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Abstract
Objectives: The primary objective of this research paper is to gain a
comprehensive understanding of drug diffusion within the human dermal
region.Methods: A temporal fractional-order reaction-diffusion equation with
Caputo sense is employed to get mathematical insights on the diffusion of
drugs in the human dermal region. The explicit finite difference method
is employed to numerically solve the modelled problem. A Python-based
algorithm is employed to obtain a numerical solution through the finite
difference method. Finding: In our research, we focused on examining how
fractional-order parameters affect the distribution and concentration profiles
of drugs in the dermal region. To convey our findings effectively, we conducted
a comprehensive analysis, primarily using graphical representations. These
visualizations offer a clear and insightful view of the drug’s diffusion rate within
the dermal region, taking into account the memory effect associated with the
Caputo derivative. In addition to our exploration of fractional-order parameters
and drug diffusion profiles, we conducted a comprehensive investigation into
the stability and convergence of the explicit finite difference method.Novelty:
The fractional order explicit finite difference method can be used to estimate
drug concentration in the human skin. An algorithm based on Python provides
powerful tool for obtaining numerical solution of fractional order differential
equations.
Keywords: Drug Diffusion; Numerical Method; Dermal Region; Caputo
Derivative; Python

1 Introduction
In modern medical practice, drug delivery predominantly comprises three main
methods: topical application, oral ingestion, and injectable administration (1,2). Each of
these methods has some advantages and disadvantages. In oral ingestion, drugs pass
through the digestive system before entering the bloodstream, while injection
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administration directly enter the bloodstream. Topical medication involves applying drugs directly to the skin’s surface. While
topical medication offers numerous advantages, the process of drug diffusion from the skin’s surface to the desired destination
can be complex and time-consuming. It is of utmost importance to comprehend this drug diffusion process to enhance
the effectiveness of topical treatments in pharmaceutics and cosmetic. Numerous studies have thoroughly examined the
mathematical modeling of drug diffusion within human skin. The detailed review paper published by S. Supe and P. Takudage
provides an overview of various methods and techniques used to estimate penetration, permeation and absorption of drugs in
transdermal drug delivery systems (3). Furthermore, it explores the fundamental aspects of skin physiology and the variables that
influence drug penetration. F. Jonsdottir, B.S. Snorradottir, S. Gunnarsson, E. Georgsdottir, and S. Sigurdsson conducted a study
on a transdermal delivery model describing the parameters that affect drug permeation through the skin layer (4). They used a
multi-compartmental numerical model based on Fickian diffusion to determine the parameters and found that the partition
between layers and themass transfer coefficient are important factors in drug permeation. A. Benslimane, S. Fatmi, L. Taouzinet,
and D. Hammiche conducted a study on the unsteady diffusion of transdermal drug delivery with the use of a microneedle
inserted into the skin (5). They explored a mathematical model based on Fick’s law to investigate the impact of the diffusion
coefficient, initial concentration, and length on drug concentration. S. Mubarak, M. A. Khanday, A. H. Lone, and N. Rasool
examined a reaction-diffusionmodel for dermal drug diffusion (6).They derived an analytical solution for themodel by dividing
the dermal region into seven compartments and presented drug concentration and diffusion profiles for each layer. Recently,
M. Cukic and S. Galovic conducted a study on a fractional-order mathematical model based on Fick’s law, and they presented
an analytical solution demonstrating anomalous diffusive behaviour of drugs in the transdermal region (7). Furthermore, M.
Caputo and C. Cametti have authored an informative review paper that centers onmodeling drug transportation within human
skin while incorporating memory effects (2). They conducted a comparison between the outcomes produced by the proposed
models and experimental results, and they discovered that fractional-order modeling aligns with the experimental data.

It has been observed that the majority of mathematical models for drug diffusion in the skin are rooted in ordinary
and partial differential equations, with limited emphasis on incorporating memory effects. In recent time, non-integer order
differential equations have gained prominence in various fields due to their ability to account formemory effects and long-range
dependencies. Fractional order modeling has found successful applications in diverse fields, including physics, engineering (8),
economics (9), viscoelasticity (10), medicine (11), heat transfer (12), pharmacokinetics (13) and more, to describe various physical
phenomena.The application of fractional differential equations in biology has been widespread, as they demonstrate a capacity
to capturememory effects, long-range dependencies, and complex dynamicswithin biological systems (14).This advantage arises
due to the power-law kernal of the Caputo derivative, where the memory effect become more pronounced at small time values.
Drawing from this context and considering the memory effect associated with fractional derivatives, our study extends the
conventional model of drug diffusion (15) to a fractional-order mathematical model with the goal of predicting drug diffusion
within the human dermal region. Unfortunately, finding exact solutions tomost fractional differential equations is a challenging
task due to their complex nature and non-linearity. To tackle this issue, numerical methods play a crucial role. Among the
various numerical methods available (16), the finite difference method stands out an effective and commonly used approach.

A notable research gap identified in the literature is the prevalent use of integer-order derivatives inmathematical models for
drug diffusion in human skin, neglectingmemory effects. Given the complex and non-Markovian nature of biological processes,
fractional order differential equations are better suited to explain events with persistent effects from the past. In this paper, a
fractional-order explicit finite difference method is developed to address the challenge of drug diffusion within the skin. The
results obtained from this approach are presented graphically using a Python program, which provides valuable insights into
drug diffusion in the dermal region.

2 Methodology

2.1 Preliminaries

Definition 1The Gamma function is defined as (16)

Γ(η) =
∫ ∞

0 e−ttη−1dt. (1)

Definition 2The fractional order α ∈ (0,1] derivative of a function u(x, t) in Caputo sense is given as (16)

∂ α u(x, t)
∂ tα =


1

Γ(1−α)

∫ t

0

ut(x,s)
(x− s)α ds, f or α ∈ (0,1).

∂u(x, t)
∂ t

, f or α = 1.

(2)
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2.2 Mathematical Model

In order to formulate the mathematical model of drug diffusion, we examine a solitary dermal layer within the human body.
This skin layer spans a distance of 1 unit length from 0 to 1. The drug is administered onto the skin’s outermost surface at
spatial point x = 0, which corresponds to the epidermis. Subsequently, the drug undergoes a downward diffusion, propagating
to locations situated beneath the skin’s surface.The outermost layer of the dermal layer corresponds to the epidermis, while the
underlying dermal layer possesses an approximate thickness of 2 mm, as referenced in the literature (15). The domain of interest
in this study encompasses the dermal layer, extending up to about 0.1 mm from the epidermis. Recognizing the significant
disparity in thickness between the epidermis and the dermal layer, we adopt the assumption that the epidermis is situated at the
spatial coordinate x = 0. The depth coordinates of the initial dermal layer are modified proportionally, taking into account the
maximum achievable depth of the dermal layer. As a result, a length of one unit corresponds to an actual measurement of two
millimeters. Considering the provided assumptions and applying scaling, we examine the temporal fractional drug diffusion
equation (TFDDE), derived from the classical drug diffusion equation (15). It is expressed as follows:

∂ α u(x, t)
∂ tα = D

∂ 2u(x, t)
∂x2 −θ1u(x, t)−θ2u(x, t), α ∈ [0,1],x ∈ [0,1], t ∈ [0,T ]. (3)

Here, u(x, t) represents the drug amount in the dermal layer at spatial position x and time t. The parameter D denotes the
mass diffusivity, θ1 and θ2 are positive constants. The expressions θ1u(x, t) and θ2u(x, t) characterize the rates at which drug is
absorbed by the tissue and taken into the bloodstream, respectively. In Equation (3), we use the Caputo sense for the fractional
derivative ∂ α u

∂ tα to account for non-classical drug diffusion behavior, capturing anomalous diffusion phenomena in specific
situations. Indeed, the drug concentration in the dermal layer is initially absent everywhere except on the skin surface, where
the drug is applied with a concentration value of a. Therefore, the initial condition is given as follows:

u(0,0) = a and u(x,0) = 0, ∀x ∈ [0,1], (4)

and the boundary conditions are:

u(0, t) = a and u(1, t) = b, ∀t ∈ [0,T ]. (5)

2.3 Numerical Method

In this section, we will outline the development of the proposed finite difference method.This method involves discretizing the
domain [0,1]× [0,T ] into mesh points (xi, tk) in the following manner.

Let xi = i∆x for i = 0,1,2, . . . ,M, and tk = k∆t for k = 0,1,2, . . . ,N,where ∆x = 1
M and ∆t = T

N represents the space and time
step size, respectively. The integers M and N denotes the number of space and time subdivisions, respectively. The approximate
solution of TFDDE given by the systemEquations (3), (4) and (5) is denoted as uk

i , where 1 ≤ i ≤ M and 1 ≤ k ≤ N. The
discretization of the Caputo derivative ∂ α u

∂ tα for Equation (3) is given as follows (13)

∂ α u(xi, tk+1)

∂ tα =
τ−α

Γ(2−α)
(uk+1

i −uk
i )+

τ−α

Γ(2−α)

k

∑
j=1

(uk− j+1
i −uk− j

i )w j +O(∆t) (6)

where w j = ( j+ 1)1−α − j1−α , for j ≥ 1. The spatial derivative ∂ 2u
∂x2 is discretized by employing a 2nd order accurate central

difference formula, represented as follows (13)

∂ 2u(xi, tk+1)

∂x2 =
uk

i−1 −2uk
i +uk

i+1

∆x2 +O(∆x2). (7)

Now, utilizing Equations (6) and (7) in Equations (3), (4) and (5), we can present the complete discretization of the TFDDE as
follows:

u1
i = ru0

i−1 +(1−µ −2r)u0
i + ru0

i+1, f or k = 0, (8)

u2
i = ru1

i−1 +(1−µ −2r−w1)u1
i + ru1

i+1 +w1u0
i , f or k = 1, (9)
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uk+1
i = ruk

i−1 +(1−µ −2r−w1)uk
i + ruk

i+1 +∑k−1
j=1

(
w j −w j+1

)
uk− j

i +wku0
i , f ork ≥ 1, (10)

I.C. : u0
0 = a, u0

i = 0, (1 ≤ i ≤ M), (11)

B.C. : uk
0 = a, uk

M = b, (1 ≤ k ≤ N), (12)

where µ = Γ(2−α)∆t2(θ1 +θ2), r = D Γ(2−α)∆tα

∆x2 , and w j = ( j+1)1−α − j1−α for all j ≥ 1.
The system of Equations (8), (9), (10), (11) and (12) represent the discrete version of the TFDDE Equations (3), (4) and (5).

By iterating through time steps and employing the provided initial and boundary conditions, the method enables numerical
approximation of drug concentration at various spatial grid points xi and time instances tk within the discretized dermal region.
The numerical implementation of these equations will yield a solution that provides insights into the behavior of the drug
concentration over both spatial and temporal domains. The matrix form of the system Equations (8), (9) and (10) is given as
follows:

U1 = AU0 +S0, f or k = 0, (13)

U2 = BU1 +w1U0 +S1, f or k = 1, (14)

Uk+1 = BUk +∑k−1
j=1

(
w j −w j+1

)
Uk− j +wkU0 +Sk, f ork ≥ 2. (15)

Here, bothUk =


uk

1
uk

2
...

uk
M

 and Sk =


ruk

0
0
...
0

ruk
M

 represent column vectors of length M−1. The matrices

A=[amn] and B = [bnm] both are square matrices of order M−1, where

amn =


1−µ −2r , i f n = m,

r , i f m = n+2,
r , i f n = m+2,
0 , otherwise.

and

bmn =


1−µ −2r−w1 , i f n = m,

r , i f m = n+2,
r , i f n = m+2,
0 , otherwise.

For numerical simulation and their graphical representation, the Python programming language is used. The Python
programming language is a powerful tool for solving a system of equations (17,18).

2.4 Stability of Numerical Solution

In this context, we examine the stability of the solution obtained through the application of the explicit method Equations (8),
(9), (10), (11) and (12) to the TFDDE Equations (3), (4) and (5).

Lemma 1 If δ1,δ2 and δ3 are constants, then the eigenvalues of tridiagonal matrix of size (M-1) (13)
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

δ1 δ2
δ3 δ1 δ2

. . . . . . . . .
δ3 δ1 δ2

. . . . . . . . .
δ3 δ1 δ2

δ3 δ1


are λ j = δ1 +2

√
δ2δ3 cos

(
jπ
M

)
, j = 1,2, . . . ,M−1.

Theorem 1 If 0 < r ≤ min
{

2−µ
4 , 2−µ−w1

4

}
, then numerical solution of fractional order explicit finite difference method

described by system of Equations (8), (9), (10), (11) and (12) for TFDDE Equations (3), (4) and (5) is stable.
Proof. According to Lemma 1, the eigen values of the tridiagonal matrix A are given below, for every i = 1,2, . . . ,M;
λi(A) = (1−µ −2r)+2rcos

( iπ
M

)
≤ (1−µ −2r)+2r = (1−µ)≤ 1.

Also, λi (A) = (1−µ −2r)+2rcos
( iπ

M

)
≥ (1−µ −2r)−2r = 1−4r−µ .

∴ λi (A)≥−1 when 1−4r−µ ≥−1 ⇒ r ≤ 2−µ
4 .

Therefore, for matrix A, for all i = 1,2, · · · ,M−1;

|λi (A)| ≤ 1 when 0 < r ≤ 2−µ
4

. (16)

Similarly, for matrix B, for all i = 1,2, . . . ,M,
λi(B) = (1−µ −2r−w1)+2rcos

( iπ
M

)
≤ 1−µ −w1 ≤ 1.

and,

λi (B) = (1−µ −2r−w1)+2rcos
(

iπ
M

)
≥ (1−µ −2r−w1)−2r = 1−4r−µ −w1.

∴ λi (B)≥−1 when 1−4r−µ −w1 ≥−1 ⇒ r ≤ 2−µ−w1
4 .

Therefore,

|λi (B)| ≤ 1 when 0 < r ≤ 2−µ −w1

4
, ∀ i = 1,2, . . . ,M−1. (17)

Hence, it can be deduced from Equations (16) and (17) that the solution, obtained through the explicit method Equations (8),
(9) and (10) for TFDDE Equations (3), (4) and (5), remains stable when 0 < r ≤ min

{
2−µ

4 , 2−µ−w1
4

}
.

2.5 Convergence of the Method

Let Uk
=

(
−
u

k

0,
−
u

k

1, . . . ,
−
u

k

M

)T

and Uk =
(
uk

0,u
k
1, . . . ,u

k
M
)T representing the vectors for exact and approximate solutions,

respectively, of the drug diffusion model described by Equations (3), (4) and (5).
Define, τk = (τk

1 ,τ
k
2 , . . . ,τ

k
M)T be the truncation error vector at time tk. By utilizing the finite difference method given by

Equations (8), (9) and (10), we can express the following relationship:
τ1

i = u1
i − ru0

i−1 − (1−µ −2r)u0
i − ru0

i+1 = O(∆x2 +∆t), f or k = 0,
τ2

i = u2
i − ru1

i−1 − (1−µ −2r−w1)u1
i − ru1

i+1 −w1u0
i = O(∆x2 +∆t), f or k = 1,

τk+1
i = uk+1

i − ruk
i−1 − (1−µ −2r−w1)uk

i − ruk
i+1 −

k−1

∑
j=1

(w j −w j+1)u
k− j
i −wku0

i

= O
(
∆x2 +∆t

)
, f or k ≥ 2.

Lemma 2 For all j ≥ 0, the term w j satisfies the following conditions
(i) w0=1.
(ii) All w j are positive.
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(iii) w j > w j+1
Lemma 3The tridiagonal matrices A and B, defined in Equations (13), (14) and (15), satisfies the inequalities
∥ A ∥∞≤ 1 and ∥ B ∥∞≤ 1.
Proof. The inequalities ∥ A ∥∞≤ 1 and ∥ B ∥∞≤ 1 follow directly from the Equations (16) and (17).
Theorem2 If 0< r ≤min

{
2−µ

4 , 2−µ−w1
4

}
, then the fractional-order explicitmethod described by the systems Equations (8),

(9) and (10), defined for the numerical solution of the TFDDE Equations (3), (4) and (5), is conditionally convergent.
Proof. LetUkandUk represents the vector corresponding to the exact and approximate solutions, respectively, of the TFDDE

governed by Equations (3), (4) and (5) at the time step tk.
Denote, Ek =Uk −Uk = (ek

1,e
k
2, . . . ,e

k
M)T be the vector of errors at tk.

Suppose,∣∣ek
l

∣∣≤ max
1≤i≤M

∣∣ek
i

∣∣=∥ Ek ∥∞ f or l = 1,2,3, . . .

and
|τk

l | ≤ max
1≤i≤M

|τk
i |= O((∆x)2 +∆t) f or l = 1,2,3, . . .

Given thatUk represents the exact solution of the TFDDE described by Equations (3), (4) and (5), it satisfies Equations (13),
(14) and (15). Therefore,

U1
= A

−
U

0
+S0 + τ1, f or k = 0, (18)

U2
= B

−
U

1
+S1 +w1U0 + τ2, f or k = 1, (19)

Uk+1
= B

−
U

k
+∑k−1

j=1(w j −w j+1)U
k− j

+wkU
0
+Sk + τk+1, f or k ≥ 2. (20)

By employing mathematical induction, our objective is to establish that for all n ≥ 1;
∥ En ∥∞≤ ζ O((∆x)2 +∆t),
where ζ is a constant not depends on x and t.
For n = 1, the Equations (13) and (18) yield the equation E1 = AE0 +τ1. Therefore, we can derive the following inequality:

∥ E1 ∥∞=∥ AE0 + τ1 ∥∞≤∥ A ∥∞∥ E0 ∥∞ + ∥ τ1 ∥∞≤∥ E0 ∥∞ + ∥ τ1 ∥∞≤ ζ O((∆x)2 +∆t),

where ζ is a constant not dependent on x and t. This establishes the result when n = 1.
Assume the condition is true for all n ≤ k. That means,
∥ Ek ∥∞≤ ζ O((∆x)2 +∆t), ∀n ≤ k.
Then, for n = k+1, we can utilize Equations (15) and (20) to derive the following expression:

Ek+1 = BEk +
k−1

∑
j=1

(w j −w j+1)Ek− j +wkE0 + τk+1.

∴∥ Ek+1 ∥∞≤∥ B ∥∞ ∥ Ek ∥∞ +
k−1

∑
j=1

|(w j −w j+1)| ∥ Ek− j ∥∞ +|wk| ∥ E0 ∥∞ + ∥ τk+1 ∥∞

≤∥ B ∥∞ ∥ Ek ∥∞ +|(w1 −w2)|. ∥ Ek−1 ∥∞ +|(w2 −w3)|. ∥ Ek−2 ∥∞
+|(w3 −w4)|. ∥ Ek−3 ∥∞ + · · ·+ |(wk−1 −wk)|. ∥ E1 ∥∞ +|wk|. ∥ E0 ∥∞ + ∥ τk+1 ∥∞
≤ [1.ζk +(w1 −w2)ζk−1 +(w2 −w3)ζk−2 +(w3 −w4)ζk−3
+ · · ·+(wk −wk−1)ζ1]O((∆x)2 +∆t)+ ∥ τk+1 ∥∞
≤ ζ ∗[1+w1 −wk]O((∆x)2 +∆t)+ζ0O((∆x)2 +∆t), where ζ ∗ = max{ζ1,ζ2, · · · ,ζk}
≤ ζ O((∆x)2 +∆t) where, ζ > 0 is a constant not dependent on x and t.

So, by principle of mathematical induction, for all n ≥ 1,
∥ En ∥∞≤ ζ O((∆x)2 +∆t).

Hence, when 0 < r ≤ min
{

2−µ
4 , 2−µ−w1

4

}
, as (∆x,∆t) approach (0,0), the vectorUn approaches the vectorUn. This shows

that scheme is conditionally convergent.
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3 Result and Discussion
The proposed study utilizes a time fractional drug diffusion problem described by Equations (3), (4) and (5) to evaluate the
diffusion of drug within the human dermal layer. To accomplish this, we employ a fractional-order explicit finite difference
method, as developed in Equations (8), (9), (10), (11) and (12), to predict drug diffusion at specific grid points (xi, tk)
within the discretized dermal region. The simulation employs dimensionless quantities. In our model problem, we employ
the physiological parameters, provided in the literature (15) as: L = 1, D = 0.00068, θ1 = 0.02, θ2 = 0.002, a = 5, and b = 0.
We develop following Python program ”DDE” to solve the system of Equations (8), (9) and (10) with the values ∆x = 0.05 and
r = 0.2.

Inputs:
dx=∆x, dt=∆t, mu=µ , D=Diffusion coefficient, theta1=θ1, theta2=θ2, L=Spacial length, T=Time for estimating the solution,

aa=Fractional order α , and U= Solution matrix.

3.1 Python Program DDE

import numpy as np
frommath import*
def DDE(D,theta1,theta2,r,dx,L,T,aa):
dt=((r*dx**2)/(D*gamma(2-aa)))**(1/aa)
mu=(theta1+theta2)*gamma(2-aa)*(dt**aa)
M=int(round(L/dx))
N=int(round(T/dt))
x=np.linspace(0,L,M+1)
t=np.linspace(0,T,N+1)
w=np.zeros(N+1)
for k in range(0,N+1):
w[k]=(k+1)**(1-aa)-k**(1-aa)

U=np.zeros((N+1,M+1))
for i in range(1,M):
U[0][i]=0
U[0][0]=5; U[0][M]=0

for i in range(1,M):
U [1] [i]=r*U[0][i-1]+(1-2*r-mu)*U[0][i]+r*U[0][i+1]
U [1][0]=5; U [1][M]=0

for i in range(1,M):
U [3][i]=r*U [1] [i-1]+(1-2*r-mu-w [1])*U [1][i]+r*U [1][i+1]-w [1]*U[0][i]
U [3][0]=5; U [3][M]=0

for k in range(2,N):
for i in range(1,M):
S=0
for j in range(1,k):
S=S+(w[j]-w[j+1])*U[k-j][i]
U[k+1][i]=r*U[k][i-1]+(1-2*r-mu-w (1))*U[k][i]+r*U[k][i+1]+S-w[k]*U[0][i]
U[k+1][0]=5; U[n+1][M]=0

T=int(T/dt)
return(x, U[T])
The output of the DDE is the approximate value of the vector u(xi,T ). The simulations are conducted for various time

levels t and various α values. The results have been graphically represented in Figures 1, 2 and 3. These graphs represent the
drug concentration profile in the human dermal region over its length. In Figure 2, we have plotted the drug concentration
in the dermal region at a time t = 1 second for different values of α . The graph shows that at the start of the drug diffusion
process in the dermal layer (i.e., at x = 0), the drug concentration is high on the skin’s surface. However, as the distance from
the surface increases, the drug concentration gradually decreases and eventually reaches zero. Furthermore, we observed that,
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for different value of α , the concentration profile follows the same pattern. This suggests that the diffusion process exhibits
consistent behavior irrespective of the fractional order α used in the model.

Fig 1. Drug diffusion in the skin at time t = 1 second and for α=1.0,0.90,0.8

Figure 2 illustrates the concentration profile of drug diffusion in the skin at four different time points: t = 60 seconds, t = 600
seconds, t = 1800 seconds, and t = 3600 seconds, each corresponding to distinct values of α . In Figure 2, we observed that
the concentration of the drug in the skin decreases slowly compared to Figure 1. This observation is attributed to the increase
in time. As time progresses, the drug diffuses further into the skin, leading to a gradual decrease in its concentration. Finally,
based on the observations from Figure 2, we can conclude that after t = 600 seconds, the drug concentration profile remains
the same for different values of α .

Fig 2. Simulation of drug diffusion in the skin at timet = 60,600,1800 and 3600

In Figure 3, the concentration profile is presented for different time levels with α = 1.0 and α = 0.90. From these
representations, we observe that the rate of diffusion of drug in the skin decreases rapidly for α = 0.9 compared to α = 1.0.
The results demonstrate excellent agreement with those reported by S. Mungkasi (15). This consistency further validates the
reliability of the proposed fractional-order explicit finite difference method and reinforces its capability to accurately predict
drug diffusion in the human dermal layer.
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Fig 3. Simulation of drug diffusion in the skin at parameter α = 1.0 and 0.90

4 Conclusion
The application of the time fractional drug diffusion equation in the Caputo sense, coupled with the fractional order finite
difference technique, represents a significant advancement in the field of drug delivery and mathematical modeling of drug
concentration within the dermal region of the human body.The numerical solution of themodelled problem, obtained through
the developed scheme, remains stable under the condition 0 < r ≤ min

{
2−µ

4 , 2−µ−w1
4

}
. In addition, the Python programming

language has shown to be an efficient tool for producing numerical outcomes and simulating them across a range ofα values.We
employed parameter values from existing literature to conduct numerical simulations for themodel.The graphical visualization
reveals that, for various values of the parameter α , drug diffusion in the dermal region remains constant after t=600 seconds.
This observation indicates that the diffusion process maintains a consistent behavior regardless of the specific fractional order
α employed in the model. Comparing our fractional-order model with previous work underscores the smoother solutions
and higher performance of our approach. This emphasizes the broader applicability and enhanced capabilities of the finite
differencemethod inmodeling topical drug diffusion.This approach has proven to be highly effective, providing amore accurate
representation of drug diffusion with memory and non-local effects, which are characteristic of biological systems.
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