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Abstract
Objectives: This study investigates the performance of two machine-learning
algorithms in classifying land areas across the Upper-Comoé basin in Burkina
Faso.Methods:Within the Google Earth Engine data processing environment,
Support Vector Machine (SVM) and the Random Forest (RF) algorithms were
applied to a Landsat-8 OLI image of March 2019, to discriminate agricultural
land areas, with an emphasis on irrigated areas. Findings: The results indicated
good to excellent classification performance, with overall accuracies and Kappa
coefficients between 71% and 99%, and 0.66 and 0.99, respectively. The RF
method outperformed the SVM in terms of mapping ”accuracy”, but in terms
of spatial distribution of classes, the SVM method provided a mapping close
to reality, due to the density of the classes generated. Novelty: Our findings
suggest that remote sensing can constitute a tool fully adapted to the needs of
services in charge of agricultural water management in Burkina Faso.
Keywords: Irrigation; Random Forest; Support Vector Machine; Google Earth
Engine; Burkina Faso

1 Introduction
The sustainable management of natural resources has become challenging given the
rapid world population growth and the changing climate patterns worldwide (1).The
demographic growth recorded in various parts of the world is most often accompanied
by an increased use or destruction of natural resources (2).Across the Sahelian zone of
Africa, drought events occurred frequently due to the extreme variability in rainfall
patterns and temperature conditions. Such drought events most often resulted in severe
environmental impacts such as the reduction of vegetation cover, land degradation and
loss of biodiversity, as well as harsh socio-economic conditions (3).Burkina Faso is a
country in the Sahel, whose agricultural development is considerably limited by the
availability of water in the major agricultural areas (4).Agriculture in Burkina Faso is
typically rainfed; the vast majority of farmers (97.6%) use rain as a source of water, and
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only 2.2% of them use irrigation (5).To cope with the adverse impacts of rainfall variability, the governmental agencies have
been committed to an intensification of irrigated agriculture since the 2000s through multiple incentives (6).This has led to
a substantial expansion of irrigated areas in certain regions of the country over the years, with greater profits compared to
rainfed agriculture (7).However, this expansion of irrigated agricultural areas, most often near water points such as rivers or
water reservoirs, has put a noticeable pressure on these water resources. Monitoring irrigation water relies on a good knowledge
of the irrigated areas and available water resources. The mapping of irrigated agricultural areas, combined with a study of water
needs, enables an improved management of agricultural water (8).Remote sensing-based approaches for mapping irrigated
agricultural areas are cost-effective and are particularly useful in low-income countries where resources are limited for field
surveys. (9–11)The exploitation of remote sensing images can be done in several ways, ranging from photo-interpretation to
classification. Image classification is the process of categorizing and labeling groups of pixels within an image based on user-
defined rules (12). However, finding the right classification algorithm or the right rule(s) can be challenging since the definition
and characterization of the entities to be discriminated is not straightforward. A good classification requires the definition of
classes whose pixels are more or less homogeneous. For small or fragmented crop areas such as those found in Burkina Faso,
this condition is difficult to meet. The size of the crop areas is most often less than that of the satellite image pixel. Moreover,
the choice of the classification algorithm can also be challenging. Supervised and unsupervised classification methods were
developed in the early 1970s (13).They have been used for decades for classifying remote sensing images. They are pixel-based
classification methods solely based on spectral information (i.e., digital number values) (14). While supervised methods offer a
certain comfort to the user who has complete freedom to define their classes and classification parameters, in unsupervised
methods the analyst specifies the desired number of classes, and then the computer automatically groups pixels that are
statistically similar into categories using clustering algorithms (14). Among the supervised methods, the maximum likelihood,
support vector machine (SVM), random forest (RF), and neural networks algorithms are increasingly being used for land cover
and land use classification based on remote sensing data (15).

The objective of this study was to provide a comparative analysis of two supervised classification algorithms for mapping
irrigated agricultural areas across the southwest region of Burkina Faso.

2 Methodology

2.1 Study area

The study area is located in the Upper-Comoé, which is a sub-basin of the Comoé River watershed. The average annual rainfall
at the Bérégadougou station during 1971-2011 was 1032 mm (16). The dry and rainy seasons span October to May and June to
September, respectively. Rainfall is highly variable fromone year to the next, with a decreasing trend in annual totals andnumber
of rainy days observed during 1971-2011. Multiple water courses cross the study area, with the majority being temporary (i.e.,
linked to the rainy season). Only the Comoé remains year long. Three water reservoirs (Moussodougou, Lobi and Toussiana)
are built on the Comoé River and its tributaries Yannon and Lobi. These reservoirs are the main source of water for domestic,
industrial and agricultural needs (Figure 1). The main city of the Upper-Comoé basin is Banfora, with 117,000 inhabitants (17).

This region is highly suitable for agriculture, which employs about 63% of the population of Burkina Faso (17). Surface water
intended for dry season agriculture does not always meet the needs of all the applicants in the rice-growing area of Karfiguela,
in the sugar-cane complex of Comoé and among the market gardeners installed along the riverbanks. (1,18)

2.2 Overview of the method

The classification method used in this study is based on pixel information. In order to reduce bias, the classifications were
carried out on the same images and with the same training areas within a single software environment. A schematic flowchart
of the method is presented in Figure 2.

The software environment used is Google Earth Engine (GEE). GEE is a cloud platform providing parallel computing and
data catalog services for global geospatial analysis. The calculations are automatically parallelized. The public datasets are in a
ready-to-use format and come from the archives of multiple providers including the United States Geological Survey (USGS),
the European Space Agency (ESA). GEE provides various built-in methods that help in image preprocessing (13).

In Burkina Faso, irrigated agriculture is practiced intensively between the months of November and April, when surface or
groundwater resources are easily accessible. As part of this study, we chose images from the month of March, which enables
identification of irrigated agricultural areas. This choice is justified by the fact that during this period most of the natural
herbaceous and/or shrubby vegetation are either dried out or in poor condition, though certain types of herbaceous vegetation
still persist during this period.
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Fig 1. A:Map of the location of the Upper-Comoé watershed and the study area; B: Focus on the study area (Basemap: Open StreetMap
2024)

Fig 2. Methodology outline
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2.3 Choice of classification methods

Pixel classification algorithms can be grouped into two categories: parametric and non-parametric classifiers. Parametric
classifiers assume that the data are representative and normally distributed. Although parametric classifiers such as maximum
likelihood have proven to be useful, these classifiers have the major disadvantage of requiring a normal distribution of the land
cover data used to train the classifier. However, land cover data generally does not follow a normal distribution. (4,13)On the
other hand, non-parametric classifiers such as SVM, RF and artificial neural network (ANN) have proven useful because they
do not base the classification on an assumption of normality or on statistical parameters (19). In our study, we chose the SVM
and RF algorithms to classify agricultural land areas in the study zone.

SVM is a classification system derived from statistical learning theory. It separates classes with a decision surface that
maximizes the margin between classes. The surface is often called the optimal hyperplane and the data points closest to the
hyperplane are called support vectors.The SVMclassificationmethod is a non-parametric statistical learning technique. (20–22)It
separates classes with a decision surface that maximizes the margin between classes. The surface is often called the optimal
hyperplane and the data points closest to the hyperplane are called support vectors. SVMs have gained importance because
they are robust and can handle relatively small datasets. (22,23)According to Hsu (24), SVMs include a penalty parameter that
allows for a certain degree of misclassification, which is particularly important for non-separable training sets. The penalty
parameter controls the trade-off between allowing training errors and forcing rigid margins. This creates a soft margin that
allows for some misclassifications, for example allowing some training points on the wrong side of the hyperplane. Increasing
the value of the penalty parameter increases the cost C of misclassifying points and forces the creation of a more precise model
which may not generalize well (25). In order to perform an SVM classification, the user must choose a kernel. Various kernel
functions exist, such as polynomial kernel, linear kernel, sigmoid kernel, and radial basis kernel or function (RBF). The choice
of kernels also affects the classification results. Kernels such as RBF have a user-defined parameter γ that controls the influence
of a training sample on the decision boundary. The higher the value of γ , the more tightly fitted the decision boundaries around
the samples. Nevertheless, this can lead to overfitting. Therefore, it is necessary to find the right balance (25). Below are the
mathematical representations of sigmoid and radial basis kernels: (26)

RBF: K(xi,x j ) = exp (−γ∥xi − x j∥2), γ > 0
Sigmoid: K (xi,x j) = tan(γxT

i x j + r)
where:
γ is the gamma term in the kernel function for all kernel types except linear.
r is the bias term in the kernel function for the sigmoid kernel.
Random Forest (RF) constructs a set of binary decision trees (27). Tumer and Ghosh (28) noted that combining the output of

multiple classifiers to predict an outcome yields very high classification accuracies.This is the basis of the RF ensemble classifier,
which combines the outputs of multiple decision trees to decide the label of a new input data based on a maximum vote. In
the context of land use mapping, the number of works using RF continues to increase. (19,29–31)In addition to its comparable
performance with other classification algorithms (32),the RF has numerous advantages: reduced calculation time due to the
possibility of building the trees in parallel (33), the possibility of taking large volumes of data as input (i.e. a high number of
variables), and easier interpretation offered by the visualization of trees. In our study, the sigmoid and radial basis functions
were used for the SVM algorithm. Three numbers of forests (10, 50, and 100) were used for the RF algorithm. The classification
methods selected will be applied to the same study area, using the same samples of training areas.

2.4 Selection of training areas

Training areas were sampled on the image according to the different land use and land cover (LULC) classes. The selection of
training areas was made following field campaigns and supplemented by photo-interpretation using Google Earth. Auxiliary
data such as responses to a questionnaire on land and water use administered to a focus group of about 50 institutions
(composed, among others, of farmers, agricultural officers, municipal workers, members of the Upper-Comoé basin local water
committee, resource people who are long-time residents of the study area), were also used. The LULC selected and number of
pixels sampled for each of the classes are presented in Table 1.

Table 1. LULC classes
Classes Number of training areas Number of Pixels
Arboriculture 21 307
Herbaceous vegetation 13 207
Shrub vegetation 10 290

Continued on next page
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Table 1 continued
Irrigated agriculture areas 33 840
Flooded areas 21 294
Rainfed agriculture areas 22 295
Bare soil 3 33
Water bodies 5 65

The image chosen for this study is a Landsat 8 collection 2 tiers 1 TOA image (Path: 197; Row: 53), from 16 March 2019,
with less than 10 % cloud cover.

2.5 Classifications assessment

Theperformance of image classificationwas assessed using fourmetrics: the overall accuracy (percentage), theKappa coefficient
of the error matrix, (34–38) the producer accuracy, and the user/consumer accuracy. The Cohen’s Kappa coefficient (or Kappa
coefficient) is the probability of agreement minus the probability of random agreement, divided by one minus the probability of
random agreement; the overall accuracy calculates the total number of correctly classified sites divided by the total number of
reference sites (39); the producer’s accuracy is the number of reference pixels classified accurately divided by the total number of
reference sites for that class (39); the producer/user’s accuracy is calculating by taking the total number of correct classifications
for a particular class and dividing it by the row total (39). Additionally, a comparison of the areas obtained by classes and by type
of classifier was performed to identify convergences between the area values. We compared our results to those obtained by the
firm ESRI (Environmental Systems Research Institute) in collaboration with ESA and Microsoft. Indeed, since 2017, ESRI has
published a global land cover map every year, using Sentinel-2 images (10 m spatial resolution). The ESRI classification uses
the deep learning technique. The accuracies of ESRI maps are between 80 and 90% (40) depending on the type of image used
and the number of classes. The classes used by the 2019 ESRI classifications are not exactly identical to our classes; therefore,
comparisons were made only for similar classes.

3 Results and Discussion

The five classifications provided good to excellent results based on the assessments of the Kappa coefficients. (34,37)The best
Kappa coefficients were obtained by variants of the RF method (Table 2).

Table 2. Evaluation of classification results
Algorithm/Kernel Overall accuracy (%) Kappa coefficient
SVM sigmoid function 71.53 0.66
SVM RBF 80.77 0.77
RF 10 forests 93.84 0.92
RF 50 forests 97.69 0.97
RF 100 forests 99.23 0.99

Although the results of all five classifications were good regarding Kappa and overall accuracy values, the detailed
performance for each of the classes indicated mixed conclusions (Table 4). The confusion matrices showed lower performance
of the SVM classifications compared to those of the RF methods, with accuracies varying between 53.85% to 100% (SVM
sigmoid), and 63.64% to 100% (SVM radial basis function). Comparatively, the minimum accuracy found in RF methods was
86.84% (RF 10 forests) (Table 3).

Table 3. Classification accuracies (expressed in %)(*)
Water Shrubs Rainfed Irrigated Herbaceous Flooded Bare soil ArboricultureProd.

Acc.
Sigmoid

Water 70.00 0 0 0 0 0 0 0 100
Shrubs 0 76.92 3.23 0 0 0 0 0 90.91
Rainfed 0 0 67.74 3.45 0 0 0 0 95.45
Irrigated 0 15.38 12.90 68.97 30 23.08 0 9.52 58.82

Continued on next page
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Table 3 continued
Herbaceous 20 0 0 6.90 60 23.08 0 0 46.15
Flooded 10 7.69 16.13 13.79 10 53.85 0 0 36.84
Bare soil 0 0 0 0 0 0 100 0 100
Arboriculture0 0 0 6.90 0 0 0 90.48 90.48

RBF
Water 70.00 0 0 0 0 0 0 0 100
Shrubs 0 76.92 0 3.23 0 0 0 0 90.91
Rainfed 0 0 88 0 0 0 0 0 100.00
Irrigated 0 15.38 12 77.42 27.27 12.50 0 0 70.59
Herbaceous 20 0 0 3.23 63.64 18.75 0 0 53.85
Flooded 10 7.69 0 16.13 9.09 68.75 0 0 57.89
Bare soil 0 0 0 0 0 0 100 0 100
Arboriculture0 0 0 0 0 0 0 100 100.00

RF 10
Water 100 0 0 0 0 0 0 0 100
Shrubs 0 91.67 0 0 0 0 0 0 100
Rainfed 0 0 100 0 0 10 0 0 90.90
Irrigated 0 8.33 0 86.84 0 0 0 0 97.05
Herbaceous 0 0 0 5.26 100 0 0 0 84.61
Flooded 0 0 0 2.63 0 90 0 0 94.73
Bare soil 0 0 0 0 0 0 100 0 100
Arboriculture0 0 0 5.26 0 0 0 100 90.47

RF 50
Water 100 0 0 0 0 0 0 0 100
Shrubs 0 100 0 0 0 0 0 0 100
Rainfed 0 0 95.45 0 0 5 0 0 95.45
Irrigated 0 0 4.55 97.06 0 0 0 0 97.05
Herbaceous 0 0 0 2.94 100 0 0 0 92.30
Flooded 0 0 0 0 0 95 0 0 100
Bare soil 0 0 0 0 0 0 100 0 100
Arboriculture0 0 0 0 0 0 0 100 100

RF 100
Water 100 0 0 0 0 0 0 0 100
Shrubs 0 100 0 0 0 0 0 0 100
Rainfed 0 0 100 0 0 5 0 0 95
Irrigated 0 0 0 100 0 0 0 0 100
Herbaceous 0 0 0 0 100 0 0 0 100
Flooded 0 0 0 0 0 95 0 0 100
Bare soil 0 0 0 0 0 0 100 0 100
Arboriculture0 0 0 0 0 0 0 100 100

(*)User/consumer accuracy values are shown in the first diagonal of each matrix; Prod. Acc. = Producer accuracy

The spatial distributions of the five classified images are shown in Figure 3. The irrigated agricultural areas were found along
the main watercourse (center of each of the images) and northeast of the study area, which corresponds to the sugar cane fields.
Water bodies (including that of Lake Tengrela, located at the bottom left of each image) were satisfactorily identified. However,
the classification of flooded areas differed between the five classification methods. In SVM classifications, the flooded areas
had fairly well-defined contours and were dense. Whereas in RF classifications, these zones seemed to be dispersed, with their
contours poorly characterized.

The presence of agricultural areas outside the locations mentioned above is considered erroneous. Indeed, according to the
field observations, in March there were few sources of irrigation water apart from the Comoé River. As such, beyond a distance
of 1.5 to 2 km on either side of the river, it is unlikely or even impossible for farmers to source their irrigation water from the
river. Similarly, the presence of trees in the midst of sugar cane fields is incorrect. The entire sugarcane production area was free
of trees, according to the field observations.

SVM algorithms tended to present homogenous classes across the study areas compared to RF algorithms. This tendency
was evident in the ESRI Sentinel-2 classification (Figure 4). However, some agricultural areas were falsely identified in the ESRI
Sentinel-2 classification. For example, on the right side of the Figure 4, agricultural area outside the sugar company domain
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Fig 3. Classifications layout; A: SVMwith sigmoid function; B: SVMwith RBF function; C: RF with 10 trees; D: RF with 50 trees; E: RF
with 100 trees

(located at top right of the Figure) was flooded meadow or vegetation.
A comparison of the surface area values by class for each classifier shows similar results for the majority of the classes, except

for the bare soil class (Table 4). This could be explained by the fact that this class is under-represented within the study area.
Few pixels were therefore used for training this class, causing disparities between the results of the different classifiers.

Overall, RF methods outperformed SVM in terms of overall accuracy (> 90 %). Indeed, during the evaluation of the results,
there was a small percentage of confusion within the classes identified through RF methods. There were recurring confusions
between herbaceous vegetation, irrigated vegetation and flooded areas (which maintain hydrophilic vegetation). However, by
visually inspecting the maps obtained, the spatial distribution of the classes obtained by the SVM method seems to be close to
the reality on the ground.
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Fig 4. ESRI Sentinel-2 classification of the study area (2019)

Table 4. Estimation of areas by classifier/algorithm and by class
Kernel Arboricultural Bare soil Flooded Herbaceous Irrigated Rainfed Shrubs Water
RBF 975.80 28.57 1428.36 373.70 3318.15 4051.23 3840.60 291.42
Sigmoid 823.27 35.16 1422.29 326.58 3195.87 4447.97 3759.02 297.66
RF10 1207.00 144.70 1763.38 375.81 2610.65 4410.08 3605.88 190.32
RF50 1312.58 8.53 1764.79 394.80 2940.49 4659.65 2973.46 253.53
RF100 1385.37 14.94 1679.51 376.08 2864.36 4607.08 3133.63 246.85
Mean 1140.80 46.38 1611.67 369.40 2985.91 4435.20 3462.52 255.96
Standard
dev.

235.45 55.97 173.59 25.41 279.34 238.83 386.90 42.99

Coeff. Var. 0.21 1.21 0.11 0.07 0.09 0.05 0.11 0.17

According to Xie (41) and Traoré (13), the success of the supervised classification procedure depends on many factors such as
the characteristics of the study area under investigation, the classification system, the remote sensing data and the skills of the
analyst. It is therefore difficult to know a priori whether a given classifier will systematically deliver the best results. Numerous
comparisons of classifiers exist in the literature, (9,10,42–44)and show that the supremacy of one classifier over another is not
always guaranteed, due to application conditions that are not always respected, and quite simply to the difference between the
environments to be classified.

4 Conclusion
The study once again demonstrated the potential of remote sensing based approaches for classifying agricultural land areas
over large regions and large-scale mapping. The plurality of classification methods/algorithms allow for more flexibility in the
choice of the appropriate method according to the data and user experience. The comparison between RF and SVM methods
for identifying irrigated land areas across the southern region in Burkina Faso revealed that both methods provided good to
excellent classification, with the former outperforming the latter in terms of performance criteria. In terms of spatial distribution
of classes, the SVM method provided a mapping close to reality, due to the density of the classes generated. Our results showed
that the SVM method was sensitive to class sampling compared to the RF method. Potential research includes the comparison
of existing classifiers within the Google Earth Engine environment to classify irrigated areas in Burkina Faso, with the aim of
building a near real-time monitoring tool of irrigated land use across the country.
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