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Abstract
Objective: To introduce a new class of sets namely Micro-ĝπ -closed (briefly
µ ĝπ -closed) sets in Micro topological spaces.Methods: The study investigated
the concepts of µ ĝπ -closed sets and brief study of µ ĝπ -closed set was made.
Findings:We derived the inter-relations between µ ĝπ -closed sets with already
existing Micro closed sets in Micro topological spaces and found some of its
basic properties. Novelty: Application of µ ĝπ -sets to introduce a new class of
space namely µT̂1/2 -space.
Keywords: Micro open set, Micro-gs open set, µ ĝπ-closed set, µ ĝπ- open set,
µT̂1/2-space

1 Introduction

Micro topology was introduced by Sakkraiveeranan Chandrasekar (1) and he also
introduced the concepts of Micro pre-open and Micro semi-open sets. Recently, we
initiated the concept of ĝπ- closed sets in topological spaces (2) and also studied its
properties. In this paper, we have introduced a new class of Micro closed sets called
Micro ĝπ -closed sets and its properties are studied inMicro topological spaces. Further,
we have derived relations between Micro ĝπ- closed sets with already existing various
Micro closed sets. Later, we have defined and analysed µT̂1/2- space.

2 Preliminaries
In this paper, (Ω,N,M) denote the micro topological spaces, where N = τR(X), M =
µR(X) andMTS denotemicro topological space appropriately. For a subsetP of a space,
clµ(P) and intµ(P) denotes the closure of P and the interior of P respectively.

Definition 2.1. (1) Let (U,τR(X)) be a Nano topological space. Then µR (X) = {N ∪(
N

′ ∩µ
)

: N,N
′ ∈ τR (X)} and µ ̸= τR(X) and µR (X) satisfies the following axioms:

1. U and φ are in µR (X)
2. The union of the elements of any sub-collection of µR (X) is in µR (X)
3.The intersection of the elements of any finite sub-collection of µR (X) is in µR (X)
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Then, µR (X) is called the Micro topology onU with respect to X . The triplet (U,τR (X) ,µR (X)) is Micro topological space
and the elements of µR (X) are Micro open sets and the complement of a Micro open set is called a Micro closed set.

Definition 2.2. Let (Ω,N,M) be a Micro topological space. A subset of A is
i. Micro-sg-closed, if sclµ(A) ⊆ L, A ⊆ L and L is Micro- s- open inU . (2)
ii. Micro-gs-closed, if sclµ(A) ⊆ L, A ⊆ L and L is Micro-open inU . (2)
iii. Micro-αg-closed, if αclµ(A) ⊆ L, A ⊆ L and L is Micro- open inU . (3)
iv. Micro-gα-closed, if αclµ(A) ⊆ L, A ⊆ L and L is Micro- α- open inU . (3)
v. Micro-g∗-closed, if clµ(A) ⊆ L, A ⊆ L and L is Micro- g-open inU . (4)
vi. Micro-g-closed, if clµ(A) ⊆ L, A ⊆ L and L is Micro- open inU . (5)
vii. Micro-ψ-closed, if sclµ(A) ⊆ L, A ⊆ L and L is Micro-sg−open inU . (6)

3 Micro- ĝπ -Closed Set
In this section, we have derived the characteristics of Micro- ĝπ (shortly µ ĝπ) closed set and its inter-relations with existing
other Micro closed sets.

Definition 3.1. Consider (Ω,N,M) as MTS and P ⊆ Ω . Then P is defined as µ ĝπ - Closed set if πclµ(P) ⊆ L whenever
P ⊆ L and L is Micro-gs -open in Ω.

Theorem 3.2. Every Micro- π - closed set is µ ĝπ -closed set but not conversely.
Proof. Consider a Micro-π -closed set P in Ω such that P ⊆ L where L is a µgs - open. Therefore, P =πclµ(P) ⊆ L. Thus,

P is µ ĝπ -closed set.
Example 3.3. Consider Ω = {u,v,w,x} with Ω/R = {{u}, {w}, {v,x}} . Let X = {u,v} ⊆ Ω , then N =

{Ω, φ , {u}, {u,v,x}, {v,x}} . If µ = {w} , then M = {Ω, φ, {u}, {w}, {u,w}, {v,x}, {v,w,x}, {u,v,x} . Though the
set P = {u,w,x} is µ ĝπ-closed it is not Micro-π -closed.

Theorem 3.4. Every µ ĝπ - closed set is Micro-g -semi closed set but not conversely.
Proof. Consider a µ ĝπ -closed set P in Ω such that P ⊆ L where L is Micro-gs- open. Since πclµ(P) ⊆ L, sclµ(P) ⊆

πclµ(P) ⊆ L. Hence, P is Micro-gs - closed set.
Example 3.5. Let Ω = {u,v,w,x} with Ω/R = {{u}, {w}, {v,x}} . Let X = {v,x} ⊆ Ω , then N = {Ω, φ, {v,x} . If

µ = {v} , then M = {Ω, φ, {v}, {v,x} . Though the set P = {u} is Micro-gs – closed, it is not µ ĝπ -closed.
Theorem 3.6. Every µ ĝπ - closed set is Micro- g -closed set but not conversely.
Proof. Consider a µ ĝπ -closed set P in Ω such that P ⊆ L where L is a µg -semi open. We know that every Micro open set

is Micro-g-semi open, so πclµ(P) ⊆ L. Therefore, clµ(P) ⊆ πclµ(P) ⊆ L. Thus, P is Micro-g-closed set.
Example 3.7. Let Ω = {u,v,w,x}, Ω/R = {{u}, {w}, {v,x}} . Let X = {u,v} ⊆ Ω , then N =

{U, φ, {u}, {u,v,x}, {v,x}} . If µ = {w} , then the M = {Ω, φ, {u}, {w}, {u,w}, {v,x}, {v,w,x}, {u,v,x} . Though
the set P = {u,v} is Micro-g –closed, it is not µ ĝπ -closed.

Theorem 3.8. Every µ ĝπ - closed set is Micro-g∗ -closed set but not conversely.
Proof. Consider a µ ĝπ -closed set in Ω such that P ⊆ L where L is a µg -semi open. We know that every Micro-g-open set

Micro-gs -open, so πclµ(P) ⊆ L. Therefore, clµ(P) ⊆ πclµ(P) ⊆ L. Thus, P is µg∗ -closed set.
Example 3.9. Let Ω = {u,v,w,x} with Ω/R = {{w}, {x}, {u,v}} . Let X = {w} ⊆ Ω , then N = {Ω, φ, {w}}. If

P = {v} , then M = {Ω, φ , {v} , {w} ,{v, w}} . Then A = {u,v,x} is Micro-g∗ -closed but it is not µ ĝπ –closed.
Theorem 3.10. Every µ ĝπ - closed set is Micro-sg -closed set but not conversely.
Proof. Consider a µ ĝπ -closed set P in Ω such that P ⊆ L where L is a µg -semi open. We know that every Micro-s-open

set is Micro-gs-open, so πclµ(P) ⊆ L. Then, sclµ(P) ⊆ πclµ(P) ⊆ L. Thus, P is Micro-sg -closed set.
Example 3.11. Let Ω = {u,v,w,x} with Ω/R = {{w}, {x}, {u,v}} . Let X = {w} ⊆ Ω , then N = {Ω, φ, {w}} . If

µ = {w} , then M = {Ω, φ, (v} , (w} ,{v,w}}. Though the set P = {l} is Micro-sg –closed, it is not µ ĝπ -closed.
Theorem 3.12. Every µ ĝπ - closed set is Micro-αg -closed set but not conversely.
Proof. Consider µ ĝπ -closed set in Ω such that P ⊆ L where L is a µg - semi open. We know that every Micro-open set is

Micro-gs -open, so πclµ(P) ⊆ L. Then, sclµ(P) ⊆ πclµ(P) ⊆ L. Thus, P is Micro-αg -closed set.
Example 3.13. Let Ω = (u,v,w,x} with Ω/R = {{u}, {v}, {w,x}} . Let = {u,w} ⊆ Ω, then τR(X) =

{Ω, φ , {u}, {u,w,x}, {w,x}} . If = {w}, then M = {Ω, φ , {u}, {w}, {u,w}, {v,x}, {v,w,x}, {u,v,x} . Though the set
P = {u,v,x} is Micro-αg –closed, it is not Micro-ĝπ -closed.

Remark 3.14. The following Implication diagram shows that the inter-relations with some other existing sets.
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4 Characteristics of µ ĝπ- Closed Set
Theorem 3.15. The union of two µ ĝπ -closed subset of (Ω,N,M) is also a µ ĝπ -closed.

Proof. Consider two µ ĝπ -closed sets P and Q in (Ω,N,M). L is Micro g -semi open sets in Ω containing P ∪ Q . Then,
πclµ(P∪Q) ⊆ πclµ(P) ∪ πclµ(P) ⊆ L. Thus, P∪Q is µ ĝπ closed.

Remark 3.16. The intersection of two µ ĝπ -closed sets in (Ω,N,M) need not be µ ĝπ -closed in (Ω,N,M)
Example 3.17. Consider Ω = {w,x,y,z} with Ω/R = ((w} , (y} , (x,z}} . Let X = {w,x} ⊆ Ω , then N =

{Ω, φ , {w}, {w,x,z}, {x,z}}. If µ = {y} then M = {Ω, φ , {w}, {y}, {w,y}, {x,z}, {x.y,z}, {w,x,z}}. Then the sets
{w,y,z} and {w,x,z} are µ ĝπ -Closed sets but their intersection {z} is not Micro- ĝπ -Closed.

Theorem 3.18. If P is µ ĝπ - closed in Ω and P ⊆ Q ⊆ πclµ(P), then Q is also µ ĝπ closed in Ω.
Proof. Consider a µ ĝπ- closed set P in X here with P ⊆ Q ⊆ πclµ(P) ⊆ L. Suppose that L is µgs-open of X with Q ⊆ L,

then P ⊆ L ⇒ πclµ(P) ⊆ L. So πclµ(Q) ⊆ L and Q is µ ĝπ - closed in Ω.
Theorem 3.19. IfP is a µ ĝπ - closed set ofΩ if and only if πclµ (P)−P does not consists of any non-emptyMicro-gs - closed.
Proof. Suppose there exist a non-empty Micro-gs- closed setV of Ω such that V ⊆ πclµ (P)−P, thenV ⊆ πclµ(P) . Since

P is µ ĝπ - closed and Ω − V Micro-gs-open, πclµ (P) ⊆ Ω − V . This implies V ⊆ Ω− πclµ (P). So V ⊆(πclµ (P)−P) ∩
(Ω− πclµ(P) )⊆πclµ (P) ∩ (Ω− πclµ(P) ) = φ ⇒ V = φ .

Conversely, assume that πclµ (P)−P consists of no non-empty Micro-gs- closed such that P ⊆ L where L is Micro-gs -
open set. Assume that πclµ is not in L. Then πclµ(P) ∩ Lc is a non-empty Micro-gs-closed set in πclµ (P)−P which is a
contradiction. Then πclµ(P) ⊆ L and hence P is µ ĝπ - closed set.

Theorem 3.20. The intersection of Micro-gs - closed and µ ĝπ –closed is always µ ĝπ -Closed.
Proof. Consider µ ĝπ –closed setP and µgs – closed setV .This impliesU is µgs – open setwithP∩V ⊆U .Then,P ⊆U∪V c

is µgs -open. Since P is µ ĝπ –closed, πclµ(P) ⊆ U ∪V c ⇒ πclµ(P) ⊆ V ⊆ U .Thus, πclµ(P∩V )⊆ πclµ(P)∩πclµ(V ) ⊆
πclµ(P)∩V ⊆U.Hence, P∩V is µ ĝπ -closed.

Definition 3.21. Let P ⊆ Y ⊆ Ω . Then P is µ ĝπ – closed with relative to Y if πclµY (A) ⊆ U where A ⊆ U and U is
Micro- g – semi open in Y .

Theorem 3.22. Let P ⊆ Y ⊆ Ω and suppose that P is µ ĝπ closed in X . Then P is µ ĝπ - closed with relative to Y .
Proof. Let us assume thatP ⊆ Y ∩Z where Z is µgs-open inX . P ⊆ Z ⇒πclµ(P) ⊆ Z .This implies that πclµ(P) ∩ Y ⊆

Z ∩ Y . Thus, P is µ ĝπ – closed relative to Y.
Definition 3.23. A subset P in Ω is defined as µ ĝπ -open in Ω if Ω−P is µ ĝπ closed in Ω.
Theorem 3.24. If πintµ(P) ⊆ Q ⊆ P and P is µ ĝπ -open in Ω, then Q is µ ĝπ -open in Ω.
Proof. Suppose that πintµ(P) ⊆ Q ⊆ P and P is µ ĝπ -open in Ω. Then Ω \ P ⊆ Ω \ Q ⊆ πclµ(Ω\ P). Since Ω \ P is

µ ĝπ closed in Ω implies that Ω \ Q is µ ĝπ closed in Ω. Hence, Q is µ ĝπ in Ω.
Theorem 3.25. Consider a MTS Ω and S,T ⊆ Ω . If S is µ ĝπ -open and πintµ(T ) ⊆ S, then S ∩ T is µ ĝπ -open.
Proof. Given T is µ ĝπ-open and πintµ(T ) ⊆ S, πintµ (T )⊆ S ∩ T ⊆ T . Hence, S ∩ T is µ ĝπ -open.
Theorem 3.26. A set P is µ ĝπ -open in Ω if and only ifV ⊆ πintµ (P) wheneverV is Micro-gs - closed in Ω andV ⊆ P.
Proof. Suppose V ⊆ πintµ (P) , V is µgs -closed in Ω and V ⊆ P. Let Ω − P ⊆ G where G is µgs- open in Ω. So that

G ⊆ Ω−P and Ω−G ⊆ πintµ(P) . Thus, Ω−P is µ ĝπ -closed in Ω. Hence, P is µ ĝπ -open in Ω.
Conversely, suppose that P is µ ĝπ -open, V ⊆ P and V is µgs - closed in Ω. Then Ω −V is Micro-gs-open and

Ω − P ⊆ Ω − V . But πintµ (Ω − P) = Ω− πint (P) .HenceV ⊆ πintµ(P).
Theorem 3.27. If P is µ ĝπ - open in Ω, thenU = Ω whenU is Micro-gs -open and πintµ(P) ⊆ Pc ⊆ U .
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Proof. Given P is a µ ĝπ open andU is a Micro-gs - open, πintµ(P) ∪ Pc ⊆ U . This givesUc ⊆ (X − πintµ(P) ) ∩ P =
πintµ(Pc) −Pc. SinceUc is µgs -closed and P is µ ĝπ - open. We haveUc = φ . Thus,U = Ω .

Definition 3.28. Let (Ω,N,M) be a MTS. Then Ω is said to be µT̂1/2 -space if every µ ĝπ -closed set in Ω is Micro-π -closed
in Ω.

Theorem 3.29. For a MTS (Ω,N,M) the following conditions are equivalent.
(i) (Ω,N,M) is a µT̂1/2 -space
(ii) Every singleton set {p} is either Micro-gs - closed or Micro-π -open.
Proof. (i) =) (ii) Take p ∈ Ω . If {p} is not a Micro-gs- closed set of (Ω,N,M). Then Ω − {p} is not a Micro-gs- open

set. Thus, Ω − {p} is an µ ĝπ -Closed set of (Ω,N,M). Since (Ω,N,M) is µT̂1/2 -space, Ω− {p} is Micro-π -closed set of
(Ω,N,M) , That is {p} is Micro-π -open set of (Ω,N,M).

(ii) =) (i) Let P be an µ ĝπ -Closed set of (Ω,N,M). Let p ∈ πclµ(P). By (ii), {p} is either Micro-gs -closed or Micro-π
-open.

Case(i): If {p} is Micro-gs -closed and p ̸∈ P . Then πclµ(P) − P contains a non-empty Micro-gs- closed set. This
contradicts Theorem 3.19 as P is a Micro-gs - closed set. Therefore, p ∈ P.

Case(ii): Consider aMicro-π-open set (p}.ThenΩ−(p} isMicro-π -closed. If p ̸∈ P , thenP ⊆Ω − (p}. Since p ε πclµ(P),
we have p ∈ Ω− {p}, which is a contradiction. Hence, p ∈ P.

So in both cases we have πclµ(P) ⊆ P. Trivially P ⊆ πclµ(P). Therefore, P = πclµ(P) or equivalently P is Micro-π
-closed. Hence, (Ω,N,M) is a µT̂1/2 -space.

5 Conclusion

A new class of sets called µ ĝπ-closed sets have been introduced and some of their properties have been studied. Also, µT̂1/2-
spaces is presented and its properties are analyzed. Furthermore, µ ĝπ-sets can be used to derive a new class of continuity, closed
maps, homeomorphism.
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