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Abstract

Objectives: The current research explores the impacts of thermal radiation
and viscous dissipation on MHD ferrofluid boundary layer flow past a non-
flat stretching sheet in a permeable medium utilizing a Darcy-Forchheimer
model. Methods: Magnetite nanoparticles (Fe304) disintegrate in base fluids
using the Tiwari-Das model of nanofluids. The governing partial differential
equations are transformed into nonlinear ordinary differential equations
(ODEs) using the relevant similarity variables. These nonlinear ODEs are
solved numerically using the bvp4c- technique in MATLAB software. The
effects of pertinent parameters such as the magnetic parameter, porosity
parameter, Forchheimer parameter, Prandtl number, Eckert number, and
radiation parameter on velocity and temperature fields are plotted graphically.
The influence of physical factors on Skin friction coefficient and local Nusselt
number are computed and examined. Findings: An augmentation in values
of porosity parameter (1), magnetic field (M), and Forchheimer number (Fr)
reduce the momentum boundary layer thickness although increases the
thermal boundary layer thickness. An increase in the fluid's temperature is
due to an increase either in the radiation parameter (Rd) or in the Eckert
number (Ec). Escalation in Prandtl number (Pr) lowers the compactness of the
thermal boundary layer. Novelty: The current work focuses on the innovative
investigation of the impact of heat radiation and viscous dissipation on the
boundary layer flow of MHD ferrofluid via a stretched sheet with varying
thickness and no research on the topic covered in this article has yet to be
reported. The study also incorporates the use of the Darcy-Forchheimer model.
Here, water (H,O0) is used as the base fluid, and magnetite (Fe;04) is used as
nanoparticles for the present study. The results coincide very well with previous

https://www.indjst.org/

990


https://doi.org/10.17485/IJST/v17i11.3027
https://doi.org/10.17485/IJST/v17i11.3027
https://doi.org/10.17485/IJST/v17i11.3027
https://doi.org/10.17485/IJST/v17i11.3027
sushilprasad47@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
www.iseeadyar.org.
https://www.indjst.org/

Prasad et al. / Indian Journal of Science and Technology 2024;17(11):990-1002

published works that authenticate the validity of the current work.

Keywords: Ferrofluid; MHD; Stretching sheet with variable thickness; Thermal
radiation; Viscous dissipation

1 Introduction

The necessity of enhancing heat transmission in industrial applications has gained
significant focus in the past few decades. Pure fluids comprising water, oil, and
ethylene can be used as cooling liquids in most applications. The heat transmission
rates of these fluids are nevertheless inadequate. The dispersion of nanoscale particles
into the base fluid improves its thermal performance and rate of heat transmission.
Thermal conductivity and heat transmission are greatly enhanced when nanoparticles
are incorporated into the base fluid. Since the completion of this study, nanofluids
have found widespread use in power production, heating and cooling systems, nuclear
applications, medical, electronics, automotive, and other fields V).

A magnetic force is applied to synthetic fluids called ferrofluids. These liquids
consist of magnetic particles with a diameter that varies from 5 to 15 nm, suspended
in colloidal suspensions that are chemically stable. The aforementioned fluids may
also be referred to as magnetic nanofluids due to the diameter and size of the
magnetised particles. Ferrofluids increase a fluid’s thermal characteristics by acting
like nanoparticles. A magnetic field affects the temperature distribution and other
physical properties of ferrofluids. Due to this characteristic, ferrofluids are significantly
more useful in a variety of fields, including engineering and biological sciences.
These fluids exhibit properties similar to those of ordinary liquids in the absence
of magnetic force. In todays technological and chemical sectors, ferromagnetic
fluids find amazing applications. These liquids are employed in some commercially
available electromechanical devices, such as electric engines, transformers, hard discs,
electromagnets, generators, and rotating X-ray tubes. They are also employed in the
biological sciences to treat hoarding, which is the process of keeping records and hard
plates®.

In multiple fields of astronomy, engineering, geophysics, and aerospace engineering,
magneto-hydrodynamic phenomena are extensively exploited. Examples include heat
exchangers, electromagnetic casting, photochemical reactors, sensors, transport, fibre
coating, magnetic drug targeting, cooling nuclear reactors, and so on. A recent study by
Abbas et al. ® looked into how MHD axisymmetric micropolar nanofluid flows through
porous parallel discs. They found that the radial velocity curves get steeper near the
discs and flatter in the middle. Rauf et al.) looked at how heat flux and Cattaneo-
Christov mass affect three-dimensional MHD fluid flows across an oscillating disc. They
implemented the sequential over-relaxation (SOR) approach in conjunction with finite
difference discretization to resolve highly nonlinear ODEs. Ullah et al.® explored the
significance of thermal density and viscous dissipation on heat and mass transfer of
chemically reactive nanofluid flow along stretching sheet under magnetic field. Shah
et al.© examined the effect of thermal radiation on convective heat transfer in MHD
boundary layer Carreau fluid with chemical reaction.

It is extremely easy to make assumptions about fluid flowing through a porous
medium. Since the universe’s formation, we have been surrounded by incredibly realistic
scenarios, such as fluids naturally flowing via sand and dusty places or through a
stony surface. These days, this principle is frequently applied in the manufacturing
sector for a variety of reasons, particularly when modelling oil reservoirs, groundwater
management systems, geothermal engineering, and many related fields as well. While
the traditional Darcy rule aroused close attention, it was only applicable in very specific
cases where the porosity factor was kept low. It does not account for the increased rate
of fluid momentum passing through the porous medium. Therefore, to increase its
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application, the traditional Darcy law demands that it be modified. To deal with the higher porosity rates, Forchheimer
added the squared velocity factor to the momentum equation of the model that governs the classical Darcy law. A lot of
different technical, environmental, and industrial settings use porous materials for convection. These include geological setups,
geothermic systems, chemical action reactors, and heat exchangers. The Darcy-Forchheimer model encompasses mechanical
phenomena, drag forces, and diffusion effects. The model is utilised in fluid flow as well as heat flux analysis to investigate
mechanical phenomena. The heat transfer phenomena in nanofluids flowing across composite porous media were studied by
Hemavathi and Umavathi(”). Aleem et al.®) revealed the characteristics of Newtonian heating as well as the chemical reaction
occurring in a nanofluid flowing across a Darcy medium.

The impacts of thermal radiation on our industrial and technological fields are significant. Procedures are carried out
at extremely high temperatures in various non-isothermal circumstances and situations where heat transfer coeflicients for
convection are smaller. The radiative flux of heat is quantified by the Rosseland approximation for the analysis of heat convection.
Practical applications for radiative heat transfer may be encountered in spacecraft, nuclear reactors, gas turbines, nuclear power
plants, supersonic flight, nuclear power plants, and other essential equipment. Employing a Forchheimer porous medium,
Bejawada et al.(®) examined the radiation impact on MHD Casson fluid flow across an inclined, non-linear surface with a
chemical reaction. The temperature of the plate was seen to decline when the radiation parameter and Forchheimer porous
media parameter values increased. It is anticipated that the temperature distribution of the nanofluid will improve with
increasing estimates of nanoparticle concentrations and radiation parameters, according to Hussain et al’s ') evaluation of the
convection analysis of the radiative nanofluid flow via porous media across a stretching surface beneath an inclined magnetic
field.

These days, researchers concentrate on researching the consequences of heat and mass transmission that may be used to
enhance the thermal properties of fluids. This is because fluid thermal features play a major role in many flow assessments of
computational fluid mechanics. Viscous dissipation and radiant heat are two elements that are essential for enhancing thermal
properties. The system’s proper temperature is produced via viscous dissipation, which also serves as a heat source. When a fluid
moves and overwhelms the layers of shear forces, it produces heat via an irreversible process known as viscous dissipation !V,
By taking into account viscous dissipation and magneto-hydrodynamics, Khashi et al. 1?) scrutinised the radiated heat transfer
and studied the fluid model of Reiner-Philippoff flowing across a nonlinearly shrinkable sheet. Saidulu and Reddy '®) looked
at the implications of dissipation on the propagation of mass and heat by analysing micropolar flow on a stretchable surface.
Their conclusion showed that the concentration curve decreased with increasing Schmidt number inputs, but the temperature
curve increased for higher values of Eckert number.

So far as we are aware, no studies have been published on the topic that is discussed in this article. So, this is an innovative
way of unravelling the impacts of thermal radiation and viscous dissipation on the boundary layer flow of MHD ferrofluid past
a stretching sheet with variable thickness utilising the Darcy-Forchheimer model. As a result, the current numerical analysis
has been performed to fill this gap. The paired partial differential equations that are non-linear can be transformed into a set of
paired ordinary differential equations that are non-linear. The altered equations are resolved numerically by the bvp-4C method.
Graphs of several important physically integrated parameters are created using the velocity and temperature fields’ graphical
representations. Tables serve to quantitatively determine the relevant physical quantities, such as the coefficient of local skin
friction along with local Nusselt numbers.

2 Methodology

This section considers a steady, incompressible, two dimensional (x,y) laminar flow past a stretching sheet along with variable
thickness (Figure 1) via Darcy-Forchheimer’s relation in the existence of magnetic field, thermal radiation, and viscous
dissipation effects. The sheets are placed towards the x— axis and is stretched with velocity U,,(x) =U,(x+ b)", where U, &
b are the dimensional constants and m refers to velocity power index. The stretching surface is chosen along the direction of the
flow while y— axis is orthogonal to it. 7}, denotes temperature of fluid placed near to wall, 7., signifies the ambient temperature
and B represents transverse magnetic field. The thickness varied significantly as y = A(x+ b)% where A is relatively small
constant indicating that the sheet cannot be flat and sufficiently thin. The sheet becomes flattens when m = 1.

2.1 Governing Equations
The basic boundary layer equations for the aforementioned model in Cartesian coordinates x and y are as follows: (see !¥)

u v

a‘*‘a*yzoy (1)
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Fig 1. Physical description of a stretching sheet with variable thickness
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2 2
PLLINL . aff oL dar (au ) : (3)
ox dy (PCp)nf dy (pcp)nf dy (pcp)nf dy

where (u,v) represents velocity components of fluid along (x,y) directions, respectively. T’ denotes the temperature, B is the
induced magnetic field, which should be very minimal in compared to the applied magnetic field and is omitted. p,, s represents
the density, u, s refers the dynamic viscosity, o, ¢ depicts electrical conductivity, (0Cp),  represents the heat capacitance, kyy
denotes the thermal conductivity of nanofluid, ¢, indicates radiative heat.

The Rosseland approximation (!*) being used to evaluate and simply the radioactive heating flux in the temperature equation,
ie.

40* T

- 4
3K* dy’ )

qr =
Here, 6* & K* represents Stefan-Boltzman constant and mean absorption co-efficient, respectively. It is anticipated that
variations in temperature throughout the flow are expected to be minimal, with this in mind, the factor 7* can be expressed
as a linear function of the temperature ignoring the higher order terms, whereas T* can be expanded in Taylor’s series about
T.. which is derived thereby,

T =T 4 4T3(T — T.)* + 6T2(T —To) > + ... (5)
By omitting the higher order terms of previously stated assertion beyond the first degree in the series:
T4 ~4TT3 —3T4 (6)
Now,
b= )
Using Equation (7), the energy Equation (3) be reduced to
ual+v(9l: Kny azl ;M& Hang (8”>2 (8)
dx dy  (pCp),, 9y (PCp),, 3K* 9y (pCp),s \ Iy
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2.2 Boundary conditions
The boundary constraints for the subjected problem are given by (see 1))

1—m

Up(x) =Uy(x+b)",v=0,T = T, (x) aty=A(x+b) 2 (9)
U(x) =Ui(x+D)", T — Ts asy —» oo,

where Ty, (x) =T + T, (x+b) " denotes the temperature near to wall T is the temperature far-off from the wall, B (x) =
Bo(x+b) 2 "I is the induced magnetic field and U, (x) = U; (x+ b)

2.3 Similarity Transformations

17)

The similarity transmutations have been invoked following'*"’, given as:
m—1
Uy m + ! m+1U, T T—- T,
x n=y —(x+b ()= ,
m—l—lvf +b) ¥ ) vf(+) (1) T,— T..
(10)
1 i m—1
) m — -1
u=Uo(at)" (M) v=—y[ == VsUo (et0) 2 |f)+n- ——f (1)

Here y, vy, & 1] represents stream function, kinematic viscosity, & similarity variable, whereas F* & © are the function of 7.

2.4 Transformed equations

Next, we define u = %—'{’

Equations (2) and (3) be transformed as

, V= —>5t Equatlon (1) is being automatically satisfied whereas by employing Equation (10), rest of

Pay/ls

2 n n
F" +FF" — i(F/z_SZ)_Gf/GfM(F/_S —“f/“fl(F/— _ Fr(F/z—sz):O (11)
Puf/Pf m+1 Puf/Pr Puf/Pr Puf/Pf
" C n ! nf
(k / Rd) @ +Pr PCo)us o + B —o. (12)
ky (pCp) iy
2.5 Transformed boundary conditions
The transformed boundary conditions (Equation (9)) are:
Fm=a( =) Fm=1,0m)=1 tn=0
Tl— 1+m7 77—» 77— GTI—7 (13)
F'(n)=¢, ®(n)=0 asmn —oo.
Here, (') denotes derivatives with respect to 17, and ot = A ’"TH l\{—}’ Supposing and substituting

F)=fm-a)=/(5),and®(n)=6(n-0a)=0(¢), weget:

Unf / Uy "y it 2 2 Onf / Or / Hnf / Uy / 2 2
—_— — — M —€)— A —€)— F . =0, 14
pnf/pff IREA +1 (f ¢ ) pnf/pf ( 8) pnf/pf ( 8) pnf/pf r(f ¢ ) (1)
knf ) " (pcﬂ)nf / ,unf 712
Rd 6 +P 6 + E =0. 15
( ky ’ ( (PCp) s / Ky s 1)
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and the reduced BCs are:

/

ro=a({5m) S@O=180=1  ai-o,

F(8)=¢6(5)=0 as § — oo,

(16)

where, (') signifies differentiation w.r.t. { and the dimensionless parameters i.e., M, €, A, Fr, Pr, Ec, Rd, o are the magnetic
field, velocity ratio parameter, porosity parameter, forchheimer no., Prandtl no., Eckert no., radiation parameter and wall
thickness parameter respectively. The expressions, for these parameters are as given below:

26, _U g 2vplh) _ 2F(x+b) _ v
M= pU.m1) €= T, A= ATV PRCEDE Pr= a
. U2 _ 160*T3 _ m+1 U,
Ee= gy Rd= g ¢ =4/ % )

Table 1. Thermophysical properties of magnetic nanoparticles & base fluid (1s)
Physical properties  Fe304 Water
p(kg/m?) 5180 997.1
Cp(J/kg.K) 670 4179
k(W /m.K) 9.7 0.613
B(K™1 1.3x107° 21
w(mPals) - 0.891
Pr - 6.2

Table 2. Thermophysical properties of nanofluid 1%

Properties Nanofluid

Density Puf=(1—=0)pr+ops

Heat Capacity (PCp)p=(1=0)(pCp) s+ 1 (PCp);
ks+2k—2¢

.. . ky—ks )

Thermal Conductivity &, r = W

Electrical Conductivity 6,7 = (1 —¢)0r+¢0;
My

(1-9)™

Dynamic viscosity Unf =

o Parameters of empirical importance

Coeflicient of local Skin friction & local Nusselt number is defined as:

Cr= vty VU= KTy

where 7, represents the shear stress through surface of the wall & ¢,, gives the heat flux against the wall. These terms are
listed as:

166" T3
y=
Upon imposing the similarity transformations and dominated boundary conditions, the coefficient of local Skin friction and
local Nusselt num?er are stated in non-dimensional formats as:
Cre=Cy(Rex)2= 5\ /2L (£ ()

My n=0
-5 _ _ (kwms 4 [mt1 (p'
Nux(Rex/Z) = ( ks +3Rd) ) (9 (n))nzo,

Uy (x+b)
v

where Re, = denotes the Reynold’s number.

« Utilization of the bvp4c solver
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For the purpose of solving BVPs, MATLAB has a method that may be used. It was Kierzenka and Shampine ?®) who were the
pioneers in the design and implementation of the bvp4c solver. They are now demonstrating a significant amount of study on the
subject @, According to this research, an analysis of the interpretative implementation of bvp4c for the study that is now being
considered has been carried out. In order to calculate this arrangement, we first changed the entity of PDEs to the entity of ODEs
by utilizing similarity transformations. After that, we utilized the bvp4c solver that is available in MATLAB. Subsequently, we
transform the entity of ordinary differential equations (ODEs) into an entity of first-order equations. Furthermore, the bvp4c
approach may be utilized to design solutions for any issue that is associated with boundaries. In order to illustrate the procedure,
Shampine has produced a demonstration. The transformation of the entity of ODE:s for the purpose of the current research into
the entity of first-degree equations has been investigated in Steps I and II that have been completed. Step III is where the
boundary condition conversion is handled, and step IV is where the remaining section of the program is completed.
Step I: Firstly, we introduce a distinct set of variables for our paired non-linear ODEs:

f)=f f@Q=Ff, fO=f, f@=16, f(5=6

Step I1: Now, we add new variables to a set of equation & construct a structure of 1% order equation as:

()= £(2)

f/(Z):f(?) 5 / /

/ n m Onf/O n 12
710) = Rt (=11 4 32 (17 =€) St (1 —e) & A (1 =) 4 5 i (s =)
f(4)= £(5)

/ r n I‘Ln 112

Tem kk"figm)(“’q’ffe jEf)

Step III: The boundary conditions have been transformed in accordance with the new variables as:

1—m
fa)=a(152). fa@ =1, fal@) =1, frI=e, fald)=
+m
Here, fa designate position at 7 = 0 and fb designate position as 1] — oo.
Step IV: Further, we use the bvp4c solver in MATLAB software to solve the entity of first-degree equations together with
boundary conditions. For the first iteration of the solution, we offered an initial guess as well as a mesh size of 0.01.

3 Results and Discussion

The main purpose of this section is to interpret the velocity and temperature distribution for the various values of the relevant
parameters. The bvp4c approach will be employed to numerically solve the highly nonlinear coupled Equations (14) and (15),
along with the boundary condition (Equation (16)). To analyse the consequences of pertinent parameters, i.e. magnetic field
parameter (M), porosity parameter (1), Forchheimer parameter (Fr), stretching parameter (€), radiation parameter (Rd),
velocity power index (m), Prandtl number (Pr), wall thickness parameter (), Eckert number (Ec), solid volume fraction (¢),
tables and graphs have been represented. For obtaining the results, we have considered the parameters as m = 0.5, Rd = 0.1,
0=05Pr=62,Ec=0.1,M=1.0,€=0.01,A =0.1, Fr=0.1, ¢ = 0.1, unless otherwise stated. Tables 1 and 2 represent
the thermophysical terrain of magnetic nanoparticles along with base fluids and nanofluid respectively. Table 3 displays a
comparative study of —f”(0) for different values of m & ¢ with Rd =Ec=M =S=a=A=Fr=¢ =0at Pr=6.21in
the present work & those work obtained prior by ??). The values so attained in existing study are in good agreement with the
already-published ones. Table 4 displays the variation of coefficient of Skin friction and local Nusselt numbers in relation to
power law index (m), stretching parameter (€), magnetic parameter (M), porosity parameter (A ), Forchhiemer parameter (Fr),
solid-volume fraction (¢), Prandtl number (Pr), wall thickness parameter (¢t), Eckert number (E¢), and radiation parameter
(Rd) respectively. In this table, the numerical values of coefficient of local Skin friction and the coefficient of local Nusselt
numbers are displayed. It is noted that the coefficient of local Skin friction escalates by boosting € while it declines for decreasing
values of m, M, A, Fr, ¢, a.. Whereas the local Nusselt number escalates for rising values of €, a, Pr, Rd and is declining for the
decreasing values of m, M, A, Fr, ¢, and Ec.

Table 3. A Comparative study of — /' (0) for distinct values of m for @ = 0.25 and o = 0.5 where Pr = 6.2

Continued on next page
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Table 3 continued

Archie et al. 22

Present Results

% of error

m a=0.25 a=0.5 a =025 a=0.5 a=025 =05
10 1.1433 1.0603 1.1433 1.0603 0 0
9 1.1404 1.0589 1.1404 1.0589 0 0
7 1.1323 1.0551 1.1323 1.0551 0 0
5 1.1186 1.0486 1.1186 1.0486 0 0
3 1.0905 1.0359 1.0905 1.0359 0 0
1 1.0000 1.0000 1.0000 1.0000 0 0
0.5 0.9338 0.9799 0.9338 0.9799 0 0
0 0.7843 0.9576 0.7842 0.9576 0.0127 0
-1/3 0.5000 1.0000 0.5000 1.0000 0 0
-0.5 0.0833 1.1667 0.08333 1.1667 0 0
-0.55 -0.1976 1.2807 -0.1976 1.2807 0 0

Table 4. Numerical results of the Skin friction coefficient & Nusselt number for the current study when Pr = 6.2

m M A Fr e 0 a Pr Ec Rd ESSAC) —(klg;f+gkd) mel g/ ()
0.5 1.0 0.1 0.1 0.01 0.1 0.5 6.2 0.1 0.1 -1.7005 1.8429
0.1 -1.4840 2.4164
0.2 -1.5395 2.2419
0.3 -1.5943 2.0909
0.4 -1.6480 1.9590
0.5 -1.4880 1.9468
1.0 -1.7005 1.8429
1.5 -1.8883 1.7508
2.0 -2.0583 1.6675
0.1 -1.7005 1.8429
0.2 -1.7389 1.8241
0.3 -1.7763 1.8058
0.4 -1.8130 1.7878
0.1 -1.7005 1.8429
0.2 -1.7199 1.8362
0.3 -1.7390 1.8295
0.4 -1.7579 1.8230
0.5 -0.9774 2.3215
1.0 -2.0911 2.6141
1.5 1.1790 2.6223
2.0 2.5336 2.2778
0.05 -1.4764 1.8535
0.10 -1.7005 1.8429
0.15 -1.9535 1.8280
0.20 -2.2429 1.8078
0.0 -1.5943 1.2669
0.25 -1.6466 1.5466
0.50 -1.7005 1.8429
0.75 -1.7560 2.1537
3.0 -1.7005 1.1127
5.0 -1.7005 1.5906
7.0 -1.7005 2.0016
10.0 -1.7005 2.5491
0.1 -1.7005 1.8429
0.2 -1.7005 1.4176
0.3 -1.7005 0.9923
0.4 -1.7005 0.5670
0.0 -1.7005 1.7852

Continued on next page
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Table 4 continued
0.5 -1.7005 2.0386
1.0 -1.7005 2.2282
1.5 -1.7005 2.3783
1 1 ' v . '
0.9 0.9 F
08 08 E
07 07
08 05}
Zos Zost
M=01,10,20,30
04 M=05,1.0,15,20 04r
03 03}
02 02F
01 o1t 1
0 : - 0 : :
0 05 1 15 2 25 3 35 4 45 & 0 05 1 15 2 25 3
¢ 4
(a) (b)
Fig 2. Effect of Magnetic Parameter (M) on f ({) and 6 ()
1 T 1
09 4 o9l
08 1 o8t 1
o7t 1 orh
06 1 0Bk
Zost Zost
%=01,10,20,30
04r A=01,0510,15 ] o4r
03f . 0af
02+ g 02t 4
01t 1 o1b
” R .. - .
0 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3
4 ¢
(a) (b)

Fig 3. Effect of Porosity parameter (1)on f'({) and 6({)

Figure 2(a) demonstrates that the nanofluid’s velocity decreases in accordance with the magnetic field parameter (M).
Because of this, the boundary layer thickness that governs velocity diminishes. Substantially, this is reliable because Lorentz
force, which is retarding in nature and proves the existence of a magnetic field in an electrically conductive nanofluid, tends to
slow down the fluid’s velocity. Figure 2(b) depicts the introduction of a horizontal magnetic field that results in Lorentz force,
a resistive force that causes fluid resistance to increase by increasing friction throughout its layers, and this result is in good
agreement with 19, Figure 3(a)-(b) display the impacts of the porosity parameter (1) on velocity and temperature profiles. It
can be noticed that the velocity of the fluid decreases as the porous medium is to raise the hindrance to fluid motion, whereas an
adverse effect is seen for the temperature profile along with the increasing values of the porosity parameter. Figure 4(a)-(b) show

https://www.indjst.org/ 998


https://www.indjst.org/

Prasad et al. / Indian Journal of Science and Technology 2024;17(11):990-1002
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Fig 5. Effect of Stretching Parameter (€) on f/({) and 6({)

the effects of the local Forchheimer number (Fr) (inertia coefficient). It is clear from the figure that the inertia coefficient has a
negative impact on fluid velocity since it is inversely proportional to the permeability of the medium and the drag coeflicient.
Therefore, with increasing values of Cb, the permeability of the medium & drag coeflicient both rise. As a result, the frictional
force for the liquid is improved, resulting in decreased velocity and a bigger Forchheimer number, however, the temperature
profile exhibits the reverse tendency as the Forchheimer parameter increases and this result is in good agreement with ??, The
impact of velocity ratio parameter (&) upon the velocity profile is depicted in Figure 5(a). In case, when the pace of free flow is
larger than the stretched sheet’s pace, it is evident that when € is increased, the velocity boosted as well as associated boundary
layer thickness declines. The stretching action near a stagnant area expands, causing the external free flow to accelerate and
the velocity to rise. Whenever, the velocity of sheet surpasses the velocity of free stream, the velocity & associated boundary
layer thickness both expanding. Furthermore, the boundary layer is not produced at € = 1. Temperature profile declines with
an increase in €, as depicted in Figure 5(b), which displays the temperature profile that exhibits the opposite behaviour. The
impacts of Prandtl number (Pr), Eckert number (E¢), & radiation parameter (Rd) upon temperature profiles are portrayed in

https://www.indjst.org/ 999


https://www.indjst.org/

Prasad et al. / Indian Journal of Science and Technology 2024;17(11):990-1002

09

0.8

0.7

0.6

Ec=0.1,0203,04,05
04

03
0.2

0.1

0.9

08

07 r

08

05

#C)

04t Rd=0,05,1.0,15

03
02r

01r
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Figure 6(a)-(c) accordingly. Figure 6(a) illustrates how the Prandtl number (Pr) had an impact on temperature distribution.
A material quality that differs from fluid to fluid corresponds to the Prandtl number. The figure shows that fluid temperature
drops as Pr rises. It is implied that momentum diffusivity has a larger value than thermal diffusivity for large Pr. As a result,
the thickness of energy boundary layer reduces. Usually, Pr is used in heat transfer problems for lowering the allied thickness
of both thermal and momentum boundary layers and has good agreement with !). The temperature profiles are enhanced
by an escalation in either Eckert number or radiation parameter, as seen in Figure 6(b)-(c). Figure 6(b) signifies the effects of
Eckert number (Ec) on temperature profile. The results of Eckert number coincide with the Ajayi et al.?3). It is seen that for
larger values of the Eckert number parameter intensifies (improves) the thermal boundary layer thickness. Generally, the rising
values of Eckert number encourages the diffusion of particles due to this cause we saw improvement in thermal boundary
layers. Figure 6 (c) shows the effect of thermal radiation on temperature profile 6 ({). It is found that radiation provides an
enhancement on the fluid temperature. The rate of heat transfer at the surface reduces for higher thermal radiation effects.
Higher temperature and thicker thermal boundary layer thickness associated with larger radiation parameter. Higher values of
radiation parameter lead to a low rate of heat transfer at the surface because the nanofluid temperature is enhanced.

4 Conclusion

This work examined the impacts of thermal radiation and viscous dissipation on the MHD outflow of magnetic nanofluid
Fe304/H;0 past stretching sheet with variable thickness utilising the Darcy-Forchheimer model in porous medium. Taking
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into account thermal radiation and viscous dissipation in magnetic nanoparticle flow makes temperature control better. This
makes medical uses like targeted drug delivery and hyperthermia treatment better, especially in cancer therapy. Scope: An
expansion of the scope of thermal radiation and viscous dissipation that incorporates MNPs might result in breakthroughs
in data storage and sensing technologies as well as environmental applications, such as the removal of pollutants and the
purification of water. Continued research and development are key to unlocking the full range of possibilities for magnetic
nanoparticles in diverse fields. The main outcomes of the current investigation can be listed below:

« An augmentation in values of porosity parameter (1), magnetic field (M), Forchheimer number (Fr) reduces the
momentum boundary layer thickness although increases the thermal boundary layer thickness.

e An increase in the fluid’s temperature is due to an increase either in radiation parameter (Rd) or in the Eckert number
(Ec).

o Escalation in Prandtl number (Pr) lowers the compactness of thermal boundary layer.

« Anaugmentation in any of the values of magnetic field (M), velocity power index (m), forchheimer number (Fr), porosity
parameter (A ), wall thickness parameter (&) exalts frictional factor whilst the frictional factor upsurges with stretching
parameter (€).

o An increase in any of the parameters such as magnetic field(M), porosity parameter (1), velocity power index (m),
forchheimer number (Fr), Eckert number (Ec) can reduce the Nusselt number while it enhances for stretching parameter
(&), wall thickness parameter (), radiation parameter (Rd), Prandtl number (Pr).

5 Nomenclature

BVP - Boundary value problem; ODE - Ordinary differential equation ; PDE - Partial differential equation; MHD -
Magnetohydrodynamics; 17 - Dimensionless variable , f - Dimensionless stream function; 6 - Dimensionless temperature
function; { - Modified dimensionless variable; C 't - Skin friction coefficient; Nu, - Nusselt number; Re, - Reynold’s number;
M - Magnetic parameter; A - Porosity parameter; Fr - Forcheimmer number ; € - Velocity ratio parameter; ¢ - Dimensionless
concentration function; Pr - Prandtl’s number; Ec - Eckert number; Rd - Radiation paramter; & - Thermal diffusivity; m -
Velocity power index; k - Thermal conductivity; ¢ - Dynamic viscosity; v - Kinematic viscosity; p - Density; ¢ - Electrical
conductivity; C,, - Specific heat at constant pressure; 6* - Stefan-Boltzman constant; K* - Mean absorption co-efficient; 7,, -
Shear stress at the wall; g, - Heat flux; T - Absolute free temp. of the fluid; T;, - The temp. of the stretching surface; T., - The
temp. of the free stream; U,, - The stretching velocity at surface; Us, - Free stream velocity of the fluid; u,v - Horizontal and
vertical velocity comp; x,y - Cartesian coordinates
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