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Abstract
Objectives: To develop Bayesian estimators of dynamic weighted cumulative
residual entropy (DWCRE) for Laplace distribution and to investigate posterior
risks using various priors and loss functions. Methods: Weighted entropy
measure of information is provided by a probabilistic experiment whose basic
events are described by their objective probabilities and some qualitative
(objective or subjective) weights. In this paper, we have used priors (Jeffrey’s,
Hartigan, Uniform and Gumble Type II) and several loss functions. Findings:
Bayesian estimators and associated posterior risks for Laplace distribution
have been derived for different priors and loss functions. Monte Carlo
Simulation study and graphical analyses have also been presented along with
the conclusion. Through the comprehensive simulation study in the paper, it
has been observed that Hartigan prior is better than other priors in terms
of the posterior risk whereas Uniform prior has always higher posterior risk.
Novelty: The introduction of new Bayesian estimators and their posterior
risks for dynamic weighted cumulative residual entropy (DWCRE) of Laplace
distribution.
Keywords: Bayesian estimators; Laplace distribution; Fisher information
matrix; Loss functions; Priors

1 Introduction
Laplace distribution is a continuous probability distribution and also known as double
exponential distribution. It has numerous applications in finance, ocean engineering,
image and speech recognition and hydrology. Its prominent feature is the method by
which it models the errors, i.e., the probability of deviations from a central value.
This distribution is popularly practiced for modeling lifetime in engineering field.
To delineate the financial data this distribution is more convenient than normal
distribution due to its peak and thick tail.Thus, this distribution has various applications
in the financial field. The probability density function (pdf) of the Laplace distribution
is given by,

f (x) =
1

2σ
exp
(
−|x−µ |

σ

)
(1.1)
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where σ > 0 and µ are respectively scale and location parameters of this distribution.
Information theory provides natural mathematical tools for measuring the uncertainty of random variables and the

information shared by them. Entropy is a useful indicator of information content that has been used in a number of applications.
The probability distribution of a random variable is associated with some sort of uncertainty and entropy is used to quantify it.
The entropy of the random variable X having c.d.f (F) with p.d.f (f) is defined as

H( f ) =−
∫ ∞

0
f (x)log f (x)dx

Weighted residual entropy is defined as

Hw(x, t) =−
∫ ∞

t
x

f (x)
F(t)

log
(

f (x)
F(t)

)
dx

In literature, the weighted cumulative residual entropy (WCRE) is defined as

Ew(X) =−
∫ ∞

0
xF(x)log(F(x))dx

Dynamic weighted cumulative residual entropy (DWCRE) is defined as

εw(x, t) =−
∫ ∞

t
W (x)

F(x)
F(t)

log
(

F(x)
F(t)

)
dx f or t such that F(t)> 0.

Here, the case ofW (x) = x is considered and the DWCRE for Equation (1.1) is simplified as

εw(t) = σ(t +2). (1.2)

Al-Babtain et al. (1) have studied the dynamic cumulative residual Renyi’s entropy for Lomax distribution. Shah et al. (2) discussed
the properties and applications of a new alpha skewLaplace distribution.TheBayesian and non- Bayesian estimation of dynamic
cumulative residual Tsallis entropy for moment exponential distribution under progressive censored type II is discussed by
Alyami et al. (3). Helmy et al. (4) described the analysis of information measures using generalized type -I hybrid censored data.
Entropy estimation is mainly inconvenient, when there are less samples relative to the total number of symbols. We refer to
this unliterary as the ”under-sampled” regime. In this regime, it is ordinary for many symbols with non-zero probability to stay
undetected, and frequently we can only bound or estimate the reinforce of the distribution (i.e., the number of symbols with
non-zero probability). In the estimation procedure, the Bayesian approach permits prior subjective knowledge on parameters to
be included. To get the same quality of inferences Bayesian methods require less sample data than methods based on sampling
theory. We can defeat this limitation by constructing a prior over the area of countable infinite discrete distributions and the
resulting estimator is found to be compatible even when the support of the true distribution is finite.

The Bayesian estimation of exponentiated logistic distribution based on lower record value is described by Shaikh and
Patel (5). Al- Babtain et al. (6) discussed the estimation of different types of entropies for Kumaraswamy distribution. Estimation
of entropy for inverse Lomax distribution under multiple censored data is described by Bantan et al. (7). Shrahili et al. (8)
discussed the estimation of entropy for Log- Logistic distribution under progressive type II censoring. Almarashi et al. (9) studied
the Bayesian analysis of DCRE for Lindley distribution. Savita and Kumar (10) discussed Bayesian estimators and associated
posterior risks for DCRE of the Laplace distribution under different loss functions. A connection between weighted generalized
CRE and variance is described by Toomaj and Di Crescenzo (11). The Bayesian estimators for the weighted version of dynamic
cumulative residual entropy of Laplace distribution has not been reported in the literature.

Keeping above in view, in the present paper, Bayesian estimators are proposed for the weighted version of dynamic
cumulative residual entropy, that is, for the dynamic weighted cumulative residual entropy for Laplace distribution
(Equation (1.2)). Further the estimators and their posterior risks are obtained for the weighted case of dynamic cumulative
residual entropy and hence are more general. This is the novelty of the paper.

In the paper, to obtain estimators of DWCRE for Laplace distribution using Bayesian techniques, posterior distributions
using different priors and various loss functions have been discussed in section 2. In section 3, Bayesian estimators and
associated posterior risks for the distribution have been calculated using different priors and loss functions. Numerical
computation and graphical analysis have been done in section 4. The conclusions drawn has been presented in section 5.
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2 Methodology

2.1 Prior and loss functions

Prior information is utilized in Bayesian analysis, and it is an important approach to statistics. In Bayesian estimation,
uncertainty about the latent variable is described by prior probability distribution. We require appropriate choice of priors
for the parameters in the Bayesian deduction. In literature, some authors have discussed that there is no method to check the
superiority of one prior over other prior, i.e., one is better than other. If we have enough information about the parameter, then
informative priors are mostly used. In this paper, we have used various informative and non-informative priors. The likelihood
function for Equation (1.1) is given by,

L(x/σ) =
1

(2σ)n exp

(
−

n

∑
i=1

|xi −µ |/σ

)
The posterior distributions of scale parameter σ for Jeffrey’s, Hartigan, Uniform and Gumbel Type II priors, respectively given
by π1(σ/x

_
),π2(σ/x

_
),π3(σ/x

_
) and π4(σ/x

_
) are as under:

π1(σ/x
_
) =

Gn

σn+1Γ(n)
exp
(
−G

σ

)
(1.3)

π2(σ/x
_
) =

Gn+2

σn+3Γ(n+2)
exp
(
−G

σ

)
(1.4)

π3(σ/x
_
) =

Gn−1

σnΓ(n−1)
exp
(
−G

σ

)
(1.5)

π4(σ/x
_
) =

MN

σN+1Γ(N)
exp
(
−M

σ

)
(1.6)

where G = ∑n
i=1 |xi −µ | , M = a+∑n

i=1 |xi −µ| , N = n+1.
The loss functions should be analyzed to select the best estimator and also used to show the associated penalty. The

statement that Bayesian methods always perform good regardless of the situations, is not always true. In the present paper,
we have considered different loss functions such as SELF (Squared Error Loss Function), GELF (General Entropy Loss
Function), ELF (Entropy Loss Function),WSELF (Weighted Squared Error Loss Function), KLF (K- Loss Function), M/QSELF
(Modified/Quadratic Squared Error Loss Function) and PLF (Precautionary Loss Function).

The Bayesian estimators under SELF, GELF, ELF, WSELF, KLF, M/QSELF and PLF loss functions denoted by
∧
σS,

∧
σG,

∧
σE ,

∧
σW ,

∧
σK ,

∧
σM and

∧
σP are as

∧
σS = E(σ/x

_
) (1.7)

∧
σG =

[
E
(

σ−c/x
_

)]−1/c
(1.8)

∧
σE =

[
E
(

σ−1/x
_

)]−1
(1.9)

∧
σW =

[
E
(

σ−1/x
_

)]−1
(1.10)
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∧
σK =

√√√√√√
E(σ/x

_
)

E
(

σ−1/x
_

) (1.11)

∧
σM =

E
(

σ−1/x
_

)
E
(

σ−2/x
_

) (1.12)

∧
σP =

√
E
(

σ2/x
_

)
(1.13)

and posterior risk under above mentioned loss functions denoted by
∧
σPS,

∧
σPG,

∧
σPE ,

∧
σPW ,

∧
σPK ,

∧
σPM and

∧
σPP are as

∧
σPS =V (σ/x

_
) (1.14)

∧
σPG = cE(lnσ/x

_
)+ ln

[
E
(

σ−c/x
_

)]
(1.15)

∧
σPE = E(lnσ/x

_
)+ ln

[
E
(

σ−1/x
_

)]
(1.16)

∧
σPW = E(σ/x

_
)−
[

E
(

σ−1/x
_

)]−1
(1.17)

∧
σPK = 2

[
E(σ/x

_
)

[
E
(

σ−1/x
_

)]
−1
]

(1.18)

∧
σPM = 1−

[
E
(

σ−1/x
_

)]2

E
(

σ−2/x
_

) (1.19)

∧
σPP = 2

[√
E
(

σ2/x
_

)
−E(σ/x

_
)

]
(1.20)

3 Results and Discussion

3.1 Proposed Bayesian Estimators

The novelty of the paper is to propose the Bayesian estimators and posterior risks of dynamic weighted cumulative residual
entropy for Laplace distribution. In the following theorems, Bayesian estimators and posterior risks of DWCRE using different
loss functions and priors are proposed, as discussed in section 2.
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Theorem 3.1 :The Bayesian estimators of DWCRE for Laplace distribution (Equation (1.1)) with posterior distribution of
Jeffrey’s prior (Equation (1.3)) under different loss functions, using Equations (1.7), (1.8), (1.9), (1.10), (1.11), (1.12) and (1.13),
are given by,

∧
ε

w
(t)JS =

(t+2)G
n−1 ,

∧
ε

w
(t)JE = (t+2)G

n ,
∧
ε

w
(t)JW = (t+2)G

n ,
∧
ε

w
(t)JK = (t+2)G√

n(n−1)

∧
ε

w
(t)JG = (t +2)G

[
Γ(n)

Γ(n+c)

] 1
c
,
∧
ε

w
(t)JM = (t+2)G

n+1 ,
∧
ε

w
(t)JP = (t+2)G√

(n−1)(n−2)

Proof: For the Laplace distribution (Equation (1.1)) and Jeffrey’s prior (Equation (1.3)), we have

E
[

εw(t)/x
_

]
=
∫ ∞

0
σ(t +2)Gn

σn+1Γ(n)
exp
(
−G

σ

)
dσ =

G(t +2)
n−1

(1.21)

⇒
∧
ε

w
(t)JS = E

[
εw(t)/x

_

]
=

(t +2)G
n−1

E
[

εw(t)2/x
_

]
=
∫ ∞

0

σ2(t +2)2Gn

σn+1Γ(n)
exp
(
−G

σ

)
dσ =

G2(t +2)2

(n−1)(n−2)
,

⇒
∧
ε

w
(t)JP =

√
E
[

εw(t)2/x
_

]
=

(t +2)G√
(n−1)(n−2)

.

E
[

1
εw(t)c /x

_

]
=
∫ ∞

0
Gn

σn+c+1(t +2)cΓ(n)
exp
(
−G

σ

)
dσ =

Γ(n+ c)
Gc(t +2)cΓ(n)

. (1.22)

⇒
∧
ε

w
(t)JG =

[
E
[

εw(t)−c/x
_

]]−1
c

= (t +2)G
[

Γ(n)
Γ(n+ c)

] 1
c

.

Put c = 1 in Equation (1.22), we get

E
[

1
εw(t)

/x
_

]
=

Γ(n+1)
G(t +2)Γ(n)

=
n

(t +2)G
, (1.23)

⇒
∧
ε

w
(t)JE =

[
E
[

εw(t)−1/x
_

]]−1

=
(t +2)G

n

Similarly,

∧
ε

w
(t)JW =

[
E
[

εw(t)−1/x
_

]]−1

=
(t +2)G

n

Put c = 2 in Equation (1.22), we get

E
[

1
εw(t)2 /x

_

]
=

Γ(n+2)
G2(t +2)2Γ(n)

=
n(n+1)
(t +2)2G2 (1.24)

Using Equations (1.21) and (1.23), we get

∧
ε

w
(t)JK =

√√√√√√√
E
[

εw(t)/x
_

]
E
[

εw(t)−1/x
_

] =
(t +2)G√

n(n−1)
.
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Using Equations (1.23) and (1.24), we get

∧
ε

w
(t)JM =

E
[

εw(t)−1/x
_

]
E
[

εw(t)−2/x
_

] =
(t +2)G

n+1
.

This proves the theorem.
Theorem 3.2:The posterior risks of DWCRE for Laplace distribution (Equation (1.1)) with posterior distribution of Jeffrey’s

prior (Equation (1.3)) under different loss functions, using equations Equations (1.14), (1.15), (1.16), (1.17), (1.18), (1.19)
and (1.20), are given by,

∧
ε

w
(t)JPS =

(t+2)2G2

(n−1)2(n−2) ,
∧
ε

w
(t)JPE = lnn− Γ

′
(n)

Γ(n) ,
∧
ε

w
(t)JPW = (t+2)G

n(n−1) ,
∧
ε

w
(t)JPK = 2

n−1 ,

∧
ε

w
(t)JPG = ln Γ(n+c)

Γ(n) − c Γ
′
(n)

Γ(n) ,
∧
ε

w
(t)JPM = 1

n+1 ,
∧
ε

w
(t)JPP = 2

[
G(t+2)√
(n−1)(n−2)

− G(t+2)
n−1

]
.

Theorem 3.3: The Bayesian estimators of DWCRE for Laplace distribution (Equation (1.1)) with posterior distribution of
Hartigan prior (Equation (1.4)) under different loss functions, using Equations (1.7), (1.8), (1.9), (1.10), (1.11), (1.12) and (1.13),
are given by

∧
ε

w
(t)HS =

(t+2)G
n+1 ,

∧
ε

w
(t)HE = (t+2)G

n+2 ,
∧
ε

w
(t)HW = (t+2)G

n+2 ,
∧
ε

w
(t)HK = (t+2)G√

(n+1)(n+2)
,

∧
ε

w
(t)HG = (t +2)G

[
Γ(n+2)

Γ(n+c+2)

] 1
c
,
∧
ε

w
(t)HM = (t+2)G

n+3 ,
∧
ε

w
(t)HP = (t+2)G√

n(n+1)
.

Theorem 3.4:The posterior risks of DWCRE for Laplace distribution (Equation (1.1)) with posterior distribution of Hartigan
prior (Equation (1.4)) under different loss functions, using Equations (1.14), (1.15), (1.16), (1.17), (1.18), (1.19) and (1.20), are
given by

∧
ε

w
(t)HPS =

(t+2)2G2

n(n+1)2 ,
∧
ε

w
(t)HPE = ln(n+2)− Γ

′
(n+2)

Γ(n+2) ,
∧
ε

w
(t)HPW = (t+2)G

(n+1)(n+2) ,
∧
ε

w
(t)HPK = 2

n+1 ,

∧
ε

w
(t)HPG = ln Γ(n+c+2)

Γ(n+2) − c Γ
′
(n+2)

Γ(n+2) ,
∧
ε

w
(t)HPM = 1

n+3 ,
∧
ε

w
(t)HPP = 2

[
G(t+2)√

n(n+1)
− G(t+2)

n+1

]
.

Theorem 3.5: The Bayesian estimators of DWCRE for Laplace distribution (Equation (1.1)) with posterior distribution of
Uniformprior (Equation (1.5)) under different loss functions, using Equations (1.7), (1.8), (1.9), (1.10), (1.11), (1.12) and (1.13),
are given by

∧
ε

w
(t)US =

(t+2)G
n−2 ,

∧
ε

w
(t)UE = (t+2)G

n−1 ,
∧
ε

w
(t)UW = (t+2)G

n−1 ,
∧
ε

w
(t)UK = (t+2)G√

(n−1)(n−2)
,

∧
ε

w
(t)UG = (t +2)G

[
Γ(n−1)

Γ(n+c−1)

] 1
c
,
∧
ε

w
(t)UM = (t+2)G

n ,
∧
ε

w
(t)UP = (t+2)G√

(n−2)(n−3)
.

Theorem 3.6:The posterior risks of DWCRE for Laplace distribution (Equation (1.1)) with posterior distribution of Uniform
prior (Equation (1.5)) under different loss functions, using Equations (1.14), (1.15), (1.16), (1.17), (1.18), (1.19) and (1.20), are
given by

∧
ε

w
(t)UPS =

(t+2)2G2

(n−2)2(n−3) ,
∧
ε

w
(t)UPE = ln(n−1)− Γ

′
(n−1)

Γ(n−1) ,
∧
ε

w
(t)UPW = (t+2)G

(n−1)(n−2) ,
∧
ε

w
(t)UPK = 2

n−2 ,

∧
ε

w
(t)UPG = ln Γ(n+c−1)

Γ(n−1) − c Γ
′
(n−1)

Γ(n−1) ,
∧
ε

w
(t)UPM = 1

n ,
∧
ε

w
(t)UPP = 2

[
G(t+2)√
(n−2)(n−3)

− G(t+2)
n−2

]
.

Theorem 3.7: The Bayesian estimators of DWCRE for Laplace distribution (Equation (1.1)) with posterior distribution of
Gumbel Type II prior (Equation (1.6)) under different loss functions, using Equations (1.7), (1.8), (1.9), (1.10), (1.11), (1.12)
and (1.13), are given by

∧
ε

w
(t)GS =

(t+2)M
N−1 ,

∧
ε

w
(t)GE = (t+2)M

N ,
∧
ε

w
(t)GW = (t+2)M

N ,
∧
ε

w
(t)GK = (t+2)M√

N(N−1)
,

∧
ε

w
(t)GG = (t +2)M

[
Γ(N)

Γ(N+c)

] 1
c
,
∧
ε

w
(t)GM = (t+2)M

N+1 ,
∧
ε

w
(t)GP = (t+2)M√

(N−1)(N−2)
.
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Theorem 3.8: The posterior risks of DWCRE for Laplace distribution (Equation (1.1)) with posterior distribution of Gumbel
Type II prior (Equation (1.6)) under different loss functions, using Equations (1.14), (1.15), (1.16), (1.17), (1.18), (1.19)
and (1.20), are given by

∧
ε

w
(t)GPS =

(t+2)2M2

(N−1)2(N−2) ,
∧
ε

w
(t)GPE = lnN − Γ

′
(N)

Γ(N) ,
∧
ε

w
(t)GPW = (t+2)M

N(N−1) ,
∧
ε

w
(t)GPK = 2

N−1 ,

∧
ε

w
(t)GPG = ln Γ(N+c)

Γ(N) − c Γ
′
(N)

Γ(N) ,
∧
ε

w
(t)GPM = 1

N+1 ,
∧
ε

w
(t)GPP = 2

[
M(t+2)√

(N−1)(N−2)
− M(t+2)

N−1

]
.

3.2 Numerical Computation and Graphical Analysis

To analyze the efficiency of the estimators, several computations and graphical analyses have been done along with a simulation
study. The sample size is taken as 5,10,25,50,100,σ = 0.1, 0.3,0.5,0.7,0.9,c = 0.9 and µ = 2 for the purpose. The
computations and graphical interpretations are also done for n = 5,10,25,50,100 and σ = 0.1,0.3,0.5,0.7 and 0.9. The
Bayesian estimators and posterior risks (in the parenthesis) of DWCRE for n = 100 are given in the following table:

Table 1. Bayesian estimators and posterior risks (in the parenthesis) of DWCRE forn = 100
σ Loss function Jeffrey Hartigan Uniform Gumble Type II

0.1

SELF 0.363(0.001) 0.355(0.001) 0.366(0.001) 0.382(0.001)
GELF 0.359(0.004) 0.352(0.004) 0.363(0.004) 0.378(0.004)
ELF 0.359(0.005) 0.352(0.005) 0.363(0.005) 0.378(0.005)
WSELF 0.359(0.004) 0.352(0.003) 0.363(0.004) 0.378(0.004)
KLF 0.361(0.02) 0.354(0.02) 0.365(0.02) 0.38(0.02)
M/QSELF 0.355(0.01) 0.349(0.01) 0.359(0.01) 0.374(0.01)
PLF 0.365(0.004) 0.357(0.004) 0.368(0.004) 0.383(0.004)

0.3

SELF 1.088(0.012) 1.066(0.011) 1.099(0.012) 1.01(0.012)
GELF 1.078(0.004) 1.056(0.004) 1.089(0.004) 1.089(0.004)
ELF 1.077(0.005) 1.056(0.005) 1.088(0.005) 1.089(0.005)
WSELF 1.077(0.011) 1.056(0.01) 1.088(0.011) 1.089(0.011)
KLF 1.083(0.02) 1.061(0.02) 1.094(0.02) 1.094(0.02)
M/QSELF 1.066(0.01) 1.046(0.01) 1.077(0.01) 1.078(0.01)
PLF 1.094(0.011) 1.072(0.011) 1.105(0.011) 1.105(0.01)

0.5

SELF 1.813(0.034) 1.778(0.032) 1.832(0.035) 1.818(0.033)
GELF 1.796(0.004) 1.761(0.004) 1.814(0.004) 1.8010.004)
ELF 1.795(0.005) 1.76(0.005) 1.813(0.005) 1.8(0.005)
WSELF 1.795(0.018) 1.76(0.017) 1.813(0.019) 1.8(0.018)
KLF 1.804(0.02) 1.769(0.02) 1.823(0.02) 1.809(0.02)
M/QSELF 1.777(0.01) 1.743(0.01) 1.795(0.01) 1.782(0.01)
PLF 1.823(0.018) 1.786(0.018) 1.841(0.019) 1.827(0.018)

0.7

SELF 2.539(0.066) 2.488(0.062) 2.564(0.068) 2.536(0.065)
GELF 2.514(0.004) 2.465(0.004) 2.54(0.004) 2.512(0.004)
ELF 2.513(0.005) 2.464(0.005) 2.539(0.005) 2.511(0.005)
WSELF 2.513(0.025) 2.464(0.024) 2.539(0.026) 2.511(0.025)
KLF 2.526(0.02) 2.476(0.02) 2.552(0.02) 2.523(0.02)
M/QSELF 2.488(0.01) 2.440(0.01) 2.513(0.01) 2.486(0.01)
PLF 2.552(0.026) 2.501(0.025) 2.578(0.026) 2.548(0.026)

0.9

SELF 3.264(0.109) 3.199(0.102) 3.297(0.112) 3.254(0.107)
GELF 3.233(0.004) 3.169(0.004) 3.266(0.005) 3.223(0.004)
ELF 3.231(0.005) 3.168(0.005) 3.264(0.005) 3.222(0.005)
WSELF 3.231(0.033) 3.168(0.031) 3.264(0.033) 3.222(0.032)
KLF 3.248(0.02) 3.184(0.02) 3.281(0.02) 3.238(0.02)
M/QSELF 3.199(0.01) 3.137(0.01) 3.231(0.01) 3.19(0.01)
PLF 3.281(0.033) 3.215(0.032) 3.314(0.034) 3.27(0.033)

The graphs in Figures 1, 2 and 3 represent posterior risks of DWCRE for n=5 with different values of σ for different loss
functions. In Figures 1, 2 and 3, posterior risks are higher for Uniform prior and smaller for Hartigan prior. The posterior risks
increase as σ increases. Also, the posterior risks are invariant for all values of σ for other loss functions (ELF, GELF, M/QSELF
and KLF). Hartigan prior is better than all other prior as the posterior risks are smaller for this prior.
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Fig 1. P.R. of DWCRE w.r.t. σ for SELF for n = 5

Fig 2. P.R. of DWCRE w.r.t. σ for WSELF for n = 5

Fig 3. P.R. of DWCRE w.r.t. σ for PLF for n = 5
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Fig 4. P.R. of DWCRE w.r.t. n for SELF for σ = 0.1

Fig 5. P.R. of DWCRE w.r.t. n for WSELF for σ = 0.1

Fig 6. P.R. of DWCRE w.r.t. n for M/QSELF for σ = 0.1
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Fig 7. P.R. of DWCRE w.r.t. n for PLF for σ = 0.1

The graphs in Figures 4, 5, 6 and 7 represent posterior risks of DWCRE for σ = 0.1 with different loss functions for different
values of n. In Figures 4, 5, 6 and 7, posterior risks decrease as n increases for all prior and for n=50 onward posterior risks are
almost same. Also, the posterior risks decrease as n increases for other loss functions (ELF, GELF and KLF).

4 Conclusion
In the paper, Bayesian estimators and posterior risks of dynamic weighted cumulative residual entropy for the Laplace
distribution using different priors under several loss functions have been obtained. It has been concluded that for all the priors,
posterior risks of DWCRE for the distribution increases as σ increases for SELF, WSELF and PLF, however for other loss
functions, these remain invariant. The posterior risks, in cases of all the loss functions, decrease as n increases for all values
of σ . In these studies, Hartigan prior is found to be better in comparison to other priors as it has smaller risk and thereafter,
Jeffrey and Gumble Type II priors can be given preference. Further the Uniform prior has always higher risk in comparison to
other priors under different loss functions taken in the paper.
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