb = cab = bac = cba = bca implies that abc = bca = cab =
bac = cba = acb for all a,b,c ∈ S.

Therefore, S is a commutative ternary right almost semigroup.
Theorem 4.3. If a regular ternary right almost semigroup S satisfies the identity abc = ba for all a,b,c ∈ S, then S is right

regular.
Proof. Let S be a regular ternary right almost semigroup. Then for any a ∈ S, there exists x,y ∈ S such that a = axaya.
Given that S satisfies the identity abc = ba for all a,b,c ∈ S,
i.e., S is commutative, We have to prove that S is right regular. i.e., for any a ∈ S, there exists x,y ∈ S such that a = xya2.
Consider a = axaya = a(xya)a (aya = yaa)

= (ayx)a (xya = yx)

= xyaa (ayx = xay)

= xya2

a = xya2 for all a ∈ S. Therefore, S is right regular.
Theorem 4.4. If a regular ternary right almost semigroup S satisfies the identity abc = ba for all a,b,c ∈ S, then S is

completely regular.
Proof. Let S be a regular ternary right almost semigroup. Then for any a ∈ S, there exist x,y ∈ S such that a = axaya. Given

that S satisfies the identity abc = ba for all a,b,c ∈ S,
from theorem 4.2, S is commutative, and we have to prove that S is completely regular,
i.e., if a ∈ S, then there exist x,y ∈ S such that a = axaya and

axa = aax = xaa = aya = aay = yaa = axy = yxa = xay = yax,

By the regularity of S we have axaya = a for all a ∈ S. To prove that

axa = aax = xaa = aya = aay = yaa = axy = yxa = xay = yax,
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Consider axa = axa(yax)a ( a = axaya )

= ax(aay)a (yax = ay )

= ax(aya)a (aay = aya)

= a(xya)aa (aya = yaa)

= a(yxa)a (xya = yx )

= a(xya) (yxa = xy)

= ayx (xya = yx )

axa = ayx (1)

Consider ayx = axayayx ( a = axaya )

= aax(ayx) (xay = ax )

= aa(xya) (axy = ya)

= a(ayx) (xya = yx)

= aya ( ayx = ya)

ayx = aya (2)

From Equations (1) and (2) we get axa = ayx = aya

=> axa = aya = ayx (3)

Since S is commutative, from Equation (3) we get,

axa = aax = xaa = aya = aay = yaa = axy = yxa = xay = yax.

Therefore, S is completely regular.
Theorem 4.5. If a regular ternary right almost semigroup S satisfies the identity abc = ba for all a,b,c ∈ S, then S is right

cancellative.
Proof. Let S be a regular ternary right almost semigroup satisfying the identity abc = ba for all a,b,c ∈ S.
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We have to prove that S is right cancellative,
i.e., if xab = yab => x = y for all a,b,c, x, y ∈ S.
Consider xab = yab

xux(vxa)b = ypy(qya)b (x = xuxvx and y = ypyqy )

xwc(xvb) = ypyiyqb) f or all u,v, p,q ∈ S.

xuxvx = ypyqy

x = y.

Therefore, S is right cancellative.
Corollary 4.6. If a regular ternary right almost semigroup S satisfies the identity abc = ba for all a,b,c ∈ S, then S is quasi

commutative.
Proof. Let S be a regular ternary right almost semigroup satisfying the identity abc = ba for all a,b,c ∈ S. Then from

theorem 4.2, S is commutative. From result 3.31, every commutative ternary right almost semigroup is a quasi-commutative
ternary right almost semigroup. Hence, S is quasi commutative.

Corollary 4.7. If a regular ternary right almost semigroup S satisfies the identity abc = ba for all a,b,c∈ S, then S is normal.
Proof. Let S be a regular ternary right almost semigroup satisfying the identity abc = ba for all a,b,c ∈ S. Then from

corollary 4.6, S is quasi commutative. From result 3.29, every quasi-commutative ternary right almost semigroup is normal.
Hence, S is normal.

Corollary 4.8. If a regular ternary right almost semigroup S satisfies the identity abc = ba for all a,b,c ∈ S, then S is pseudo
commutative.

Proof.Let S be a regular ternary right almost semigroup satisfying the identity abc = ba for all a,b,c∈ S.Then from theorem
4.2, S is commutative. Again, from result 3.31, every commutative ternary right almost semigroup is a pseudo commutative
ternary right almost semigroup. Hence, S is pseudo commutative.

Theorem4.9. If a right pseudo commutative ternary right almost semigroup S satisfies the identity abc= ba for all a,b,c∈ S,
then S is commutative.

Proof. Let S be a right pseudo commutative ternary right almost semigroup. Then for all a,b,c ∈ S such that

abcde = abdec = abecd = abdce = abedc = abced (1)

we have to prove that S is commutative. Since S satisfies the identity abc = ba for all
a,b,c ∈ S,
we Consider a(bcd)e = a(cbe) [ bed = cb]

= abc (cbe = bc)

abcde = abc (2)

Consider (ab)dec = b(acd)ec [ ab = bac ]

= bca(ec) [ acd = ca ]

= (bca)ce f [ec = ce f ]

https://www.indjst.org/ 4263

https://www.indjst.org/


Ramesh & Mahendran / Indian Journal of Science and Technology 2023;16(45):4255–4266

= cb(ce f ) [bca = cb]

= cbe(ca f ) [ ce = eca ]

= cb(eac) [ca f = ac]

= c(bae) [eac = ae ]

= cab [bae = ab ]

abdec = cab (3)

Consider ab(ecd) = a(bce) [ecd = ce]

= acb

abecd = acb (4)

Consider (abd)ce = b(ace) [ abd = ba]

= bca [ace = ca]

abdce = bca (5)

Consider (ab)edc = b(ace)dc [ ab = bac ]

= (bc)adc [ace = ca]

= cb(ead)c [bc = cbe]

= c(bae)c [ead = ae]

= c(abc) [bae = ab]

= cba [abc = ba]
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abedc = cba (6)

Consider ab(ced) = (abe)c [ ced = ec]

= bac

abced = bac (7)

Substituting Equations (2), (3), (4), (5), (6) and (7) in Equation (1)
we have that abc = cab = acb = bca = cba = bac implies that abc = bca = cab = bac = cba = acb for all

a,b,c ∈ S.
Therefore, S is commutative.
Theorem 4.10. If a pseudo commutative ternary right almost semigroup S satisfies the identity abc = ba for all a,b,c ∈ S,

then S is commutative.
Proof.The theorem follows from the above three theorems.
Corollary 4.11. If a pseudo commutative ternary right almost semigroup S satisfies the identity
abc = ba for all a,b,c ∈ S, then S is quasi commutative.
Proof. Let S be a pseudo commutative ternary right almost semigroup and S satisfies the identity abc = ba for all a,b,c ∈ S.

Then from theorem 4.10, S is commutative. From result 3.31, every commutative ternary right almost semigroup is quasi
commutative. Hence S is quasi commutative.

Corollary 4.12. If a pseudo commutative ternary right almost semigroup S satisfies the identity
abc = ba for all a,b,c ∈ S, then S is normal.
Proof. Let S be a pseudo commutative ternary right almost semigroup satisfying the identity abc = ba for all a,b,c ∈ S.

Then from corollary 4.11, S is a quasi-commutative ternary right almost semigroup. From result 3.29, every quasi-commutative
ternary right almost semigroup is normal. Hence, S is normal.

5 Conclusion
The properties of ternary semigroups, ternary right almost semigroups, commutative ternary right almost semigroups, regular
and normal ternary right almost semigroups were discussed. We also proved that a regular ternary right almost semigroup
satisfying the identity abc = ba for all a,b,c ∈ S, is a commutative ternary right almost semigroup, completely regular, right
cancellative, quasi-commutative and pseudo commutative ternary right almost semigroup satisfying the identity abc = ba for
all a,b,c ∈ S, is commutative.
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