INDIAN JOURNAL OF SCIENCE AND TECHNOLOGY

5%‘%

RESEARCH ARTICLE

Check for
updates

& OPEN ACCESS

Received: 21-12-2023
Accepted: 30-01-2024
Published: 27-02-2024

Citation: Bhargava H, Sharma A,
Suravajhala P (2024) An Empirical
Study to Analyse The Effect of
Bagging and Feature Subspacing on
The Performance of A Custom
Ensemble Algorithm for Predicting
Drug Protein Interactions. Indian
Journal of Science and Technology
17(10): 911-916. https://doi.org/
10.17485/1)ST/v17i10.3202

*Corresponding author.

harshita.bhargava@iisuniv.ac.in
Funding: None

Competing Interests: Noe

Copyright: © 2024 Bhargava et al.
This is an open access article
distributed under the terms of the
Creative Commons Attribution
License, which permits unrestricted
use, distribution, and reproduction
in any medium, provided the
original author and source are
credited.

Published By Indian Society for
Education and Environment (iSee)

ISSN
Print: 0974-6846
Electronic: 0974-5645

An Empirical Study to Analyse The
Effect of Bagging and Feature
Subspacing on The Performance of A
Custom Ensemble Algorithm for
Predicting Drug Protein Interactions

Harshita Bhargava'*, Amita Sharma’, Prashanth Suravajhala?3

1 Department of Computer Science & IT, IIS (deemed to be University), Jaipur, Rajasthan,
India

2 Amrita School of Biotechnology, Amrita University, Clappana, Kollam, 690525, Kerala, India
3 Bioclues.org, India

Abstract

Objectives: The objective of this study is to analyse the effect of bagging and
feature subspacing on the performance of a custom ensemble of decision tree
classifiers for predicting drug protein interactions. Methods: In our present
work we have designed a custom ensemble algorithm with decision trees as
the base learner. We analysed the effect of bagging negative samples and
feature subspacing on the performance of the custom ensemble in terms of
AUCROC and AUPR. The Enzyme dataset from the Yamanishi dataset composed
of 445 drugs and 664 proteins was used for the experiments. Findings: It
was observed that the effect of bagging negative samples was significant as
compared to feature supspacing in terms of AUPR metric. Now since AUPRis a
metric that remains unaffected by the presence of negative samples hence the
increase in AUPR by increasing the negative to positive ratio clearly indicated
that the negative samples do contain the positives which are unknown and are
yet to be verified. Novelty: The results give a strong indication that that feature
subspacing has no considerable impact on the AUCROC metric performance of
the custom ensemble while AUPR metric increases as the negative to positive
ratio increases. The results give a foundation to the fact that, finding reliable
negative samples from the entire set of negative drug protein pairs can further
enhance the performance of the machine learning classifiers.

Keywords: Decision tree classifier; Ensemble classifier; Drug discovery;
Bagging; Drug repurposing

1 Introduction

In this research work, only feature based methods from the machine learning category
of chemogenomic based approach have been considered. Drugs and targets are used in
feature-based approaches as pairs, with each drug represented by a feature vector of the
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form d=df;,dfs,...df,, and each target by t=tf;,tfy,...tf;. The feature vectors of each drug and each target are concatenated to
create the pairs.

dot={df},dfy,...df,,tf1,th,...tfs}

The binary labels on these feature vector pairs are ”1” to denote an interaction and "0” to denote a non-interaction between
the corresponding drug and target pair. If DTI prediction is handled as a regression problem rather than a classification problem,
the labels can also be real valued affinity scores (Ki, Kd, IC50, EC50) to indicate interactions and non-interactions. The primary
issue with this situation is that the non-interactive pairs are actually pairs for which the interaction is unknown or has not
been empirically proved. The majority of methods treat these hypothetical interactions as non-interactions when creating the
corresponding models. SVM (!-%), Rotation forest(>”) and Random forest® have been prominently used for DTI prediction
problems.

In recent years, feature-based ensemble approaches have attracted a lot of attention as well. The accuracy of a combined
classifier/regressor model has been empirically demonstrated to be superior to a single classifier/regressor®), given that the
individual base learners are diverse. Varying the training samples between the learners is one method for infusing diversity
which has been termed as “Bagging”. The base learners may also be varied to infuse diversity in the ensemble. A custom boosting
ensemble CFSBoost was proposed that used feature subspacing on the protein features from different feature categories!?),
In the same sequence!') addressed the within-class imbalance problem by defining a custom oversampling procedure.
The between—class imbalance was addressed using randomly sampling negative instances equal to the number of positive
instances for each base learner in the ensemble. The feature subspacing was done on the drug protein pair feature set to
ensure diversity in the ensemble. Another ensemble framework was proposed !?) to address the imbalance issue followed by
dimensionality reduction on subspaced drug and protein features. The decision tree and kernel ridge regression were used
as base learners resulting in two different ensembles EnsemDT and EnsemKRR. In!®) the concept of “Active learning” in
addition to dimensionality reduction and feature subspacing were proposed for an ensemble framework based on bagging.
Assigning weights to majority and minority samples allowed for the initial sampling of the samples from the training set using
neighbourhood balanced bagging. The following phase involved performing feature spacing on the drug and target features
independently, followed by dimensionality reduction on the drug and target features, respectively. The research on finding the
set of reliable negative samples has gained considerable attention in the recent years 14 (1), The outcome of this analysis gives an
evidence that the set of negative samples contain probable positives which are not known and have not been validated through
experiments. Hence, it emphasizes the need to design algorithms with the objective of uncovering the reliable negative samples.

2 Methodology
2.1 Dataset Statistics

The evaluation was done using the gold standard dataset given by Yamanishi et al., 2008. It includes four classes of proteins viz,
Enzymes, Ion channel, GPCR and Nuclear Receptor along with the respective interaction data with each of the drugs. It is a
classification-based dataset that includes binary 0 and 1 interaction data for each drug and each type of protein. Each dataset
under consideration is a discrete dataset made up of various drugs and a distinct class of proteins from the KEGG database.
Though in our experiments we used only the Enzyme dataset to gain insights and analyse the effect of feature subspacing and
bagging the negative samples on the custom ensemble algorithm. The choice of the dataset was mainly based on its size which
contained the maximum number of drugs and proteins for evaluating the model.
The details for the Yamanishi dataset are given below:

Table 1. Statistics for the Yamanishi Dataset

Protein class # of Drugs # of Proteins Known interac- Unknown interactions  Sparsity ratio
tions

Enzyme 445 664 2926 2,92,554 0.010

Ion Channel 210 204 1476 41,364 0.036

GPCR 223 95 635 20,550 0.031

Nuclear Receptor 54 26 90 1314 0.068
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2.2 Data Extraction and Preprocessing

We have utilised the side information of drugs and proteins in the form of their respective features. Initially in order to extract
the drug SMILES and protein sequences from the KEGG database using the Rcpi package, an R script was developed. The
Mordred tool was used to develop a quick Python script for feature extraction for medications. The 2D category of the molecular
descriptors comprised geometrical, topological, and constitutional descriptors. Using the Propy3 tool, the features of proteins
were obtained, including the descriptors for composition transition and distribution (CTD), Moran autocorrelation, and amino
acid composition (AAC) and dipeptide composition (DPC). The proposed method utilised a total of 1613 drug descriptors and
807 protein descriptors for the Enzyme dataset.

R Script: Python Script:
Extracted Drug SMILES | | Extracted Drug
from KEGG database descriptors using
.. (RCPI package) MORDRED Python
Yamanishi package.
Enzyme Total:1613
Dataset
Number of
Drugs:445
Python Script:
Number of et Extracted Protein
Proteins: 664
rotems Extracted Protein descriptors using Propy.
Sequences from KEGG Python package.
database (RCPI package) Total:807

Fig 1. Drug/Protein descriptors extracted using Mordred and Propy3 tool

2.3 Drug descriptors (2D) extracted using Mordred tool

ABCIndex, AcidBase, AdjacencyMatrix, Aromatic, AtomCount, Autocorrelation, Balaban], BaryszMatrix, BCUT, BertzCT,
BondCount, CarbonTypes, Chi, Constitutional, DetourMatrix, DistanceMatrix EccentricConnectivitylndex, EState, Extend-
edTopochemicalAtom, FragmentComplexity, Framework, Gravitationallndex, HydrogenBond, InformationContent, Kap-
paShapelndex, Lipinski, McGowanVolume, MoeType, MolecularDistanceEdge, Molecularld, PathCount, Polarizability, Ring-
Count, RotatableBond, SLogP, TopologicalCharge, Topologicallndex, TopoPSA, VdwVolumeABC, VertexAdjacencylnforma-
tion, WalkCount, Weight, WienerIndex, ZagrebIndex.

2.4 Protein descriptors extracted using Propy3 tool

« Dipeptide composition descriptors.

e Amino acid composition descriptors.

o Composition transition and distribution descriptors.
o Moran autocorrelation descriptors.

Drug (or protein) features with constant values or unique values less than two in a single column were eliminated from the
drug (or protein) feature set on the part of preprocessing. To deal with non-numeric values, the features with NAN values
were changed and filled with 0. The drug-protein pair feature vectors were created by concatenating the drug feature vector
(Df;,Df3,.....Df,,) and protein feature vector (Pf;,Pfy,....Pf,,) in each of the enzyme, ion channel, GPCR and nuclear receptor
datsets. As a result, the feature vector for the drug-protein pair was:

DP,yir = (Df},Dfy,.....Df, ,Pf},Pfy,....Pf,,)

where n indicates the total number of drug features and m indicates the total number of protein features.Thus, a total of
2,95,480 (445*664) drug-protein pairs were considered for the enzyme dataset for evaluating the proposed method. On a similar
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note, there were 210*204 = 42,840,223%95 = 21,185,54*26 = 1404 total drug-protein pairs for Ion channel, GPCR and Nuclear
receptor datasets respectively.

3 Results and Discussion

3.1 Experimental Design
Python 3

o Google colab pro+

- RAM:50GB
- Disk space:250GB

3.2 Experiment 1.1

Based on the EnsemDT algorithm developed by Ezzat et al. (2017), we created a "custom ensemble” of decision tree classifiers
for this experiment. The ensemble was built using 20 base learners, and to add variation/diversity, feature subspacing on the
protein feature set and drug feature set independently was done for each base learner. We used ”s” as the subspacing parameter
and examined the protein and drug feature sets with values of 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 respectively. Bagging was done on
negative samples so that, when building each base learner, the negative to positive ratio varied as 5, 10, and 15 respectively. This
ratio indicated that there were either 5, 10, or 15 times as many negatives as positives. The major goal of the experiment was
to ascertain how the custom ensemble’s performance would be affected by feature subspacing and bagging negative samples.
We used AUCROC and AUPR as the performance metrics, where AUPR focuses on minority positive samples and remains

unaffected by the presence of negative samples in the dataset.

Table 2. Performance analysis of custom ensemble using subspacing and bagging on negative samples with negative to positive ratio
5:1 ( Enzyme dataset)

Bagging on negatives (Number of negatives=>5 times the number of positives
Subspacing parameters gaIng 5 ( 5 Ld )

AUCROC AUPR
s=0.1 0.86 0.29
s=0.2 0.86 0.3
s=0.3 0.85 0.3
s=0.4 0.87 0.3
s=0.5 0.86 0.28
s=0.6 0.87 0.31

Table 3. Performance analysis of custom ensemble using subspacing and bagging on negative samples with negative to positive ratio
10:1 ( Enzyme dataset)

Bagging on negatives(Number of negatives=10 times the number of

Subspacing parameters positives)
AUCROC AUPR
s=0.1 0.81 043
s=0.2 0.83 0.44
s=0.3 0.83 0.46
s=0.4 0.83 0.41
s=0.5 0.83 0.47
s=0.6 0.83 0.43

Table 4. Performance analysis of custom ensemble using subspacing and bagging on negative samples with negative to positive ratio
15:1 ( Enzyme dataset)

Continued on next page
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Table 4 continued

Bagging on negatives (Number of negatives=15 times the number of

Subspacing parameters positives)
AUCROC AUPR
s=0.1 0.80 0.50
s=0.2 0.80 0.49
s=0.3 0.80 0.47
s=0.4 0.81 0.47
s=0.5 0.81 0.49
s=0.6 0.81 0.46

« Inference

Tables 2, 3 and 4 make it clear that the feature subspacing has no discernible impact on the AUCROC metric performance of
custom ensemble. The only exception, when the ratio of negative to positive data is 5:1, this statistic rises as feature subspacing
increases.

As opposed to the previous two cases, the growth in this instance was not gradual. The performance declined in terms of
the AUCROC metric but improved in terms of the AUPR metric when the negative to positive ratio increased from 5 to 15.
Although the rise in AUPR performance metric, with subspacing on drug and protein features was not found to be steady.

3.3 Experiment 1.2

In this experiment, the custom ensemble was built using 20 base learners, bagging the negative samples, and not using feature
subpacing as in experiment 1.1. The negative to positive ratio was adjusted to be 5, 10, and 15 for each base learner, accordingly.
The main objective of the experiment was to examine the effect of bagging the negative samples on ensemble’s performance.

Table 5. Performance analysis of custom ensemble while bagging on negative samples for each base learner with different negative to
positive ratio (Enzyme dataset)

Bagging on Negative samples AUCROC AUPR
Number of negatives=>5 times the positives  0.86 0.28
Number of negatives=10 times the positives  0.83 0.42
Number of negatives=15 times the positives  0.81 0.47

« Inference

Table 5 makes it very evident that, while bagging occurs on negative samples, the AUPR rises as the negative to positive ratio
rises. Due to AUPR’s exclusive focus on the minority class, the improvement in performance for various negative to positive
ratios suggests that the negative samples really contain true positives that were mistakenly labelled as negatives. However, these
are actually unknowns that have an impact on the classifier’s performance.

4 Conclusion

We built a custom ensemble using decision trees as the base learner to observe the effect of bagging on negative samples and
feature subspacing parameter. The experiments revealed that feature subspacing has no considerable impact on the AUCROC
metric performance of the custom ensemble while AUPR metric increases as the negative to positive ratio increases. Since AUPR
primarily deals with the minority class hence increasing the negative to positive ratio clearly indicates that the negative samples
actually contain true positives which have been taken as negatives. In order to build reliable supervised machine learning (ML)
models, there is a need to find reliable negative samples.
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