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Abstract
Objectives: Diophantine research focuses on various ways to tackle multivari-
able andmultidegree Diophantine problems. A Diophantine equation is a poly-
nomial equation with only integer solutions. The objective of this manuscript is
to find the solutions to a few exponential Diophantine equations η1 :

(
22 −1

)u
+(

22
)v

= w2,η2 :
(
32 −1

)u
+
(
32
)v

= w2,η3 :
(
42 −1

)u
+
(
42
)v

= w2 and η4 :
(
52 −1

)u
+(

52
)v

=w2. Also generalize the Exponential equationη1,η2,η3, andη4 of the form(
n2 −1

)u
+ n2v = w2,n = 2,3,4,5 and explore that it has at least one solution as

(1,0,n). Methods: Diophantine equations may have finite, infinite or no solu-
tions in integers. There is no universalmethod for finding solutions to Diophan-
tine equations. The particular type of Exponential Diophantine equation is anal-
ysed and generalised by the method of Catalan’s conjecture. Findings: Expo-
nential Diophantine equationsη1 :

(
22 −1

)u
+
(
22
)v

= w2,η2 :
(
32 −1

)u
+
(
32
)v

=

w2,η3 :
(
42 −1

)u
+
(
42
)v

= w2 and η4 :
(
52 −1

)u
+
(
52
)v

= w2 has only a finite num-
ber of solutions in N0 (Whole numbers). The solution sets (u,v,w) of η1,η2,η3,
and η4 are, {(1,0,2),(2,2,5)},(1,0,3),(1,0,4),{(1,0,5),(1,1,7)} respectively. Nov-
elty: In this analysis, the particular type of Exponential Diophantine equation
is analysed using elementary mathematics concepts instead of higher mathe-
matics also generalize the Exponential equation η1,η2,η3, and η4 of the form(
n2 −1

)u
+ n2v = w2,n = 2,3,4,5 and explore that it has at least one solution as

(1,0,n).
2020 Mathematical Subject Classification: 11D61.
Keywords: Catalan’s conjecture; Diophantine equation; Exponential
Diophantine equation; Integral solutions; Non-negative integer solution

1 Introduction
Number theory is a pure mathematical area devoted to the development of numbers.
Several mathematicians (1,2) have studied various variants of Diophantine equations
throughout the last few decades. If variables appear as exponents in a Diophantine
equation, it is an exponential Diophantine equation.

For example, the Ramanujan - Nagell equation 2x −7 = x2 and the Fermat - Catalan
Conjecture equation am +bn = ck.
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Janaki G andGowri Shankari A (3) demonstrated in 2023 that Exponential Diophantine Equation 2a+n2b= c2,n= 1,2,3, . . .
where a,b, and c are all positive integers has (a,b,c) = (3,0,3) is a unique nonnegative integer solution. G. Janaki and C.
Saranya (4) established that positive integer solutions exist to the exponential problem using Jarasandha numbers employing the
Catalan conjecture. Several exponential Diophantine equations are solved by many authors in (5–12).

In this paper, the particular type of Exponential Diophantine equation is analysed using elementary mathematics concepts
instead of highermathematics also generalize the Exponential equationη1,η2,η3, andη4 of the form

(
n2 −1

)u
+n2v =w2,n=

2,3,4,5 and explore that it has at least one solution is (1,0,n).

2 Methodology
In this part, we establish the four theorems using the factorizable approach and Catalan’s conjecture.

Preposition 2.1 (TheCatalan’s conjecture) (a,b,x,y) = (3,2,2,3) is the only solution for theDiophantine equation ax−by =
1, where a,b,x and y are integers with min(a,b,x,y)≥ 2.

3 Results and Discussion
Theorem: 3.1

The non-negative integer solution to the Diophantine equation η1 :
(
22 −1

)u
+
(
22
)v

= w2 is {(1,0,2),(2,2,5)}
Proof: Let u,v and w be non-negative integers such that η1 : 3u +4v = w2

Case: 1
If u = 0 then η1 becomes 1+22v = w2. Then

w2 −1 = 22v = 22v−a2a ⇒ (w+1) = 22v−a,(w−1) = 2a (1)

From (Equation (1)),

2 = 2a
(
22v−2a −1

)
(2)

Here a = 1 is the only possible value.
Then from (Equation (2)), v = 3

2 (not possible).
Therefore, no solution occurs in this case.
Case: 2
If v = 0 then η1 becomes

3u +1 = w2 (3)

Then

w2 −1 = 3u = 3u−a3a ⇒ (w+1) = 3u−a,(w−1) = 3a (4)

From (Equation (4))

2 = 3a
(
3u−2a −1

)
(5)

Here a = 0 is the only possible value.
Then from (Equation (5) ), u = 1.
Apply u in (Equation (3) ), one may get w = 2.
Therefore, (1,2) is the solution of the equation 3u +1 = w2.
Case: 3
Assume u,v, and w are all non-negative integers such that

η1 : 3u +4v = w2 (6)

In case 2,u ≥ 1.
Then 3u +22v = w2 as

3u +(2v)2 = w2 ⇒ w2 − (2v)2 = 3u = 3u−a3a (7)

https://www.indjst.org/ 167

https://www.indjst.org/


Janaki & Shankari / Indian Journal of Science and Technology 2024;17(2):166–170

From (Equation (7)),

(w+2v) = 3u−a,(w−2v) = 3a (8)

Using (Equation (8)) one may get,
2(2v) = 3a

(
3u−2a −1

)
⇒ 1.2v+1 = 3a

(
3u−2a −1

)
⇒ a = 0 then

2v+1 = 3u −1 (9)

Then, the possible solutions of (Equation (9)) is {(1,0,2),(2,2,5)}
Hence, the Diophantine equation η1 : 3u +4v = w2 has two solutions as {(1,0,2),(2,2,5)}.
Theorem: 3.2
The non-negative integer solution to the Diophantine equation η2 :

(
32 −1

)u
+
(
32
)v

= w2 is (1,0,3).
Proof: Let u,v and w be non-negative integers such that η2 : 8u +9v = w2

Case: 1
If u = 0 then η2 becomes 1+32v = w2.
Then

w2 −1 = 32v = 32v−a3a ⇒ (w+1) = 32v−a,(w−1) = 3a (10)

From (Equation (10)),

2 = 3a
(
32v−2a −1

)
(11)

Here a = 0 is the only possible value.
Then from (Equation (11)), v = 1

2 (not possible).
Therefore, no solution occurs in this case.
Case: 2
If v = 0 then η2 becomes

8u +1 = w2 (12)

Then

w2 −1 = 8u = 8u−a8a ⇒ (w+1) = 8u−a,(w−1) = 8a (13)

From (Equation (13)),

2 = 8a
(
8u−2a −1

)
(14)

From (Equation (14)), one may get either a = 0 or a = 1
3 (not possible)

The only possible is a = 0 then one may get 8u = 2 which is not possible.
Therefore, no solution occurs in this case, too.
Case: 3
Assume u,v, and w are all non-negative integers such that

η2 : 8u +9v = w2 (15)

In case 2,u ≥ 1.
Then (Equation (15)) becomes

8u +(3v)2 = w2 ⇒ w2 − (3v)2 = 8u = 23u = 23u−a2a (16)

From (Equation (16)),

(w+3v) = 23u−a,(w−3v) = 2a (17)
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Using (Equation (17)) one may get,

2(3v) = 2a
(
23u−2a −1

)
(18)

From (Equation (18)), the possible value of a = 1.
Then (Equation (18)) becomes

3v =
(
23u−2a −1

)
(19)

Put u = 1 then one may get v = 0.
Now by (Equation (15)), w = 3
Hence, the Diophantine equation η2 : 8u +9v = w2 has a single solution as (1,0,3).
Theorem: 3.3
The non-negative integral solution to the Diophantine equation η3 :

(
42 −1

)u
+
(
42
)v

= w2 is (1,0,4).
Proof:
As discussed inTheorem 3.1 and 3.2, onemay get a single solution (1,0,4) for theDiophantine equationη3 : 15u+16v =w2.
Theorem: 3.4
The non-negative integral solution to the Diophantine equation η4 :

(
52 −1

)u
+
(
52
)v

= w2 is {(1,0,5),(1,1,7)}.
Proof:
As discussed in Theorem 3.1 and 3.2, one may get a two solution {(1,0,5),(1,1,7)} for the Diophantine equation η4 :

24u +25v = w2.

4 Remarkable Observation

From Theorem 3.1, 3.2, 3.3, and 3.4, one may explore that the Exponential equation of the form
(
n2 −1

)u
+ n2v = w2,n =

2,3,4,5 has at least one solution as (1,0,n).

5 Conclusion
In this work, a few exponential Diophantine equations

η1 :
(
22 −1

)u
+
(
22
)v

= w2,η2 :
(
32 −1

)u
+
(
32
)v

= w2,η3 :
(
42 −1

)u
+
(
42
)v

= w2, and
η4 :

(
52 −1

)u
+
(
52
)v

= w2 has only a finite number of solutions in N0 is explored. The solution sets (u,v,w) of η1,η2,η3,
and η4 are, {(1,0,2),(2,2,5)},(1,0,3),(1,0,4),{(1,0,5),(1,1,7)} respectively.

Also, we generalize the Exponential equation of the form
(
n2 −1

)u
+ n2v = w2,n = 2,3,4,5 with at least one solution is

(1,0,n). One may also find integral solutions to other different exponential Diophantine equations.
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