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Abstract
Objective: To investigate the three-dimensional flow of a nanofluid (Ag-water)
over a stretchable vertical oscillatory sheet. This study involves considering
fluctuating temperatures on the sheet and comparing them to the free stream
temperature. The formulation of the unsteady boundary layer equations
leading to the flow of nanofluid also takes into consideration the occurrence
of the heterogeneous-homogeneous chemical reaction and thermal radiation.
Method: The governing equations and the boundary conditions have been
derived in a dimensionless form by using the appropriate transformations,
and they are then solved using an EFDS (Explicit Finite Difference Scheme) in
Matlab software. The Von-Neumann stability analysis is used to determine the
method’s stability requirements for constant sizes of the grid. Findings: The
physical factors impact on the concentration fields, temperature distribution,
and velocity distribution were obtained and are studied by graphs and
described in extensive detail. Convergence and stability requirements are
attained in order to achieve accurate solutions. Novelty: In this study
fluctuations in the temperature and stretching velocity of sheet on three-
dimensional magnetohydrodynamic flow of Ag − H2O nanofluid over an
oscillating surface through rotating porous are taken into account. Impacts of
porous media permeability, velocity slip, magnetic fields, nanoparticle volume
fraction, heat radiation, rotation, and homogeneous and heterogeneous
chemical reaction parameters had all been attempted to be determined.
Keywords: Oscillatory Surface; Heat transmission; Nonlinear PDE; Explicit
Finite Difference Scheme; Nanoparticle

1 Introduction
The investigation of convective heat andmass transfer processes in theMHD boundary
layer region, where flow is induced by the surface’s stretching as well as its periodic
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oscillation and rotation, is crucial for both industry and technology. Numerous sectors, including those that produce food,
paper, cosmetics, polymers, and oil exploration, depend extensively on the research of nanofluid flow past oscillatory flows.
They serve a variety of purposes in biology, including regulating blood flow during surgery, modeling lung function, and
dispensing chemicals and blood in biochemical and clinical labs. The energy dissipation function and porous medium are
taken into account in the momentum and energy equations by Lund et al. (1), who studied the effects of high temperature
on the porous surface. The combined impacts of chemical reaction and thermal radiation on MHD free convective heat as
well as the mass transfer effects of the nanofluid have been examined by Arulmozhi et al. (2) on an infinite moving vertical
plate. Anuar (3) studied the flow and heat transfer of carbon nanotubes over an exponentially stretching/shrinking sheet with
homogeneous–heterogeneous reactions. Alsani et al. (4) deliberated on the joint effects of the inclined functional magnetic
field, the absorbent stretching surface, the mass transportation, and the radiative warming on a micropolar flow. Jalili, et
al. (5)studied the effect of thermo-diffusion, electrical field, and nonlinear thermal radiation. Thermal radiant heat transfer has
several industrial applications, and the analysis of radiation heat transfer in non-Newtonian fluids under different conditions
has been widely studied. In the literature, we also come across various publications that discussed the impact of radiation and
magnetic fields on fluid flow past stretched surfaces. Hussain et al. (6,7) looked at the heat transfer characteristics of a three-
dimensional water-based magneto-hydrodynamic rotating nanofluid flow across a linear stretching sheet. Nasirzadehroshenin
et al. (8) demonstrated that carbon nanotubes could transport heat. Shoaib et al. (9) investigated the heat and mass transport in
a rotating flow of MHD hybrid nanofluid with thermal radiation over a stretching sheet by utilizing the power of the Lobatto
IIIA method, which is based on numerical computing.

Farooq et al. conducted a study on the MHD flow induced by oscillating surfaces that took into consideration the Soret and
Dufour effects (10). Khan et al. looked into electrical MHD Carreau nanofluid over porous oscillatory stretching surface with
variable thermal conductivity and applications of thermal extrusion system (11). Kumar et al. (12)effects of Joule and viscous
dissipation in three-dimensional flow of nanoliquid have been addressed in slip flow regime under time dependent rotational
oscillations. To the best of our knowledge, an oscillating stretching sheet with an MHD rotating boundary layer flow of Ag-
water nanofluid has not yet been explored. This study fills the gap in the literature by providing details on the mass and heat
transfer processes over such surfaces, which are immensely important to business, technology, and research.

Mathematical Formulation of the problem
We assume the flow of an unsteady, incompressible, viscous, electrically conducted Ag-water nano-fluid in anMHD rotating

boundary layer by an oscillating stretchable sheet. It is believed that the sheet is being stretched with velocity u = a x cos (ωt)
in the x direction. Additionally, it is supposed that the sheet maintains a constant temperature and that the complete system is
at rest for t≤ 0. For t > 0, it is believed that the sheet is oscillating harmonically with frequency (Ω′) of the rotating fluid; both
the fluid and the sheet are in a body rotation state. Homogeneous chemical reactions have the following equation: r+2s→3s,
rate=kcCrC2. Heterogeneous chemical reactions on catalyst surfaces have the equation: r→s, rate=ksCr, where Cr, Csdenotes
the chemical species.

Fig 1. Physical configuration of the study
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We formulate the governing equations for the unsteady boundary layer within a rotating frame of reference, as elucidated
by Hussain (13) are

∂u1

∂x
+

∂v1

∂y
+

∂w1

∂ z
= 0 (1)

∂u1

∂ t
+u1 ∂u1

∂x
+ v1 ∂u1

∂y
+w1 ∂u1

∂ z
= νn0

∂ 2u1

∂ z2 −
σn0B∗2

ρn0

u1 −
µn0u∗

ρn0

+2Ω
′
v1 +

g(ρβT )n0

ρn0k
(T −T∞) (2)

∂v1

∂ t
+u1 ∂v1

∂x
+ v1 ∂v1

∂y
+w1 ∂v1

∂ z
= νn0

∂ 2v1

∂ z2 −
σn0B∗2

ρn0k
v1 −2νΩ

′
u1 (3)

∂T
∂ t

+u1 ∂T
∂x

+ v1 ∂T
∂y

+w1 ∂T
∂ z

= αn0

∂ 2T
∂ z2 +

1
(ρcp)n0

∂qr

∂ z
−

σn0B∗2

ρn0

((
∂u1

∂ z

)2

+

(
∂v1

∂ z

)2
)

(4)

∂Cr

∂ t
+u1 ∂Cr

∂x
+ v1 ∂Cr

∂y
+w1 ∂Cr

∂ z
= Dr

∂ 2T
∂ z2 − kcCrCs

2, (5)

∂Cs

∂ t
+u1 ∂Cs

∂x
+ v1 ∂Cs

∂y
+w1 ∂Cs

∂ z
= Ds

∂ 2T
∂ z2 − kcCsCr

2, (6)

The prescribed form for the initial and boundary conditions relevant to the considered problem is as follows:
t
′ ≤ 0, u1 = v1 = w1 =Cs = 0; T = T∞, Cr = a0, everywhere,

t > 0, x = 0; u1 = v1 = w1 =Cs = 0, T = T∞, Cr = a0,
y = 0; u1 = v1 = w1 = 0, Cs = 0, T = T∞, Cr = a0

z = 0; u1 = cos(ωt
′
)+L1

∂u1

∂ z , v1 = w1 = 0,

T = T∞ +(T ∗
w −T∞)cos

(
ωt

′
)
, Dr

∂ (Cr)
∂ z = kcCr, Ds

∂ (Cs)
∂ z =−ksCr,

Z −→ ∞; u1 = v1 = 0 =Cs = 0,T = T∞,Cr = a0 (7)

Here, u1, v1, and w1 correspond to components of the velocity along the x, y, and z axes respectively. g, β T , ρ , cp, ν , α , Cr,
Cs, σ∗, qr and k∗ represent the acceleration due to gravity, volume expansion coefficient, density, the specific heat capacity, the
kinematic viscosity, thermal diffusivity, coefficient of thermal expansion, Stefan-Boltzmann constant, radiative heat flux, and
mean absorption coefficient respectively.

Thermophysical properties of nanofluid stated as (14,15)

Dynamic Viscosity of fluid µn0 =
µ f0

1−(φ)2.5

Nanofluid Effective density ρ ′
n0
= (1−ϕ)ρ ′

f0 +(ϕ)ρ ′
s0

Nanofluid Effective heat capacity (ρ ′
C p)n0 = 1− (ϕ)(ρ ′

C p) f 0 +(φ)(ρ ′
C p)s0

Effective thermal conductivity of nanofluid

κ ′
n0

κ ′
f 0

=
κ ′

s0 +(n−1)κ ′
f 0 +(n−1)φ(κ ′

f 0 −κ ′
s0)

κ ′
s0 +(n−1)(κ ′

f −κ ′
s0)

Electrical conductivity of nanofluid:

σ ′
n0

σ ′
f 0

= 1+
3
(

σ ′
s

σ ′
f
−1
)

ϕ

σ ′
s0

σ ′
f 0
−2−

(
σ ′

s0
σ ′

f 0
−1
)

ϕ
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Thermal expansion coefficient of Nanofluid ρβT n0 = (1−ϕ)ρ ′βT f 0 +ϕρ ′βT s0
Equations (1), (2), (3), (4), (5) and (6) and boundary conditions Equation (7) after using the aforementioned non-

dimensional quantities become

U1 = z

√
1

ν f 0c
,Φ f =

Cr

a0
, V1 = z

√
1

ν f 0c′ ,Y = y

√
c′

ν f 0
,W1 = w∗

√
1

ν f 0c′ ,X = x

√
c′

ν f 0
,

Z = z

√
c′

ν f 0
, t

′
= tc

′
,ω =

ω ′

c′ ,θ =
T −T∞

T ∗
w −T∞

,Φs =
Cs

a0
,

The following governing equations are obtained:

∂U1

∂X
+

∂V1

∂Y
+

∂W1

∂Z
= 0, (8)

∂U1

∂ t ′
+U1

∂U1

∂X
+V1

∂U1

∂Y
+W1

∂U1

∂Z
=

1
S1S2

∂ 2U1

∂Z2 − MS3

S2
U1 −

KU1

S1S2
+RV1 +

GrS4

S2
θ (9)

∂V1

∂ t ′
+U1

∂V1

∂X
+V1

∂U1

∂Y
+W1

∂U1

∂Z
=

1
S1S2

∂ 2V1

∂Z2 − MS3

S2
V1 −

KV1

S1S2
−RU1, (10)

∂θ
∂ t ′

+U1
∂θ
∂X

+V1
∂θ
∂Y

+W1
∂θ
∂Z

=
1

Pr

(
S6

S5
+

Ra
S5

)
∂ 2T
∂Z2 +

MA3Ec
S5

(
U2

1 +V 2
1 )
)
− MS3Ec

S5

((
∂U1

∂Z

)2

+

(
∂V1

∂Z

)2
)

(11)

∂Φ f

∂ t ′
+U1

∂Φ f

∂x
+V1

∂Φ f

∂y
+W1

∂Φ f

∂ z
=

1
Sc

∂ 2Φ f

∂Z2 −KcΦ f Φ2
s , (12)

∂Φs

∂ t ′
+U1

∂Φs

∂X
+V1

∂Φs

∂Y
+W1

∂Φs

∂Z
=

δ
Sc

∂ 2Φs

∂Z2 +KcΦ f Φ2
s , (13)

Where S1 = 1− (ϕ)2.5,S2 = (1−ϕ)+ϕ ρ ′
s0

ρ f 0
, S3 = 1+

3

(
σ
′
s0

σ ′
f 0
−1

)
)ϕ(

σ ′
s0

σ ′
f 0
+2

)
−

(
σ ′

s0
σ ′

f 0
−1

)
ϕ

S4 = (1−ϕ)+ϕ ρ(βT )s0
ρ(βT ) f 0

,S5 = (1−ϕ)+ϕ (ρCp)s0
(ρCp) f 0

, S6 =
kn0
k f 0

Upon implementing the aforementioned non-dimensional transformations, the boundary conditions take the following
form:

t
′ ≤ 0

(
U1 =V1 =W1 = θ = Φs = 0,Φ f = 1,

)
everywhere,

t > 0,
(
X = 0;U1 =V1 =W1 = θ = Φs = 0,Φ f = 1,)

)
,

f or Y = 0;U1 = cos
(

ωt
′
)

X +Vs
∂V
∂Z

,V1 =W1
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Z = 0; U1 =V1 =W1 = θ = Φs = 0,Φ f = 1 θ = cos(ωt
′
);

∂ (Φ f )

∂Z
= KsΦ f ,

∂ (Φs)

∂Z
=−KsΦ f

Z −→ ∞; U1 =V 1 = 0 = θ = Φs = 0, Φ f = 1

In the aforementioned equations, the dimensionless parameters introduced are given as follows:

M =
(B∗)2σ

c
,K =

ν f 0

kc
,R =

2Ω′

c
,Grx =

(gβ ∗) f 0(Tw −T∞)

ρ f 0
√

v f c3
,Ra =

16σ∗T 3
α

3k∗k f 0
Sc =

ν f 0

DB
,

δ =
Ds

Dr
,Kc =

kca2
0

c
,Pr =

ν f 0

α f 0
,Vs = L1

√ c
ν
,Ec =

ν f 0c
(cp) f 0(Tw −T∞)

,Ks =
ks

Dr

√v f 0

c

Skin friction coefficients(C∗
f x ,C∗

f y), local Nusselt number Nux and Sherwood numbers (ShCr , ShCs) are given as follows:

C∗
f x =

τωy

ρ f 0u2
ω
,C∗

f y =
τωy

ρ f 0u2
ω
, Nux =

xqω
k f 0 (Tw −T∞)

,ShCr =
x jωg

Dra0
,ShCs =

x jωr

Dsa0
,

τωx = µn f

(
∂u
∂ z

)
Z=0

,τωy = µn0

(
∂v
∂ z

)
Z=0

,qωy = κ
′
n0

(
∂T
∂ z

)
Z=0

+(qr)Z=0

jωr =−Dr

(
∂Cr

∂ z

)
Z=0

, jωs =−Ds

(
∂Cs

∂ z

)
Z=0

Upon implementation of non-dimensional transformations, we have the following expression:

C∗
f x =

1
S1
(
Xcosωt ′)2

)(∂U
∂Z

)
Z=0

,C∗
fY =

1
S1
(
Xcosωt ′)2

)(∂V
∂Z

)
Z=0

,

NuX = X(−S6−Ra)
(

∂θ
∂Z

)
Z=0

,Sh∗Φ f
= X

(
∂Φ f

∂Z

)
Z=0

,Sh∗Φs = X
(

∂Φs

∂Z

)
Z=0

2 Methodology
An explicit finite difference technique (EFDS) was used to solve nonlinear coupled partial differential equations with the aid of
the initial and boundary conditions. The finite difference equations system shown below is created utilizing EFDS.

U1
n+1
(e,m,g)−U1

n+1
(e−1,m,g)

∆X
+

V1
n+1
(e,m,g)−V1

n+1
(e,m−1,g)

∆Y
+

W1
n+1
(e,m,g)−W1

n+1
(e,m,g−1)

∆Z
= 0 (14)

U1
n+1
(e,m,g)−U1

n
(e,m,g)

∆t ′
+U1

n
(e,m,g)

U1
n
(e,m,g)−U1

n
(e−1,m,g)

∆X
+V1

n
(e,m,g)

U1
n
(e,m,g)−U1

n
(e,m−1,g)

∆Y

+W1
n
e,m,g

U1
n
e,m,g+1 −U1

n
e,m,g

∆Z
=

1
S1S2

U1
n
(e,m,g−1)−2U1

n
(e,m,g)+U1

n
(e,m,g+1)

∆Z2

−MS3

S2
U1

n
(e,m,g)−

K
S1S2

U1
n
(e,m,g)+RV1

n
(e,m,g)+

GrS4θ n+1
(e,m,g)

S2

(15)
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V1
n+1
(e,m,g)−V1

n
(e,m,g)

∆t ′
+V1

n
(e−1,m,g)

V1
n+1
(e,m,g)−V1

n
(e−1,m,g)

∆X
+V1

n
(e,m,g)

V1
n+1
(e,m,g)−V1

n
(e,m−1,g)

∆Y

+W1
n
(e,m,g)

V1
n+1
(e,m,g+1)−U1

n
(e,m,g)

∆Z
=

1
S1S2

V1
n
(e,m,g−1)−2V1

n
(e,m,g)+V1

n
(e,m,g+1)

∆Z2

−MS3

S2
V1

n
(e,m,g)−

K
S1S2

V1
n
(e,m,g)++RU1

n
(e,m,g)

(16)

θ n+1
e,m,g −θ n

e,m,g

∆t ′
+U1

n
e,m,g

θ n+1
e,m,g −θ n

e−1,m,g

∆X
+V1

n
e,m,g

θ n+1
e,m,g −θ n

e,m−1,g

∆Y
+(W 1)n

e,m,g
θ n+1

e,m,g+1 −θ n
e,m,g

∆Z

=
1

Pr

(
S6

S5
+

Ra
S5

) θ n
(e,m,g−1)−2θ n

e,m,g +θ n
e,m,g+1

∆Z2 +
MEcS3

S5

(
U1

n
(e,m,g))

2 +V1
n
(e,m,g))

2
)

+
Ec

S1S5

(U1
n
(e,m,g+1)−U1

n
(e,m,g)

∆Z

)2

+

(
V1

n
(e,m,g+1)−V1

n
(e,m,g)

∆Z

)2


(17)

Φn+1
f (e,m,g)−Φn

f (e,m,g)

∆t ′
+U1

n
f (e,m,g)

Φn+1
f (e,m,g)−Φn

f (e−1,m,g)

∆X
+V1

n
(e,m,g)

Φn+1
f (e,m,g)−Φn

f (e,m−1,g)

∆Y
+W1

n
(e,m,g)

Φn+1
f (e,m,g+1)−Φn

f (e,m,g)

∆Z

=
1
Sc

Φn
s(e,m,g−1)−2Φn

s(e,m,g)−Φn
s(e,m,g+1)

∆Z2 −KcΦn
s(e,m,g)(Φ

n
s(e,m,g))

2
(18)

Φn+1
se,m,g −Φn

s(e,m,g)

∆t ′
+U1

n
s(e,m,g)

Φn+1
s(e,m,g)−Φn

e−1,m,g

∆X
+V1

n
(e,m,g)

Φn+1
s(e,m,g)−Φn

s(e,m−1,g)

∆Y
+W1

n
(e,m,g)

Φn+1
s(e,m,g+1)−Φn

e,m,g

∆Z

=
1
Sc

Φn
s(e,m,g−1)−2Φn

s(e,m,g)−Φn
s(e,m,g+1)

∆Z2 +KcΦn
f (e,m,g)(Φ

n
s(e,m,g))

2
(19)

Initial and boundary conditions using finite difference approximation gives:

U1(e,m,g,0) =V1(e,m,g,0) =W1(e,m,g,0) = θ(e,m,g,0) = Φs(e,m,g,0) = 0,Φ f (e,m,g,0)
= 1,U1(0,m,g,t ′ ) =V1(0,m,g,t ′ ) =W1(0,m,g,t ′ ) = θ

(0,m,g,t ′ ) = Φs(0,m,g, t
′
) = 0,Φ f (0,m,g, t

′
) = 1

U1(0,m,g,t ′ ) =V1(0,m,g,t ′ ) =W1(0,m,g,t ′ ) = θ
(0,m,g,t ′ ) = Φs(0,m,g, t

′
) = 0,Φ f (0,m,g, t

′
) = 1

U1(e,0,k,t ′ ) =V1(e,0,g,t ′ ) =W1(e,0,g,t ′ ) = θ(e,0,g, t
′
) = Φs(e,0,g, t

′
) = 0,Φ f (e,0,g, t

′
) = 1

U1(e,0,g,t ′ ) =V s
U1(e,0,g,t ′ )−V1(e,0,g,t ′ )

∆Z
+X(ι)cos(ωt

′
),θ

(e,m,0,t ′ ) = cos(ωt
′
),

Φ f

(
e,m,1, t

′
)
−Φ f

(
e,0,g, t

′
)

∆Z
= KsΦ f

(
e,m,0, t

′
)
,

δ
Φs(e,m,1, t

′
)−Φs(e,0,g, t

′
)

∆Z
= KsΦ f (e,g,0, t

′
) (20)

The prescribed maximum values are as follows: Xmax = 100, Ymax = 100 and Zmax = 25. The selection of the approximate
Zmax value, corresponding to Z = ∞, ensures that it resides significantly beyond the boundaries of momentum, energy, and
concentration boundary layers.
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2.1 Stability and Convergence

We used an EFDS, it is important to satisfy the convergence and stability assumptions in order to attain valid results. The
Von-Neumann stability analysis is used to determine the method’s stability requirements for constant sizes of the grid.

U1 = N(t
′
)e−ιT

′
X e−ιρ ′

Ze−ιυ ′
Z ,V1 = Ψ(t

′
)e−ιT

′
X e−ιρ ′

Ze−ιυ ′
Zθ = ζ (t

′
)e−ιT

′
X e−ιρ ′

Ze−ιυ ′
Z ,

ϕ f = φ(t
′
)e−ιT

′
X e−ιρ ′

Ze−ιυ ′
Z ,ϕs = ϒ(t

′
)e−ιT

′
X e−ιρ ′

Ze−ιυ ′
Z

Upon substituting the aforementioned expressions, the system of equations is given as follows:

U1 = N∗(t
′
)e−ιT

′
X e−ιρ ′

Ze−ιυ ′
Z ,V1 = Ψ∗(t

′
)e−ιT

′
X e−ιρ ′

Ze−ιυ ′
Zθ = ζ ∗(t

′
)e−ιT

′
X e−ιρ ′

Ze−ιυ ′
Z ,

ϕ f = φ∗(t
′
)e−ιT

′
X e−ιρ ′

Ze−ιυ ′
Z ,ϕs = ϒ∗(t

′
)e−ιT

′
X e−ιρ ′

Ze−ιυ∗Z

N∗ = A∗N +B∗Ψ+ I∗ζ ,ψ∗ = E∗N +F∗Ψ,ζ ∗ = G∗Θ+G∗
1N +G∗

2Ψ,φ∗ = L∗φ,χ∗ = M∗χ +N∗φ , , I∗ =C∗G∗

The above system can be expressed in matrix form as A∗X = B∗ . In the coefficient matrix A∗ , the entries for are represented as
follows:

A∗ = 1−U1(1− e−ιT
′
∆X )∆t

′

∆X −V1(1− e−ιρ ′
∆Y )∆t

′

∆Y −W1(1− e−ιυ ′
∆Z)∆t

′

∆Z +
2

S1S2
∆t

′

∆Z2 (Cosυ ′∆Z)−1)− S3
S2

M∆t
′ − K

S1S2
∆t

′
+G∗

1,

B∗ = R∆t
′
+G∗

2,C
∗ = Gr S4

S2
,E∗ =−R∆t

′
,M∗ =−Kch2,

F∗ = 1−U1(1− e−ιT
′
∆X )

∆t
′

∆X
−V1(1− e−ιρ ′

∆Y )
∆t

′

∆Y
−W1(1− e−ιυ ′

∆Z)
∆t

′

∆Z
+

2
S1S2

∆t
′

∆Z2 (Cosυ
′
∆Z)−1)

A3

A2
M∆t

′ − K
A1A2

∆t
′

G∗ = 1−U1(1− e−ιT ∆X )
∆t

′

∆X
−V1(1− e−ιρ ′

∆Y )
∆t

′

∆Y
−W1(1− e−ιυ ′

∆Z)
∆t

′

∆Z
+2

1
Pr

(
S6

S5
+

Ra
S5

)
∆t

′

∆Z2 (Cosυ
′
∆Z)−1)

G∗
1 =

Ec
S1S5

(
eυ ′

∆Z −1
)2 ∆t

′

∆Z

2

+
EcMS3

S1S5
∆t

′
U1,G

′
2 =

Ec
S1S5

(
eυ ′

T ∆Z −1
)2 ∆t

′

∆Z

2

+
EcMS3

S1A5
∆t

′
V1

L∗ = 1−U1(1− e−ιT
′
∆X )

∆t
′

∆X
−V1(1− e−ιρ ′

∆Y )
∆t

′

∆Y
−W1(1− e−ιυ ′

∆Z)
∆t

′

∆Z
+

2
Sc

∆t
′

∆Z2 (Cosυ
′
∆Z)−1)+Kch2

N∗ = 1−U1(1− e−ιT
′
∆X )

∆t
′

∆X
−V1(1− e−ιρ ′

∆Y )
∆t

′

∆Y
−W1(1− e−ιυ ′

∆Z)
∆t

′

∆Z
+

2
Sc

∆t
′

∆Z2 (Cosυ
′
∆Z)−1)

TheVon-Neumann stability analysis is used to determine themethod’s stability requirements for constant sizes of the grid, write
in unique way.

λ ∗
1 = 1−a1(1− e−ιT

′
∆X )−b1(1− e−ιρ ′

∆Y )− c1(1− e−ιυ ′
∆Z)+

2
S1S2

D(Cosυ
′
∆Z)−1)− S3

S2
M∆t

′ − K
S1S2

∆t
′
+G∗

1
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λ ∗
2 = 1−a1(1− e−ιT

′
∆X )−b1(1− e−ιρ ′

∆Y )− c1(1− e−ιυ ′
∆Z)+

2
S1S2

D(Cosυ ′∆Z)−1) S3
S2

M∆t
′ − K

S1S2
∆t

′ − ιR∆t
′
,

λ ∗
3 = G∗,λ ∗

4 = L∗,λ ∗
5 = N∗

In λ 1* and λ 2* , a1 = △t ′
△X , b1 = △t ′

△Y , c1 = △t ′
△Z and d1 = △t ′

△Z2 ,

for the scheme to maintain stability.
It is imperative that every eigen value must be less than unity

|U1|
(

∆t
′

∆X

)
+ |V1|

(
∆t

′

∆Y

)
+ |W1|

(
∆t

′

∆Z

)
+

2∆t
′

S1S2∆Z2 +
S3M∆t

′

2S2
+

K
2S1S2

− ιR∆t
′ ≤ 1

|U1|
(

∆t
′

∆X

)
+ |V1|

(
∆t

′

∆Y

)
+ |W1|

(
∆t

′

∆Z

)
+

2∆t
′

S1S2∆Z2 +
S3M∆t

′

2S2
+

K
2S1S2

+ ιR∆t
′ ≤ 1

|U1|
(

∆t
′

∆X

)
+ |V1|

(
∆t

′

∆Y

)
+ |W1|

(
∆t

′

∆Z

)
+

2
Pr

(
S6

S5
+

Ra
5

)
∆t

′

∆Z2 ≤ 1

|U1|
(

∆t
′

∆X

)
+ |V1|

(
∆t

′

∆Y

)
+ |W1|

(
∆t

′

∆Z

)
+

2∆t
′

Sc∆Z2 +∆t
′
Kc
(
ϕ 2

s
)
≤ 1

|U1|

(
∆t

′

∆X

)
+ |V1|

∆t
′

∆Y
+ |W1|

(
∆t

′

∆Z

)
+

2δ∆t
′

Sc∆Z2 ≤ 1

3 Results and Discussion
Theprofiles of primary velocity (U1), secondary velocity (V1), homogeneous species concentration (Φ f ), heterogeneous species
concentration (Φs) and fluid temperature (θ ) were plotted, by assigning values to relevant parameters. In order to demonstrate
the significance of the oscillation parameter ω , a comparison study is provided for two situations, NFNF (ω = 0.0) and FNF (ω
= 0.5). The findings are in excellent agreement when compared to the findings of Kumar et al. (12), Kumar & Sood (16)

Table 1. Comparisonofskin frictioncoefficients (C* f X , C* fY ) and local Nusselt number Nux of Ra at ω = 0, Vs = 1, Kc = 0.5, ϕ= 0.1, R =
0.5, M = 1, K = 1.5, Ks = 3, R = 0.5, M = 1, Ec = 0.001, K = 1.5, and Gr = 10

Ra Kumar & Sood (16) Kumar et al. (12) Present study
C* f X C* f X Nux C* f X C* f X Nux C* f X C* f X Nux

0.8 0.72360 -0.71684 0.75538 0.74634 -0.76290 0.72319 0.74060 -0.76842 0.72038
1.5 0.76660 -0.74482 0.94473 0.783415 -0.79190 0.89982 0.783415 -0.77190 0.87982
2 0.84656 -0.94456 1.06360 0.80457 -0.80876 1.00945 0.88170 -0.74714 1.29496
3.5 0.84656 -0.79856 1.36360 0.85170 -0.84714 1.284 96 0.87180 -0.84914 1.31496

It is observed that ϕ drop in primary velocity and the corresponding boundary layer thickness as M, K, R, Ra, Vs and values
rise in the FNF. While the opposite behavior is seen in Ra and values rise in NFNF. In this case, increasing the values of Ra and
Vs causes the velocity magnitude to increase, enhancing the of the boundary layer and compressing the flow into a sheet, while
increasing the values of M, K, R, and ϕ has the opposite effect on the velocity profiles. The magnetic field’s Lorentz force causes
a rise in viscous forces, which reduces the velocity of the nanofluid (U1). The effects of M, K, R, Ra, and Vs on the secondary
velocity profiles of Ag-water nanofluids and indicate an important change in the profiles with M, K, R, and ϕ in the FNF case,
showing that the flow field may be changed by altering these parameters. The secondary velocity (V1) profiles as well as the
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Fig 2. Impact of distinct values of ϕ and Ra on Primary velocity profiles

Fig 3. Impact of distinct values of Ra and ϕ on Secondary velocity profiles

Fig 4. Impact of distinct values ofM and Ra on temperature profiles
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Fig 5. Impacts of Kc and Ks on homogeneous species concentration (Φ f )

thickness of the boundary layer are reduced in the case of FNF when the values of M, K, and ϕ are raised up, but they have been
enhanced if the values of Ra, R, and Vs are pushed down.

Heat is transported by the emission of electromagnetic waves, which is known as thermal radiation. As shown in Figures 1,
2, 3, 4 and 5, greater values of the parameter of the radiation tend to slow down the heat transfer rate of fluid flow. Consequently,
radiation efficiency controls thermal boundary layers since it has an advantage over conduction. The physical attraction point
in this instance is the negative temperature profiles that developed in the FNF case as a result of the inverted Boltzmann
distribution. Because energy states which are higher become more populated than the energy states which is lower when
oscillation frequency has increased, this has a negative profile. The graphs for the NFNF scenario show that the dimensionless
homogenous species concentration is a mono-tonically reducing function of M, K, R, and ϕ . Therefore, a rise in Ks will result
in a decrease in the concentration of homogenous species. The concentration profiles of homogenous species in the FNF case
are smaller than those in the NFNF case, as can be seen from all of these Figures. This may be caused by the vertical sheet’s
varying temperature, velocity, and rotations.

Table 2. Numerical outcomes for various values of significant parameters for skin friction coefficient (C* f X , C* f y) and Nusselt number
Nux

Ra V s Φ Ec FFNF Case ( ω=0) FNF Case ( ω=0.5)
C* f X C* f y Nux C* f X C* f y Nu x

0.8 1 0.1 0.001 0.001985 -0.003299 1.484825 -0.062452 0.019067 2.591645
1.5 0.002293 -0.003455 1.666463 -0.060459 0.019246 2.914176
2 0.002473 -0.003516 1.785825 -0.059129 0.019267 3.691575
3.5 0.002882 -0.003705 2.106311 -0.055617 0.019062 3.691575

0.01 0.004496 -0.003118 1.451680 -0.131197 0.011654 2.666473
0.1 0.004033 -0.003151 1.457844 -0.119238 0.012941 2.660475
0.5 0.002765 -0.003243 1.474595 -0.084665 0.016674 2.651141
1.0 0.001985 -0.003299 1.484825 -0.061868 0.019141 2.650419

0.05 0.002847 -0.002726, 1.507768 -0.062695 0.018058 2.652046
0.1 0.001985 -0.003299 1.484825 -0.061868 0.019141 2.647419
0.15 0.000951 -0.003749 1.466343 -0.062673 0.019221 2.634190
0.2 -0.000305 -0.004095 1.452680 -0.064894 0.018551 2.630764

0.001 0.009185 -0.003299 1.484825 -0.061868 0.019141 2.687419
0.002 0.002021 -0.003313 1.464889 -0.061307 0.018886 2.671268
0.004 0.002059 -0.003327 1.444630 -0.060760 0.018636 2.655545
0.004 0.002097 -0.003342 1.424038 -0.060226 0.018391 2.640234
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Table 3. Numerical outcomes for various values of significant parameters for Sherwood number (Sh*Φ f , Sh* Φs )

Ra V s K c K s
FFNF Case (ω = 0) FNF Case (ω = 0. 5)

Sh* Φ f Sh * Φs Sh* Φ f Sh* Φs
0.8 1 0.5 3.0 -0.064337 0.044054 0.023121 -0.022086
1.5 -0.067828 0.046837 0.025924 -0.024309
2 -0.069933 0.048524 0.027643 -0.025683
3.5 -0.074935 0.052554 0.038128 -0.029060

0.01 -0.062503 0.042727 0.018488 -0.0181792
0.1 -0.062843 0.042973 0.019447 -0.019486
0.5 -0.063769 0.043643 0.022191 -0.021472
1.0 -0.064337 0.044054 0.023977 -0.0018792

0.5 -0.064337 0.067758 0.023977 -0.022763
1.0 -0.057239 0.045289 0.029885 -0.028763
1.5 -0.034337 -0.045169 0.123852 -0.110766
2.0 -0.028537 -0.124054 0.228979 -0.122963

0.5 -0.021157 0.015534 -0.002479 -0.001769
1.0 -0.035714 0.025809 0.000257 -0.001953
1.5 -0.046079 0.032797 0.005543 -0.005872
2.0 -0.053738 0.037710 0.011791 -0.011610

4 Conclusion
This study made a comparison analysis of the two situations of NFNF and FNF in the Ag-water nanofluid 3-dimensional
flow. Fluid temperature and homogeneous species concentration are severely hampered by oscillations in the velocity and
temperature of the surface. Boosting M, K, ϕ and lowering Ra and Vs might delay boundary layer separations. As elevating
R, Ra, ϕ , M, K, and Ec, temperature of the fluid is enhanced. In the FNF scenario, the flow field dissipates more heat than in
the NFNF case. When comparing the FNF and NFNF scenarios, Φ f is larger in the former. Temperature and surface velocity
oscillations substantially reduce fluid temperature and concentration of homogenous species. EnhancingM,K, ϕ and decreasing
Ra and Vs can delay boundary layer separations.

Though, the behavior is reversed for the Φ f . In NFNF case, M, K, R, and ϕ have diminished effects, while Vs and Ra have
increased effects on Φ f . However, the effect has been reversed for the FNF case. If decreases in both cases with Kcand Ks
every trend is being reverse for Φs . In NFNF and FNF cases, magnified values of M result in a reduction in the magnitude of
C∗

f x, C
∗

f y, and Nux. In the NFNF case with Kc, Sh*Φs is increased but Sh*Φs is decreased. Boundary layers of homogeneous
and heterogeneous are thicker in FNF case in comparison to NFNF case. In FNF case more heat is withdrawn from the flow
field in comparison to NFNF case. Some practical implications of this work are the measurement of underground explosion
intensity, processing of chemicals andmaterials, isotope separation, irrigation systems, rocket propulsion, filteringmechanisms,
electronic device cooling, sweat cooling, heat exchangers.
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