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Abstract
Objective: The aim of this study is to apply different methods to identify
chaos in the temperature time series data of Delhi, India, spanning from
1995 to 2019 during the dry season. The goal is to assess the minimum
embedding dimension and, consequently, determine the minimum number
of factors influencing the temperature time series data. Methods: Lyapunov
exponent and correlation dimension calculations have been employed to
illustrate the chaotic nature of the data. A plot depicting E2(m) against m has
been generated to differentiate data behaviour from stochastic to chaotic. To
establish the minimum embedded dimension, an appropriate time lag (τ) has
been computed from the plot of Actual Mutual Information (AMI) versus time
lag. The Cao method has been utilized to ascertain the minimum embedded
dimension. Findings: The Lyapunov exponent value is found to be 0.01900, and
the correlation dimension value is 0.90860. The positive Lyapunov exponent
value and the non-integral correlation dimension value serve as evidence for
the existence of chaos in the data. The minimum AMI value occurs at a time lag
of 2 days. Utilizing this minimum AMI value and the Cao method, the minimum
embedding dimension is determined to be 7. Therefore, theminimum number
of parameters influencing the temperature is identified as 7. Novelty: Unlike
many studies that solely rely on the Lyapunov exponent to detect chaos in time
series data and use the reconstruction spacemethod to determine embedding
dimension, this study incorporates the Cao method for chaotic analysis of
time series data. In addition to Lyapunov exponent and correlation dimension,
the Cao method is employed to analyse chaotic behaviour and calculate the
minimum embedding dimension, providing a comparative analysis between
the two methods.
Keywords: Nonlinear dynamics and chaos; Time series data; Lyapunov
exponent; Correlation Dimension; State space; Reconstruction space;
Embedding space and embedding dimesion
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1 Introduction
The existing literature has extensively explored chaotic systems, defined by the sensitive dependence on initial conditions in
the solution of governing nonlinear differential equations (1). Chaotic time series analysis has emerged as a popular method for
studying these systems, particularly due to its requirement for time series data of only one variable (2).

Notably, E.N. Lorenz in 1963 conducted a study on the convective model of the atmosphere, establishing climate as a chaotic
system (3). Various studies have analyzed chaotic systems through nonlinear differential equations (3), logistic maps (4), and
chaotic time series analysis (5–8). Examples include the work of P. Indira, S.S.R Ibanathan, R.S. Selvaraj, and A.A. Suresh (5) on
daily maximum temperature in Chennai, India, and A.T. Adewole, E.O. Falayi, T.O. Roy-Layinde, and A.D. Adelaja (6) analyzing
air temperature, relative humidity, and wind speed in selected Nigerian stations.

Additionally, N.Z.A. Hamid, N.H. Adenan, N.B.A.Wahid, S.H.M. Saleh, and B. Bidin (7) utilized phase space reconstruction
for chaotic analysis of temperature time series during the dry season in Shah Alam, Malaysia. M. Bahari and N.Z.A. Hamid (8)

employed the Cao method to calculate the minimum embedding dimension for temperature time series data in Jerantut,
Pahang, Malaysia.

Despite the abundance of studies affirming climate as a chaotic system, there is a notable gap in the literature regarding
a comparative analysis of the various methods employed. The current study aims to address this gap by presenting a
comprehensive investigation that incorporates Lyapunov exponent, correlation dimension, actual mutual information, and Cao
method for analyzing chaotic behavior in atmospheric temperature time series data.

In subsection 3.1 we describe the calculation of the Lyapunov exponent as a measure of the divergence of trajectories
in phase space, with a positive value indicating the presence of chaos. In subsection 3.2 the calculation of the correlation
dimension is discussed, serving as the dimension of the phase space attractor, where a nonintegral value is considered
evidence of chaos. subsection 3.3 elaborates on the use of actual mutual information (AMI) to determine the proper time
lag for establishing the minimum embedding dimension. Cao method application is described in section 3.4, this subsection
distinguishes deterministic data from stochastic data. Finally, subsection 3.5 details the calculation of E1(m) to determine the
minimum number of factors influencing the temperature time series data.

By integrating these methods, the study aims to provide a more holistic understanding of chaotic behavior in atmospheric
temperature, offering insights into the minimum factors influencing the variable.

1.1 Research Gap

Existing studies have primarily utilized either the Lyapunov exponent combined with correlation dimension or the Caomethod
to quantify chaos. However, a noticeable gap exists in the literature, where a comprehensive approach involving both the Cao
method and traditional methods, such as the Lyapunov exponent and correlation dimension, is lacking. This study addresses
this gap by incorporating both the Lyapunov exponent and correlation dimension, alongside the Caomethod, as recommended
in (7) for future research.

Furthermore, a common trend in previous research involves the use of the reconstruction space method for determining
the embedding dimension. In contrast, this study employs the Cao method to ascertain the minimum embedding dimension,
providing a departure from the conventional approach. This deviation from the norm is essential for a more comprehensive
understanding of chaotic behavior in the context of time series data.

1.2 Objectives

Themain objectives of the study

• Demonstrate the presence of chaos in the temperature time series data of Delhi, India, spanning from 1995 to 2019 during
the dry season.

• Assess the minimum embedding dimension and, consequently, determine the minimum number of factors influencing
the temperature time series data.

2 Temperature time series data
The temperature time series data utilized in this study was obtained from the secondary source https://academic.udayton.edu/
kissock/http/Weather/gsod95-current/INDELHI.txt.The data spans the period from 1995 to 2019, focusing on the dry season,
specifically from April to June.
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Fig 1. Temperature vs days

Fig 2. Normalised temperature vs days

3 Methodology
The identification of chaotic behavior in the time series data was based on the presence of a positive Lyapunov exponent, a
non-integral value of correlation dimension (2,9), and the computation of the parameter E2(m) through the application of the
Cao method.The determination of the minimum embedded dimension and, consequently, the smallest number of parameters
influencing the time series variable was achieved using the Cao method (10).

3.1 Lyapunov exponent
The governing equations of a nonlinear dynamical system are inherently nonlinear, leading to solutions that exhibit high
sensitivity to initial conditions.The trajectories of the system, even when initiated from closely positioned points in state space,
undergo exponential divergence with respect to time. The measure of this divergence is quantified by the Lyapunov exponent.
In a chaotic system, if two trajectories commence frompoints like xi and x j , the separation between themdiverges exponentially
after n iterations in discrete time units.

Let s0 =
∣∣xi − x j

∣∣ and after n iteration sn =
∣∣xi+n − x j+n

∣∣ then
sn = s0eλn (3.1.1)

where λ is the Lyapunov exponent. So, for positive value of λ the separation between points rises exponentially, that is, two
nearby trajectories diverge with respect to time.

From Equation (3.1.1), applying logarithm on both sides,

ln
sn

s0
= λn (3.1.2)

The slope of plot, ln sn
s0
vs n drawn in Figure 5 using Equation (3.1.2), gives Lyapunov exponent λ . (2)
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Fig 3. Schematic view of divergence of trajectories

3.2 Correlation Dimension

Correlation dimension is a method employed to calculate the fractal dimension of an attractor. Figure 4 visually illustrates
an attractor situated in a two-dimensional state space. In this representation, dots symbolize the values of time series data for
a single variable positioned on the attractor. To compute the correlation dimension, a circle of radius Ris selected such that
R > min.

∣∣xi − x j
∣∣, where xi and x jare two arbitrarily selected data points on the attractor.

Fig 4. Schematic view of two-dimensional phase space attractor

Let the circle is centered on an arbitrarily selected ith point and Ni are the number of points lying within the circle except ith
point. Relative number of points on the attractor,

pi(R) =
Ni

N −1
(3.2.1)

Now correlation sum is quantified as

C (R) =
1
N

N

∑
i=1

pi (R) (3.2.2)

Or,

C (R) =
1
N

N

∑
i=1

Ni

N −1
(3.2.3)

If radius R is chosen such that all the points are within the attractor, then

∑N
i=1 Ni = N(N −1) (3.2.4)
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Now, from Equation (3.2.5)

C (R) = 1 (3.2.5)

The correlation sum, as derived fromEquation (3.2.5), can be computedwhen the count of pointswithin the circle is known.Due
to the potential impracticality of manually counting points, an adjustment has been made to the expression of the correlation
sum.This modification involves the introduction of theHeaviside unit step function ,

Θ
(
R
∣∣xi − x j

∣∣)= 1, R >
∣∣xi − x j

∣∣
= 0, R <

∣∣xi − x j
∣∣ (3.2.6)

where, xi and x j are two arbitrary points within the circle.
Replacing ∑N

i=1 Ni by ∑N
i=1 ∑N

i ̸= j, j=1 Θ(R−
∣∣xi − x j

∣∣), Equation (3.2.3) becomes,

C (R) =
1

N(N −1)

N

∑
i=1

N

∑
i ̸= j, j=1

Θ(R−
∣∣xi − x j

∣∣) (3.2.7)

Advantage of Equation (3.2.7) is, instead of counting the points lying within the circle, we only need the values of time series
data lying on the attractor.

Now, correlation dimension DC is defined as,

C (R) = kRDC (3.2.8)

CalculatingC (R) from Equation (3.2.8) and putting it into Equation (3.2.9) and then taking logarithm on both sides,

lnC(R) = lnk+DClnR (3.2.9)

Plotting ln C(R) with respect to lnR as shown in Figure 6, the slope gives the correlation dimension. (2,9)

3.3 Actual Mutual Information (AMI)

To ensure the independence of each component in the constructed vectors, a suitable time delay is chosen. In this study,
we adopted the method of mutual information to determine the appropriate time delay (τ). Utilizing the histogram of the
probability distribution of the data, let the probability that the data assumes a value inside the ith bin of the histogram is pi ,
probability that x(t) is in ith bin and x( t +τ) in the jthbin is pi j , then the mutual information I(τ) for time delay τ is calculated
as follows:

I (τ) = ∑i, j pi j (τ) lnpi j (τ)−2∑i pilnpi (3.3.1)

A plot of I (τ)∼ τ has been drawn in Figure 7 and the value of τ is determined where I(τ) is minimum. (9)

3.4 Distinguishing data from random to chaotic

For random data, future and past values are independent and then E2(m) is equal to 1 for any m. For chaotic data E2(m) is
certainly related to m, so, it cannot be constant for all m. There must be some m’s such that E2(m) ̸= 1. To calculate E2(m), we
are using Cao method here. (8)

First, E ∗ (m) is calculated as following,

E ∗ (m) =
1

N −mτ

N−mτ

∑
i=1

∣∣xi+mτ − xn(i,m)+mτ
∣∣ (3.4.1)

Then,

E2(m) =
E ∗ (m+1)

E ∗ (m)
(3.4.2)

Now the plot of E2(m) ∼ m has been drawn in Figure 8 and it is noticed that whether E2(m) = 1 or not. If E2(m) ̸= 1 for at
least single value of m then the time series data is chaotic. (8,10)
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3.5 Embedding Dimension

In this methodology, vectors are formulated from the time series data corresponding to a single variable within a system. The
space where these vectors exist is termed the reconstruction space or embedding space, with its dimension referred to as the
embedding dimension (2). By determining the minimum embedding dimension, it becomes possible to identify the minimal
number of parameters influencing the given time series data of the variable and, consequently, the system (7). For this purpose,
the Cao method is employed in this study (10).

Let x1,x2,x3,x4 . . . . . . . xN are time series data of a variable of a system.
Vectors are constructed as,

yi(m) = xi,xi+τ ,xi+2τ ,xi+3τ .......xi+(m−1)τ); (3.5.1)

where m is the embedding dimension and τ is the time delay.
Parameter a(i,m) is calculated as,

a(i,m) =

∥∥∥yi (m+1)− yn(i,d) (m+1)
∥∥∥∥∥∥yi (m)− yn(i,m) (m)

∥∥∥ , i = 1,2, . . . . . . .,N −mτ (3.5.2)

yi (m+1) is the ith reconstructed vector with embedding dimension m+1 i.e.

yi (m+1) = (xi,xi+τ ,xi+2τ ,xi+3τ . . . . . . .xi+mτ); (3.5.3)

n(i,m)is an integer, 1 ≤ n(i,m)≤ N −mτ and yn(i,m) (m) is the nearest neighbour of yi (m)∥yk (m)− yl (m)∥ is the Euclidean
distance in embedding space.

Now another parameter,E (m)is calculated as

E (m) =
1

N −mτ

N−mτ

∑
i=1

a(i,m) (3.5.4)

Again, a parameter E1(m) is calculated as,

E1(m) =
E(m+1)

E(m)
. (3.5.5)

A plot of E1 ∼ mhas been drawn in Figure 9 and the value of m is determined when E1(m) saturates. If it saturates at m0 then
minimum embedding dimension will be (m0 +1). (8,10)

4 Results and Discussion
Using Equation (3.1.2), thirty Lyapunov exponent values were computed with different initial valuesxi and x jand varying lags.
The largest positive Lyapunov exponent, determined as the slope of the plot in Figure 5, is λ=0.01900. Additionally, using
Equation (3.2.9), the non-integral value of the correlation dimension, calculated from the slope of the plot in Figure 6, is 0.90860.
These findings serve as compelling evidence indicating the presence of chaos in the temperature time series data. Reference (2)
employed the samemethod to calculate Lyapunov exponent and correlation dimension, obtaining similar plots for comparison.

In Figure 6, it is evident that the value of C(R) becomes 1 for all R values greater than
∣∣xi − x j

∣∣, resulting in the saturation of
the graph. Thus, Lyapunov exponent and correlation dimension, calculated from the plots in Figure 5 and in Figure 6, provide
clear indications of the presence of chaos in the time series data of temperature. Furthermore, the values of E2(m), depicted as
less than 1 in Figure 8, serve as additional evidence supporting the chaotic nature of the data.

The plot in Figure 7 has been drawn using Equation (3.3.1). It is observed thatmutual information achieves its firstminimum
at τ=2. According to reference (9), the appropriate time lag is selected when mutual information reaches its initial minimum.
This proper choice of time lag enhances the determination of E2(m) and E1(m) with greater elegance. Taking τ=2 and utilizing
Equation (3.4.2), a plot of E2(m) against m has been depicted in Figure 8.

In the depicted plot, Figure 8, there exist values of E2(m) that are not equal to 1. This observation serves as proof that the
time series data is indeed chaotic. Reference (8) and (10) employed the same methodology, resulting in similar plots for E2(m).
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Fig 5. P lot between ln sn
s0
and n.

Fig 6. Plot betweenlnC(R) and lnR.

Fig 7. Plot between mutual information and lag (days)

By setting τ=2 and utilizing Equation (3.5.5), the subsequent plot, illustrated in Figure 9, represents E1(m) as a function of
m.

In Figure 9, it is observed that E1(m) ceases to vary after m=6, leading to the determination of the minimum embedding
dimension as 7.This refers that the least number of parameters capable of influencing the temperature is 7. References (8) and (10)

employed a similar method for plotting E1(m) and obtained comparable results.
The Cao method, utilized in this study to ascertain the minimum embedding dimension, offers several advantages.

Notably, it is independent of the quantity of available data, effectively distinguishes chaotic data from stochastic data, and is
computationally efficient. Moreover, the Cao method does not rely on any subjective parameters except for the time delay
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Fig 8. Plot betweenE2(m) and m.

Fig 9. Plot betweenE1(m) and m

in embedding (10). The evidence supporting chaos in the time series data is reinforced by the positive value of the Lyapunov
exponent and the nonintegral value of the correlation dimension. Additionally, the calculation of the parameter E2(m) in the
Cao method serves as a robust indicator, providing further evidence of chaos in the studied data.

5 Conclusion
The Lyapunov exponent, computed as 0.00017 from the slope of the plot between ln sn

s0
vs n in Figure 5, indicates a positive

value. Simultaneously, the correlation dimension, determined as 0.9086 from the slope of the plot between ln(C(R) and ln(R)
in Figure 6, exhibits a non-integral value. These findings strongly suggest the presence of chaos in the temperature time series
data. Furthermore, the values of E2(m) in Figure 8, not equal to 1, provide additional compelling evidence of the chaotic nature
of the data.

The optimal time delay of 2, identified from the plot in Figure 7 where the AMI was minimum, was utilized for further
analysis.Theminimum embedding dimension, calculated from the plot between E1(m) andm in Figure 9, indicated saturation
at m=6. Consequently, the minimum embedding dimension was determined as m+1=7 (8). So, in addition to detection of chaos
in time series data, Cao method is also useful in determining minimum embedding dimension.

Thisminimum embedding dimension of 7 suggests the existence of at least seven factors significantly influencing the system.
Therefore, when formulating a governing equation and applying a forecastingmodel, it is advisable to incorporate thisminimum
number of factors to more accurately capture the system’s behavior.The identification of these influential factors can contribute
to the development of a more refined prediction model. The potential extension of this research involves studying time series
data of other climate parameters such as atmospheric pressure, relative humidity, precipitation, and wind speed at different
meteorological stations in India.

https://www.indjst.org/ 45

https://www.indjst.org/


Shandilya et al. / Indian Journal of Science and Technology 2024;17(1):38–46

6 Acknowledgement
The authors are thankful for Department of Physics, Patna University and also grateful to Prof. Vijay A. Singh for fruitful
discussions.

References
1) Arfken GB, Weber HJ, Harris FE. Mathematical Methods for Physicists: A Comprehensive Guide. 7th ed. ELSEVIER. 2012. Available from:

https://doi.org/10.1016/C2009-0-30629-7.
2) Hilborn RC. Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. New York, USA. Oxford University Press. 1994.
3) Lorenz EN. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences. 1963;20(2):130–141. Available from: https://doi.org/10.1175/1520-

0469(1963)020%3C0130:DNF%3E2.0.CO;2.
4) Mihailović DT, Mimić G, Arsenić I. Climate Predictions: The Chaos and Complexity in Climate Models. Advances in Meteorology. 2014;2014:1–14.

Available from: https://doi.org/10.1155/2014/878249.
5) Indira P, Inbanathan SSR, Selvaraj RS, Suresh AA. Forecasting Daily Maximum Temperature of Chennai using Nonlinear Prediction Approach. Indian

Journal of Science andTechnology. 2016;9(39):1–6. Available from: https://sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/2016/Issue-39/Article1.pdf.
6) Adewole AT, Falayi EO, Roy-Layinde TO, Adelaja AD. Chaotic time series analysis of meteorological parameters in some selected stations in Nigeria.

Scientific African. 2020;10:1–21. Available from: https://doi.org/10.1016/j.sciaf.2020.e00617.
7) Hamid NZA, Adenan NH, Wahid NBA, Saleh SHM, Bidin B. Chaos Theory Modelling for Temperature Time Series at Malaysian High Population Area

during Dry Season. Environment and Ecology Research. 2021;9(4):152–158. Available from: https://doi.org/10.13189/eer.2021.090402.
8) Bahari M, Hamid NZA. Analysis and Prediction of Temperature Time Series Using Chaotic Approach. In: IGEOS International Geography Seminar

2018 , 3–4 December 2018, Malaysia;vol. 286 of IOP Conference Series: Earth and Environmental Science. IOP Publishing. 2019;p. 1–9. Available from:
https://iopscience.iop.org/article/10.1088/1755-1315/286/1/012027/meta.

9) Zonghua L. Chaotic time series analysis. Mathematical Problems in Engineering. 2010;2010:1–32. Available from: https://doi.org/10.1155/2010/720190.
10) Cao L. Practical method for determining theminimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena. 1997;110(1-2):43–

50. Available from: https://doi.org/10.1016/S0167-2789(97)00118-8.

https://www.indjst.org/ 46

https://doi.org/10.1016/C2009-0-30629-7
https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
https://doi.org/10.1155/2014/878249
https://sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/2016/Issue-39/Article1.pdf
https://doi.org/10.1016/j.sciaf.2020.e00617
https://doi.org/10.13189/eer.2021.090402
https://iopscience.iop.org/article/10.1088/1755-1315/286/1/012027/meta
https://doi.org/10.1155/2010/720190
https://doi.org/10.1016/S0167-2789(97)00118-8
https://www.indjst.org/

	Introduction
	1.1 Research Gap
	1.2 Objectives

	Temperature time series data
	Methodology
	3.1 Lyapunov exponent
	3.2 Correlation Dimension
	3.3 Actual Mutual Information (AMI)
	3.4 Distinguishing data from random to chaotic
	3.5 Embedding Dimension

	Results and Discussion
	Conclusion
	Acknowledgement

