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Abstract
Objectives: To prove some fixed point theorems and common fixed point
theorems by using partial b-metric spaces.Methods: Ciric type contraction for
single-valued mapping is also used to prove fixed point theorem and Nadler’s
type Banach contraction is used to produce fixed point and common fixed
point theorems. Findings:We have to find fixed point and common fixed point
theorems for single valuedmapping and a fixed point theorem for multivalued
mapping. Novelty : We have to use a new type of space called partial b-
metric space to prove all the theorems in this paper. No one has proven these
theorems before in this space.
2020 Mathematics Subject Classification : 47H10, 54H25.
Keywords: Partial b-metric space; Single valued; Multi valued; Common fixed
point; Fixed point

1 Introduction
An essential part of functional and nonlinear analysis is fixed point theory. Banach (1)

presented an important finding regarding contraction maps. Since then, other writers
have contributed numerous papers that deal with fixed point results (see, for
example, (2–4)).

More recently, Shukla (5) expanded upon the notions of b−metric spaces and partial
metric spaces, introducing the concept of partial b−metric spaces. In this context,
Shukla not only formulated the Banach contraction principle but also established a
Kannan-type fixed point theorem within partial b−metric spaces.

The aforementioned spaces have seen a great deal of development. The aforemen-
tioned spaces have recently been the focus of investigation into fixed point and common
fixed point results for single-valued as well as multi-valued mappings; for examples, see
Ali et al. (6), Khan et al. (7), Kanwel et al. (8–10), Tassaddiq et al. (11), Karapinar et al. (12,13),
Qawaqneh et al. (14), Shoaib et al. (15), and the references within it.

This work is dedicated to the formulation and proof of contractive mappings fixed
point theorems in partial b-metric spaces.The application of contraction of the Ciric (16)
type is used in Theorem 3.1 to determine a fixed point of a single-valued map and
provide an extension in partial b-metric space. Theorem 3.2 uses Banach (1) type
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contraction in the setting of complete partial b-metric spaces to expandNadler’s fixed point theorem (17). A fixed point theorem
for multi-valued mapping in partial b-metric spaces was demonstrated byTheorem 3.3.

2 Preliminaries
Firstly, we recall some basic definitions,

Definition 2.1 (5) Let X be a non-empty set and the self mapping d : X ×X → R+ (R+ stands for non-negative reals) satisfies:
(Pb1) x = y if and only if d(x,x) = d(x,y) = d(y,y);
(Pb2) d(x,x)≤ d(x,y);
(Pb3) d(x,y) = d(y,x);
(Pb4) there exist a real number s ≥ 1 such that d(x,y)≤ s[d(x,z)+d(z,y)]−d(z,z).
Then d is called a partial b−metric on X and (X ,d) is called a partial b−metric space with coefficient s.
Definition 2.2 Let {xn} be a sequence in a partial b−metric space (X ,d). Then:
(1) The sequence {xn} is said to be a convergent in (X ,d), if there exists x∗ ∈ X such that limn→∞d(xn,x∗) = 0.
(2) The sequence {xn} is said to be a Cauchy sequence in (X ,d), if for every ε > 0 there exists a positive n0 ∈ N such that

d(xn,xm)< ε for all n,m > n0 (or, equivalently, limn,m→∞d(xn,xm) = 0).
(3) (X ,d) is called a complete partial b−metric space if every Cauchy sequence is convergent in X .
Definition 2.3 Let X be a non-empty set. Then a self-mapping T : X → X is said to be a fixed point if for all x ∈ X such that

T (x) = x.
Example 2.4Themapping T : R → R defined by T (x) = sinx has 0 as a fixed point.
Definition 2.5 A pair of self-mappings have a common fixed point S,T : X → X is a point a ∈ X for which
S(a) = T (a) = a.
Definition 2.6 Consider a metric space (X ,d). Let CB(X) denote the family of all non-empty bounded and closed subsets

of X . Suppose that a map H : CB(X)×CB(X)→ R forU,V ∈CB(X), define
H(U,V ) = max{sup

u∈U
d(u,V ),sup

v∈V
d(v,U)}

where d(u,V ) = in f{d(u,v) : v ∈V} is the distance of a point u to the setV . This H is a metric onCB(X), called Housdorff
metric induced by the metric d.

Definition 2.7 (18) Let a multi-valued mapping T : X →CB(X) on a non-empty set X ,CB(X) be the family of all non-empty
closed and bounded subsets of X . A point y ∈ X is called fixed point of T if y ∈ Ty.

Lemma 2.8 (18) Let partial b−metric space (X ,d) and letCB(X) is the family of all non-empty closed and bounded subsets
of X . Then, forU,V ∈CB(X),

(1) d(a,U)≤ H(U,V ),a ∈U ;
(2) For ε > 0 and a ∈U,∃b ∈V such that
d(a,b)≤ H(U,V )+ ε

3 Result and Discussion
In this paper, we begin with the proof of the following result in partial b−metric space with the help of single valued mapping:

Theorem 3.1 Let a (X ,d,s) be a complete partial b−metric space with s ≥ 1 and T : X → X is a single valued mapping, such
that

d(T x,Ty)≤ α1d(x,y)+α2d(x,T x)+α3d(y,Ty)+α4[d(y,T x)+d(x,Ty)],
where α1 +(1+ s)α2 +α3 +(1+ s)α4 < 1,∀x,y ∈ X . Then, ∃x∗ ∈ X such that xn → x∗ and x∗ is the unique fixed point.
Proof. Let x0 ∈ X and {xn} be a sequence in X define as
xn = T xn = T nx0,n = 1,2,3, ...
Now,

d(xn,xn+1) = d(T xn−1,T xn)
≤ α1d(xn−1,xn)+α2d(xn−1,xn)+α3d(xn,xn+1)
+α4[d(xn,xn)+d(xn−1,xn+1)]
≤ α1d(xn−1,xn)+α2d(xn−1,xn)+α3d(xn,xn+1)+α4d(xn,xn+1)
+sα4d(xn−1,xn)+ sα4d(xn,xn+1)−α4d(xn,xn)

≤ α1d(xn−1,xn)+α2d(xn−1,xn)+α3d(xn,xn+1)+α4d(xn,xn+1)
+sα4d(xn−1,xn)+ sα4d(xn,xn+1)

(1−α3 −α4 − sα4)d(xn,xn+1)≤ (α1 +α2 + sα4)d(xn−1,xn)
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d(xn,xn+1)≤ ( α1+α2+sα4
1−α3−α4−sα4

)d(xn−1,xn),

where k = α1+α2+sα4
1−α3−α4−sα4

.
Therefore,

d(xn,xn+1)≤ kd(xn−1,xn)
≤ k2d(xn−2,xn−1).

Continuing this process, we get
d(xn,xn+1)≤ knd(x0,x1).

Consider m,n ∈ N with m > n
d(xn,xm)≤ s[d(xn,xn+1)+d(xn+1,xm)]−d(xn+1,xn+1)
≤ sd(xn,xn+1)+ sd(xn+1,xm)
≤ sd(xn,xn+1)+ s{s[d(xn+1,xn+2)+d(xn+2,xm)]−d(xn+2,xn+2)}
≤ sd(xn,xn+1)+ s2d(xn+1,xn+2)+ s2d(xn+2,xm)
≤ sd(xn,xn+1)+ s2d(xn+1,xn+2)+ s3d(xn+2,xn+3)+ ...+ smd(xn+m−1,xn+m)
≤ sknd(x0,x1)+ s2kn+1d(x0,x1)+ s3kn+2d(x0,x1)+ ...+ smkn+m−1d(x0,x1)
≤ sknd(x0,x1)[1+ sk+(sk)2 + ...+(sk)m−1]

≤ sknd(x0,x1)[
1−(sk)m

1−sk ],
when m,n → ∞, d(xn,xm)→ 0. Hence, {xn} is a Cauchy sequence in X . Since X is complete, {xn} converges to an element

of X , say x∗ ∈ X .
Now,

d(x∗,T x∗)≤ s[d(x∗,xn+1)+d(xn+1,T x∗)]−d(xn+1,xn+1)
≤ sd(x∗,xn+1)+ sd(T xn,T x∗)
≤ sd(x∗,xn+1)+ sα1d(xn,x∗)+ sα2d(xn,T xn)+ sα3d(x∗,T x∗)
+sα4d(x∗,T xn)+ sα4d(xn,T x∗)
≤ sd(x∗,xn+1)+ sα1d(xn,x∗)+ sα2d(xn,xn+1)+ sα3d(x∗,T x∗)
+sα4d(x∗,xn+1)+ sα4{s[d(xn,x∗)+d(x∗,T x∗)]−d(x∗,x∗)}
≤ sd(x∗,xn+1)+ sα1d(xn,x∗)+ sα2d(xn,xn+1)+ sα3d(x∗,T x∗)
+sα4d(x∗,xn+1)+ s2α4d(xn,x∗)+ s2α4d(x∗,T x∗)

d(x∗,T x∗)≤ (s+sα4)
(1−sα3−s2α4)

d(x∗,an+1)+
(sα1+s2α4)

(1−sα3−s2α4)
d(an,x∗)+

sα2
(1−sα3−s2α4)

d(an,an+1),

taking n → ∞, we have
d(x∗,T x∗)≤ (s+sα4)

(1−sα3−s2α4)
d(x∗,x∗)+ (sα1+s2α4)

(1−sα3−s2α4)
d(x∗,x∗)+ sα2

(1−sα3−s2α4)
d(x∗,x∗),

implies that x∗ = T x∗. Hence, x∗ is an fixed point of T .
For uniqueness, assume that y∗ is another fixed point of T . Then, we have Ty∗ = y∗.
Consider,

d(x∗,y∗) = d(T x∗,Ty∗)
≤ α1d(x∗,y∗)+α2d(x∗,T x∗)+α3d(y∗,Ty∗)+α4[d(y∗,T x∗)+d(x∗,Ty∗)]
≤ α1d(x∗,y∗)+α2d(x∗,x∗)+α3d(y∗,y∗)+α4[d(y∗,x∗)+d(x∗,y∗)]
≤ α1d(x∗,y∗)+α2d(x∗,y∗)+α3d(y∗,x∗)+α4[d(y∗,x∗)+d(x∗,y∗)]
≤ (α1 +α2 +α3 +2α4)d(x∗,y∗),

this implies that x∗ = y∗.
Theorem 3.2 Consider a complete partial b metric space (X ,d,s) with constant s ≥ 1 and suppose that F,G : X → X be two

maps, for which η1,η2 ∈ [0, 1
3 ) such that

d(Fa,Gb)≤ η1d(a,b)+η2[d(a,Fb)+d(a,Gb)].
Then there exists a common fixed point of F and G.
Proof. Let x0 ∈ X . Consider the sequence {xn} so that x2n+2 = Gx2n+1,x2n+1 = Fx2n. Then

d(x2n+1,x2n+2) = d(Fx2n,Gx2n+1)
≤ η1d(x2n,x2n+1)+η2[d(x2n,Fx2n)+d(x2n+1,Gx2n+1)]
≤ η1d(x2n+1,x2n)+η2d(x2n+1,x2n+2)+η2d(x2n,x2n+1),
(1−η2)d(x2n+1,x2n+2)≤ (η1 +η2)d(x2n,x2n+1),
d(x2n+1,x2n+2)≤ [ η1+η2

(1−η2)
]d(x2n,x2n+1)≤ kd(x2n,x2n+1),

where k = [ η1+η2
(1−η2)

]. As η1,η2 ∈ [0, 1
3 ). So η1 +2η2 < 1 ⇒ η1 +η2 < 1−η2.

This implies that η1+η2
(1−η2)

< 1, i.e. k < 1. So,
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d(x2n+1,x2n+2)≤ kd(x2n,x2n+1)
≤ k2d(x2n−1,x2n).

Continuing this process, we obtain
d(x2n+1,x2n+2)≤ knd(x0,x1).

In general,
d(xn,xn+1)≤ knd(x0,x1).

Now, let m,n ∈ N with m > n
d(xn,xm)≤ s[d(xn,xn+1)+d(xn+1,xm)]−d(xn+1,xn+1)
≤ sd(xn,xn+1)+ sd(xn+1,xm)
≤ sd(xn,xn+1)+ s{s[d(xn+1,xn+2)+d(xn+2,xm)]−d(xn+2,xn+2)}
≤ sd(xn,xn+1)+ s2d(xn+1,xn+2)+ s2d(xn+2,xm)
≤ sd(xn,xn+1)+ s2d(xn+1,xn+2)+ s3d(xn+2,xn+3)+ ...+ sm−nd(xm−1,xm)
≤ sknd(x0,x1)+ s2kn+1d(x0,x1)+ s3kn+2d(x0,x1)+ ...+ sm−nkm−1d(x0,x1)

d(xn,xm)≤ sknd(x0,x1)
1−(sk)m

1−sk .
When m,n → ∞,limn→∞d(xn,xm) = 0.
Hence, {xn}∞

n=1 is a Cauchy sequence in X . Since X is complete, {xn} converges to y ∈ X .
Now,

d(y,Gy)≤ s[d(y,Fx2n)+d(Fx2n,Gy)]−d(Fx2n,Fx2n)
≤ sd(y,Fx2n)+ sd(Fx2n,Gy)
≤ sd(y,x2n+1)+ s[η1d(x2n,y)+η2d(y,Gy)+η2d(x2n,Fx2n)]
≤ sd(y,x2n+1)+ sη1d(x2n,y)+ sη2d(y,Gy)+ sη2d(x2n,x2n+1)
(1− sη2)d(y,Gy)≤ sd(y,x2n+1)+ sη1d(x2n,y)+ sη2d(x2n,x2n+1)
d(y,Gy)≤ s

1−sη2
d(y,x2n+1)+

sη1
1−sη2

d(a2n,y)+
sη2

1−sη2
d(x2n,x2n+1).

When n → ∞,
d(y,Gy)≤ s

1−sη2
d(y,y)+ sη1

1−sη2
d(y,y)+ sη2

1−sη2
d(y,y)

d(y,Gy)≤ s
1−sη2

d(y,Gy)+ sη1
1−sη2

d(y,Gy)+ sη2
1−sη2

d(y,Gy)
d(y,Gy)≤ 0,

this implies that y = Gy.
Now,
d(y,Fy)≤ s[d(y,Gx2n+1)+d(Gx2n+1,Fy)]−d(Gx2n+1,Gx2n+1)
d(y,Fy)≤ sd(y,Gx2n+1)+ sd(Gx2n+1,Fy)
d(y,Fy)≤ sd(y,x2n+2)+ sη1d(x2n+1,y)+ sη2d(x2n+1,Gx2n+1)+ sη2d(y,Fy)
(1− sη2)d(y,Fy)≤ sd(y,x2n+2)+ sη1d(x2n+1,y)+ sη2d(x2n+1,x2n+2)

d(y,Fy)≤ s
1−sη2

d(y,x2n+2)+
sη1

1−sη2
d(x2n+1,y)+

sη2
1−sη2

d(x2n+1,x2n+2),

when n → ∞,
d(y,Fy)≤ s

1−sη2
d(y,y)+ sη1

1−sη2
d(y,y)+ sη2

1−sη2
d(y,y)

d(y,Fy)≤ s
1−sη2

d(y,Fy)+ sη1
1−sη2

d(y,Fy)+ sη2
1−sη2

d(y,Fy),
this implies that y = Fy.
Thus, Gy = Fy = y. Hence, y is a common fixed point of G and F .
Now, we will prove a fixed point theorem for multi-valued mappings in partial b−metric space:
Theorem 3.3 Let (X ,d) be a complete partial b−metric space with constant s ≥ 1. Let G : X → CB(X) is a multivalued

mapping defined as
H (Gx,Gy)≤ αd (x,y) ,∀x,y ∈ X and α ∈ [0,1),s ≥ 1.
Then, there exists x ∈ X such that y ∈ Gy.
Proof. Suppose that x0 ∈ X ,Gx0 ̸= 0 is closed and bounded subset of X . Also, let x1 ∈ Gx0, Gx1 ̸= ϕ be closed and bounded

subset of X . By lemma 2.8, there exists x2 ∈ Ga1 such that
d(x1,x2)≤ H(Gx0,Gx1)+α.

Now, Gx2 ̸= ϕ closed and bounded subsets of X , there exists x3 ∈ Gx2 such that

d(x2,x3)≤ H(Gx1,Gx2)+α2. (3.3.1)

By using contraction condition,
d(x2,x3)≤ d(x1,x2)+α2,
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d(x3,x4)≤ H(Gx2,Gx3)+α3

≤ αd(x2,x3)+α3.
Using Equation (3.3.1), we have

d(x3,x4)≤ α [d(x1,x2)+α2]+α3

≤ α2d(x1,x2)+2α3

≤ α2[H(Gx0,Gx1)+α]+2α3

≤ α2[αd(x0,x1)+α]+2α3

≤ α3d(x0,x1)+α3 +2α3

≤ α3d(x0,x1)+3α3.
In general,
d(xn,xn+1)≤ αnd(x0,x1)+nαn.
For convenience, we set d(xn,xn+1) = dn, so the above result can be written as

dn ≤ αnd0 +nαn.
For m,n ∈ N,m ≥ n, we have

d(xn,xm)≤ s[d(xn,xn+1)+d(xn+1,xm)]−d(xn+1,xn+1)
≤ sd(xn,xn+1)+ sd(xn+1,xm)
≤ sd(xn,xn+1)+ s{s[d(xn+1,xn+2)+d(xn+2,xm)]−d(xn+2,xn+2)}
≤ sd(xn,xn+1)+ s2d(xn+1,xn+2)+ s2d(xn+2,xm)
≤ sd(xn,xn+1)+ s2d(xn+1,xn+2)+ s3d(xn+2,xn+3)+ ...+ sm−nd(xm−1,xm)
≤ sαnd(x0,x1)+ s2αn+1d(x0,x1)+ s3αn+2d(x0,x1)+ ...+ sm−nαm−1d(x0,x1)
+snαn + s(n+1)αn+1 + s2(n+2)αn+2 + ...+ sm−n(m−1)αm−1

≤ sαnd(x0,x1)[1+ sα +(sα)2 + ...sm−n−1αm−n−1]+∑m−1
i=n isi−n+1α i

≤ sαnd(x0,x1)[
1−(sα)m−n−1

1−sα ]+∑m−1
i=n isi−n+1α i.

In the limiting case when m,n → ∞,
d(xn,xm) = 0,

this implies that {xn} is a Cauchy sequence in X , the completeness of X implies that there exists y ∈ X such that,
xn → y.

Now we will prove that y is a fixed point of G.
d(y,Gy)≤ s[d(y,xn)+d(xn,Gy)]−d(xn,xn)≤ sd(y,xn)+ sd(xn,Gy).

By Lemma 2.8,
d(y,Gy)≤ d(y,xn)+ sH(Gxn−1,Gy)
≤ sd(y,xn)+ sαd(xn−1,y).

In the limiting case when n → ∞,
d(y,Gy)≤ sd(y,y)+ sαd(y,y)
≤ sd(y,Gy)+ sαd(y,Gy)
(1− s− sα)d(y,Gy)≤ 0.

This implies that y ∈ Gy. Hence, y is a fixed point of G.

4 Conclusion
The use of fixed point techniques is both appealing and extremely helpful. This theory has potential applications to discrete
dynamics for set-valued operators, functional inclusions, optimization theory, fractal graphics, and other nonlinear functional
analysis domains. We have generalized and demonstrated fixed point and common fixed point theorems for single-valued
mappings obeying Ciric type contractions in partial b−metric space. One fixed point theorem for multi-valued mappings with
Nadler’s type contractions has also been established in these spaces. Future studies could find these generalizations to be helpful.
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