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Abstract
Objective: To discriminate and classify soil samples collected from different
regions of Haryana, India. Methods: Attenuated Total Reflectance Fourier
Transform Infrared (ATR-FTIR) spectroscopy with multivariate statistical tools
is employed. A total of 232 samples were collected. A composite mixture of
all districts was prepared, having twenty-nine top and twenty-nine depth soil
samples. Chemometric methods, namely, PCA (Principal Component Analysis)
andPCA-LDA (Principal Component Analysis-LinearDiscriminant Analysis) were
used to interpret the data. Findings: Soil samples are well characterized by
their organic and inorganic contents. Sample clustering due to similarity in
chemical composition was visualized using PCA. PCA-LDA resulted in 100%
classification accuracy for top soil and 98.85% classification accuracy for
depth soil. Blind test validation was carried out, which resulted in 100%
and 80% prediction accuracies for top soil and depth soil respectively. The
present research methodology effectively discriminated soil samples and can
be utilized by forensic investigators dealing with cases that involve soil as vital
evidence.Novelty: Study reveals novel unexplored geographical location, local
soil variability, practical implications of non-destructive analytical technique
combined with chemometrics methods, contextualization with the previous
studies and the potential policy field relevance.
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1 Introduction
Soil is valuable to trace evidence commonly recovered from clothes, vehicles, footwear, or crime scenes. It has a significant value
because of its complex, heterogenous, and transferable nature. Using analytical techniques to analyze soil samples collected from
crime scenes helps the forensic expert evaluate whether the samples originate from the same geographic place. Moreover, soil
examination provides valuable information about Hit-and-Run cases, wildlife crimes, sexual assaults, murder, missing cases,
etc. As most crimes are committed outside, and soil frequently transfers from one location to another (1).

Characterization and discrimination of soils are two main parts of soil examination. Both features aid in linking crime with
suspects, victims, and objects and determining the crime’s origin. There are several analytical techniques being employed for
characterization of inorganic components in soil samples (2,3). In addition to being expensive and destructive, these techniques
are not common in every forensic science laboratory. To overcome these limitations, non-destructive, cost-effective, fast,
and requires little to no sample preparation are available via spectroscopic techniques such as Attenuated Transmission
Reflectance Fourier Transformed Infrared Spectroscopy (ATR-FTIR), Raman spectroscopy, and diffuse reflectance UV-Vis-
NIR spectroscopy.

However, applying these analytical techniques for forensic purposes could be challenging because forensics demands a high
degree of accuracy in data analysis compared to agricultural or environmental programs, where similar techniques are also
routinely used. Moreover, it is also problematic because soil transferred during criminal events is typically small. This trace
amount might not be sufficient for analysis by destructive methods. That is why we require non-destructive, cost-effective,
fast, no-sample preparation, reproducible results, and reliable spectroscopic methods, thus obtaining results that can efficiently
differentiate and characterize samples from one location to another or show similarity in samples originating from same
location.

Since the last few decades, FTIR spectroscopy has emerged as one of the most useful spectroscopic approaches. It is a handy
method for analyzing soil and sediment samples as IR spectra determine the presence of soil organic matter andminerals. Xing
et al. reported the compositional and structural change in SOM of different depth soils by FTIR-PAS with principal component
analysis (PCA).Goydaragh et al. (4) investigated SOMbyusing a combination of environmental variables and FTIR spectroscopy
using tree-based models. Kocak et al. (5) studied feasibility of vibrational spectroscopy for the analysis of soil samples in a single
location without focusing on the general intrinsic components of soil. Parnpuu et al. (6) reported using FTIR spectroscopy
technique to estimate SOM in different soils.

These studies are carried out on aminimal sample size to quantify organic and inorganic contents in soil samples.There hasn’t
been a study to date that examines the geographical restricted representation of soil types, depth variation, comparison with
advanced techniques, temporal variability, integration with field observations, impact of anthropogenic activities, economic
feasibility, spatial resolution and scale, insufficient validation.Therefore, there is a strong need to generate data on soil of different
areas of Haryana, India, which will help the forensic expert find out the culprit. This will reduce their fieldwork and prove a
boon for them.

2 Methodology

2.1 Study area

All soil samples used in the current study were collected from various areas of Haryana, India, located in the northern part of
the country (29◦ 3’ 56.7828” N and 76◦ 2’ 25.7892” E) (Figure 1).
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Fig 1. Sample collection site

2.2 Sample collection

To collect samples, a 10x10 meter grid was marked. Debris and other foreign contaminants were partially removed from the
earth’s surface. Then, soil samples (approx. 400 grams) were taken from four locations representing each of the four corners.
Similarly, four samples from about 15cm depth were collected with the same approach. The collected samples were stored in
plastic zipper bags with proper markings (sample ID and coordinates) (Table 1).

Table 1. Sample IDs and their coordinates
S.No. Districts Topsoil sample ID Depth soil sample ID Latitude (N) Longitude (E)
1 Jind T1 D1 29◦30’36” 76◦10’33”
2 Rewari T2 D2 28◦21’23” 76◦36’31”
3 Rohtak T3 D3 28◦50’49” 76◦40’39”
4 Faridabad T4 D4 28◦24’47” 77◦13’52”
5 Bhiwani T5 D5 28◦46’34” 76◦00’59”
6 Charkha Dadri T6 D6 28◦35’29” 76◦06’47”
7 Charkha Dadri T7 D7 28◦43’01” 76◦18’02”
8 Sonipat T8 D8 29◦06’49” 76◦41’14”
9 Panipat T9 D9 29◦16’29” 76◦51’29”
10 Jhajjar T10 D10 28◦36’11” 76◦37’02”
11 Jhajjar T11 D11 28◦44’00” 76◦50’14”
12 Nuh T12 D12 28◦09’02” 76◦56’53”
13 Rohtak T13 D13 28◦57’23” 76◦18’44”
14 Hisar T14 D14 29◦13’19” 75◦55’9”

Continued on next page
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Table 1 continued
15 Gurugram T15 D15 28◦19’41” 76◦54’29”
16 Gurugram T16 D16 28◦14’45” 76◦48’57”
17 Hisar T17 D17 29◦17’56” 75◦49’15”
18 Kaithal T18 D18 29◦43’00” 75◦21’28”
19 Kurukshetra T19 D19 29◦59’11” 76◦36’28”
20 Ambala T20 D20 30◦23’13” 76◦47’08”
21 Sonipat T21 D21 28◦56’26” 77◦05’52”
22 Panipat T22 D22 29◦10’36” 77◦01’46”
23 Nuh T23 D23 27◦50’32” 77◦09’29”
24 Palwal T24 D24 28◦09’29” 77◦19’16”
25 Faridabad T25 D25 28◦17’19” 77◦17’48”
26 Sirsa T26 D26 29◦41’24” 74◦56’28”
27 Karnal T27 D27 29◦42’02” 76◦59’05”
28 Yamunanagar T28 D28 30◦06’25” 77◦13’55”
29 Panchkula T29 D29 30◦40’40” 76◦53’27”

2.3 Sample pretreatment

After sample collection, they were allowed to dry at room temperature for at least five days before being crushed using a pestle
andmortar and sieved through a 2mm standard sieve to remove plastics, stones, leaves, and other foreign objects.Then samples
were stored in airtight specimen tubes. A total of 232 samples were taken. A composite mixture of all districts was prepared,
giving twenty-nine top and twenty-nine depth soil samples.

2.4 ATR-FTIR setup

ATR-FTIR spectra were carried out by FTIR spectrophotometer (Perkin Elmer SPECTRUMTWO) in the range of 4000 to 400
cm-1 at 4 cm-1 resolution, and 16 scans per sample were preferred to avoid any error or noise in the spectra. A background scan
was done for calibration by running a spectrometer without a sample. As soon as the background scan was completed, dried
and sieved soil samples were placed directly on detection window. Then, ATR crystal was pressed on the soil samples. All the
58 composite samples (29 samples for top soil and 29 samples for depth soil) were analyzed in triplicates to be able to consider
sample variation. To check the reproducibility of the FTIR instrument, same sample was analyzed three times.TheOrigin 2019b
software was used to plot data and visually assess the spectra.

2.5 Multivariate data analysis

Multivariate analysis is a key method to evaluate large data sets that contain more than one variable (7).

2.5.1 Principal Component Analysis (PCA)
PCA is an unsupervised pattern recognition tool. Using PCA, a large number of interrelated variables can be simplified to a
few PCs. The first few PCs in the set, which are uncorrelated from one another, account for the majority of the variations seen
in the datasets. The PCs with eigenvalues greater than one are chosen from among all PCs. Additionally, it is a handy method
to illustrate the significant correlations between selected samples and helps to summarize and presents the original data. In the
present study, PCAwas used to visualize the trends in the dataset and to identify clustering of the samples due to their similarity.

2.5.2 Linear Discriminant Analysis (LDA)
LDA is themost extensively studied supervised pattern recognition technique. It is primarily used to characterize or separate two
more classes of events and to make decisions among the specified classes without altering the shape or location of the original
datasets. While LDA and PCA both create new variables from the original datasets, the primary distinction between the two is
that LDA achieves maximal separation in comparison to PCA.The new variables are known as discriminant functions and are
orthogonal to one another.The efficiency of classification is increased by using a combination of PCA and LDA by automatically
selecting the most significant features to build the classification model (8). In the present study, PCA-LDAwas carried out using
Unscrambler X software (Version 10.5.1, 64-bit, CAMO, AS, Norway). The first 3 PCs derived from PCA were employed for
PCA-LDA.
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2.5.3 Data pre-processing
Before performing the main data analysis, the data was mathematically transformed to reduce and eliminate any noise and
variation from extraneous factors. All spectra were subjected to ATR correction prior to the application of any pre-processing
methods. To perform data pre-processing and, for ATR correction, Unscrambler X software (Version 10.5.1, 64-bit, CAMO,
AS, Norway) was used.

Pre-processing methods such as baseline offset and linear baseline correction, smoothing with Savitzky–Golay algorithm
with 3 smoothing points and 2 polynomial orders in symmetric kernel and normalization by range were performed on all the
spectra acquired in the present study.

2.5.4 Discrimination power (DP)
DP was first calculated by Smalldon and Moffat formula (9)

DP =
Total no. o f discriminating pair o f samples

Total no. o f possible pair o f samples
X 100

Total number of possible sample pairs (n) = n(n−1)
2 , Where n is the total number of samples.

3 Results and Discussion

3.1 Characterization of soil samples

The obtained spectra of soil samples in the mid-infrared region (4000-400 cm-1) were used to check the compositional
differences between samples taken from different locations. The spectra of all 58 samples (29 from top surface and 29 from
15cm depth) are qualitatively examined. Many characteristic peaks were identified in the fingerprint region from 1800-400
cm-1, which played an influential role in soil sample discrimination. The representative spectra of surface soil samples are
shown in Figure 2.

Fig 2. Mean ATR-FTIR spectra of collected soil samples in fingerprint area

The obtained ATR-FTIR spectra were further classified into eight regions. In the first region, ranges from 460-470
cm-1 showed vSi−O−Sisymmetrical bending vibrations in kaolinite, illite, and smectite. The second region ranging from 525-
535 cm-1 is caused by bending vibrations of vAl−O−Si in kaolinite (10). The third region, i.e., 690-700 cm-1 showed metal
oxides and carbonates deformation bands. The absorbance at 775-785 cm-1 attributed to the fourth region corresponds to
vSi−Osymmetrical stretching in quartz, calcite, and as well as the presence of R2C=CHR groups (11). The bands in the fifth
wavelength region that appeared around 995-1005 cm-1 are due to aromatic vC−H and vC=C from polysaccharides (11). In the
sixth region, absorbance at 1160-1170 cm-1 showed vC−O stretching of polysaccharides, alcohol, ester, and ether-like groups.
The absorbance at 1430-1435 cm-1 attributed to the seventh region showed aliphatic vC−H bending of CH2 and CH3 groups (12).
Lastly, 1635-1650 cm-1 is associated with asymmetrical stretching of metal carboxylate as well as presence of humic acids,
proteins and lignin (12).

Detailed information about the absorption bands resembled the organic and inorganic constituents detected in all top surface
and depth samples collected from different sites (Table 2). Different types of organic and inorganic i.e., quartz, calcite, kaolinite,
aragonite, hematite, and bentonite minerals are identified.
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Table 2. ATR-FTIR organic and inorganic constituents’ identification of soil samples
Frequency in cm-1 Band assignment Samples studied ReferencesPeaks Reported

region
Inorganic constituents Organic constituents

3621 3625-3615 Si-O-H vibrations of
clays, gibbsite, iron oxides,
kaolinite, free O-H, N-H
stretching

Moisture and oxygen-
containing organic com-
pound

T7, T9, T14-T18, T20-T22,
D4, D25, D27, D28

(13)

3440-3320 Hydrogen bonded O-H
and N-H stretching

n/a T3, T14, T15, T17, D5, D7 (11)

2965-2853 n/a Aliphatic C-H symmetric
and asymmetric stretching

T20-T26, D5 (12)

1642 1660-1640 O and N- containing polar
functional group

Amide C=O stretching,
aromatic C=C stretching,
carboxylate C-O asym-
metric strectching, C=N
stretching, conjugated
ketone C=O stretching

T1, T3-T7, T9, T11, T13-
T17, T19-T28, D1-D4,
D7, D8, D10, D12-D20,
D22-D25, D27, D28

(12)

1434 1444-1408 n/a Aliphatic C-H bending T1, T5, T7, T9, T11, T14,
T17, T20-T23, T25-T28, D1,
D5, D7, D9, D10, D14, D17,
D20, D22, D25, D26

(12)

1403-1354 n/a C-O stretching and O-H
deformation of COOH,
phenolic C-O stretching

T12 (14)

∼ 1161 1185-1144 n/a C-OH of aliphatic alcohols,
carbohydrates

T1-T25, D1-D25
(15)

1033 1045-1010 Al-OHdeformation (kaoli-
nite)

RHC=CH2, aromatic C-H
out-of-plane bending

T1, T2, T4, T10, T14-T16,
T19, T20, T23-T26, T29, D1-
D7, D10, D16, D20, D23,
D24

(16)

1000 1005-995 SiO2 Si-O stretch lattice Polysaccharides aromatic
=CH and C=C groups

T1, T4-T16, T18-T28, D1-
D5, D7-D16, D18-D29

(11)

945-870 n/a Benzoic acid, pyranose ring
(carbohydrates), cellulose,
RHC=CH2, R2C=CH2

T1, T4, T8, T9, T14-T23,
T27, T28, D1-D4, D8, D11,
D15-D24, D27, D28

(17)

872 870-890 Carbonates Lignins (Aromatic C-H out-
of-plane)

T5, T14, T23, T25, T26, D7,
D9, D14, D22, D25, D26

(17)

794 820-752 Inorganic materials (clay
and quartz), carbonates,
kaolinite

R2C=CHR, phenyl group T1-T25, D1-D25
(11)

720 725-720 Calcite Long chain alkanes (C-H
rock methyl)

T23, T25, T26, D12, D13,
D25, D26

(18)

695 697-690 SiO2 n/a T1-T25, D1-D25 (19)

650 Bentonite n/a T1, T3, T5 -T7, T25, T26, D1,
D5, D6, D11-D13, D26

(20)

525 535-525 Si-O-Al deformation in
kaolinite

n/a T1-T29, D1-D29 (10)

464 470-460 Si-O-Si bending (illite,
smectite, kaolinite)

n/a T1-T29, D1-D29 (21)

Furthermore, three separate checks of soil samples number T7 and T12 were conducted to determine intra-location
variations and reproducibility, and no significant differences were found, as shown in Figure S1 and S2, respectively.
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3.2 Visual inspection and Preliminary Discrimination of spectra

The visual inspection was carried out by comparing the spectra of each soil sample. For discrimination purposes, only the
presence or absence of peaks was considered as it makes the spectra more distinguishable. Detailed information regarding the
presence or absence of peaks at various wave number ranges is shown in Tables S6 and S7. Further, pairwise discrimination
reveals that most of the samples are discriminated from each other except 108 pairs and 116 pairs of soil samples in the case
of surface and depth samples respectively as shown in Table S1. This might be due to similar geochemical composition during
their formation. The DP is calculated according to Smalldon and Moffat formula. Thus, this method shows 73.39 % and 71.42
% discriminating power for surface and depth soil samples respectively.

This approach is helpful for the discrimination of small number of samples. Increasing sample size also increases the
possibility of error because manual comparison of spectral data is extremely time-consuming and labor-intensive. Therefore,
there is a need for a chemometrics statistical analysis method that can provide accurate and trustworthy results in a shorter
time.

3.3 Chemometric Discrimination

3.3.1 Top Soil
3.3.1.1 PCA. PCAwas performed using the ATR-FTIR spectra in the range of 4000-400 cm-1 to visualize the clustering of all
the samples.The explained variances of the first (PC1), second (PC2), third (PC3), and fourth (PC4) principal components were
76%, 16%, 3%, and 2%, respectively. The total explained variance was 97%, accounted by the first four PCs. The first three PCs
were used to make a score plot as they contained the most variances. The score plot using the first 3 PCs is shown in Figure 3.
The top soil samples formed a cluster on the PCA score plot, with a few samples separated from the cluster. Samples T2 (Rewari)
and T3 (Rohtak) were separated from the cluster along PC1. Sample T29 (Panchkula) was separated from the cluster along PC2
whereas sample T17 (Hisar) was separated along PC3. In the score plot, visually distinct samples were grouped together along
PC1 and PC3. Minor peaks that allowed for visual differentiation between particular samples were probably deemed to be of
low significance by PCA and subsequently incorporated into later PCs that weren’t used for plotting the data. However, PCA is
only a tool used for visualizing the trend in the dataset, therefore, a supervised discrimination tool is used in the further section.

Fig 3. PCA score plot of all investigated top-surface soil samples using 3 PCs

The factor loadings of the top samples are given in Figure S3, PC1 is positively correlated at 2986-2920 cm-1, 1072-990 cm-1

and negative loading at 4000-2991 cm-1, 2918-1073 cm-1, 988-469 cm-1. PC2 showed positive loading at 2214-1036 cm-1, 867-
558 cm-1, 499-445 cm-1 and negative loading at 4000-2399 cm-1, 1036-876 cm-1, 439-400 cm-1. PC3 showed positive loading
at 4000-2810 cm-1, 1534-1305 cm-1, 1181-463 cm-1 and negative loading at 2804-1539 cm-1, 457-438 cm-1.

3.3.1.2 PCA-LDA. All the samples in the present study were subjected to PCA-LDA to get an objective classification of the
samples. To perform PCA-LDA, all replicate spectra that were registered between 4000-400 cm-1 were used. With the help of
the first three PCs, the LDA model was developed for the topsoil samples. Each sample was treated as a separate class. All the
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samples were correctly classified with a classification accuracy of 100%. No misclassification was observed as shown in Table
S2. The PCA-LDA model was able to correctly classify all the samples which could not be separated on the PCA plot. The
model was then applied to the prediction of unknown samples. Additional spectra (newly analyzed) from 5 samples were used
to validate the model. The samples for the validation were randomly chosen and were given the sample codes U1, U2, U3, U4,
and U5. The identity of these samples was not informed to the researcher. U1, U2, U3, U4 and U5 were correctly predicted
as belonging to samples T26, T29, T22, T4 and T3 respectively. A validation accuracy of 100% was obtained. Results acquired
from PCA-LDA model are illustrated in Figure S4 and Table S3.

3.3.2 Depth Soil
3.3.2.1 PCA. The loading plot provided information regarding the number of PCs to be considered to describe the variances.
Explained variances of first (PC1), second (PC2), third (PC3), fourth (PC4), fifth (PC5), and sixth (PC6) principal components
were 47%, 25%, 13%, 5%, 4%, and 2% respectively. The total explained variance was 96%, accounted by the first six PCs. The
first three PCs were used to make a score plot as they contained the most variances.The score plot using the first 3 PCs is shown
in Figure 4. Various samples formed a cluster on the PCA score plot, with a few samples separated from the cluster. Samples
D7 (Charkha Dadri) and D29 (Panchkula) were separated from the cluster along PC3. Sample D26 (Sirsa) was separated along
PC2. Samples D9 (Panipat) and D25 (Faridabad) formed a sub-cluster.

Fig 4. PCA score plot of all investigated depth soil samples using 3PCs

As observed in the case of top soil, the PCA plot of depth soil also showed a close grouping of samples which showed
dissimilar spectral profiles. Minor peaks that allowed for visual differentiation between particular samples were probably
deemed to be of low significance by PCA and subsequently incorporated into later PCs that were not used for plotting the
data. However, PCA is only a tool used for visualizing the trend in the dataset, therefore, a supervised discrimination tool is
used in the further section.

The factor loadings of depth soil samples are given in Figure S5, PC1 showed positive loading at 4000-1536 cm-1, 1008-812
cm-1, 686-497 cm-1, 425-400 cm-1 and negative loading at 1524-1009 cm-1, 810-700 cm-1, 497-420 cm-1. PC2 showed positive
loading at 4000-2895 cm-1, 1676-1573 cm-1, 1232-877 cm-1, 867-403 cm-1and 2841-1694 cm-1, 1560-1249 cm-1, 875 cm-1, 400
cm-1. PC3 showed positive loading at 2894-1542 cm-1, 1270-1070 cm-1, 812-751 cm-1, 474-426 cm-1and negative loading at
4000-3212 cm-1, 1540-1276 cm-1, 1070-810 cm-1, 749-480 cm-1, 418-400 cm-1.

3.3.2.2 PCA-LDA. All the samples in the present study were subjected to PCA-LDA to get an objective classification of all
samples. To perform PCA-LDA, all replicate spectra of samples registered between 4000-400 cm-1 were used. With the help of
the first three PCs, the LDA model was developed for depth soil samples. Each sample was treated as a separate class. A PCA-
LDA classification accuracy of 98.85% was achieved. A misclassification was observed as shown in Table S4. A single replicate
of sample D5 wasmisclassified as D4. Apart from a single replicate of sample D5, PCA-LDAmodel was able to correctly classify
all samples which showed close clustering in the PCA plot into their groups. The model was subsequently used for prediction
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of unknown samples.The additional spectra (newly analyzed) from 5 samples were used to validate the model.The samples for
the validation were randomly chosen and were given the sample codes U1, U2, U3, U4, and U5. The identity of these samples
was not informed to the researcher. U1, U2, U3, and U5 were correctly predicted as belonging to samples D11, D19, D13, and
D29 respectively. Sample U4 was incorrectly predicted as belonging to D4. A validation accuracy of 80% was obtained. Results
acquired from PCA-LDA model are illustrated in Figure S6 and Table S5.

In a previous study reported by Chauhan et al., (22) depth soil was more accurately classified than surface soil. In the present
study, topsoil (100%) showed a higher classification accuracy than depth soil (98.85%). The additional classification of the
topsoil could be attributed to organicmatter on the topsoil, which contributed to greater variability in the chemical composition,
allowing for more accurate classifications.

• Potential benefits of ATR-FTIR/ PCA/LDA over other methods

The advantages of using ATR-FTIR with PCA and LDA for soil sample discrimination in forensic protection include the
ability to integrate with databases for effective matching, multivariate analysis, dimensionality reduction, improved accuracy
and sensitivity, statistical confidence, automated pattern recognition, and interpretable results. Table 3 presents a comparison
between the research approach used in this study and its conclusions with previous studies.

Table 3. Comparative analysis of soil samples
Analytical meth-
ods

Year Statistical methods
used

Area of Study Findings References

SEM-EDS 2019 Chi-square test Japan Discrimination of soil samples (23)

EDXRF &FTIR 2019 PCA Brazil 98.6 % similarity found in soil samples (24)

UV-visible spec-
troscopy

2020 Correlation China Soil organic matter is more favorable to
bind with Pb+20 ions than Cd+2 ions

(25)

Color, UV-NIR 2020 PCA China Quantitative measurement based on
the similarity and dissimilarity of soil
samples

(26)

TGA 2020 PCA, HCA, PCA-
LDA

India 100% discrimination and classification
of soil samples

(27)

UV-visible 2021 PCA, PC-LDA
Clustering

India Characterization of soil from different
areas, 95% correct classification by leav-
ing out chain validation

(28)

Vis-NIR 2022 PLSR, PCR, LDA New York Collect and model data carefully using
visible and near-infrared reflectance
spectroscopy to detect distinct types of
lead in soil

(29)

FTIR, XRD 2023 PCA, LDA Western Aus-
tralia

Arid, sandy soils, accurately distinguish
and associate an unknown ”recovered”
sample with a single reference soil

(30)

4 Conclusion
In the present study, ATR-FTIR spectroscopy was used to characterize and discriminate between 58 (29 top and 29 depth
surface) soil samples. These samples were analyzed in replicates in order to consider sample variation. The ATR-FTIR
spectroscopy method delivered a non-destructive analysis of trace samples in a lesser time. There was no sample preparation
and results were reproducible.Multivariate statistical tools such as PCA and PCA-LDAwere employed for better discrimination
and classification between samples. PCA was used to visualize the trends in the dataset. PCA-LDA resulted in a classification
accuracy of 100% and 98.85% in top-surface and depth samples respectively. For top-surface and depth soil samples, blind
test validation showed 100% and 80% accuracy, respectively. Expanded geographic coverage, temporal monitoring, integration
with remote sensing, correlation with multiple crimes, multiple depth analysis, combined application of analytical techniques,
validation through field observations, cost-benefit analysis, and cooperation with interdisciplinary fields are the major future
prospects and research directions that will be investigated.

https://www.indjst.org/ 1095

https://www.indjst.org/


Sangwan et al. / Indian Journal of Science and Technology 2024;17(11):1087–1096

References
1) Sangwan P, Nain T, Singal K, Hooda N, Sharma N. Soil as a tool of revelation in forensic science: a review. Analytical Methods. 2020;12(43):5150–5159.

Available from: https://doi.org/10.1039/D0AY01634A.
2) Mishra AC, Gupta S. Analysis of HeavyMetal in Industrial SoilThrough Atomic Absorption Spectroscopy and its Relationship with Some Soil Properties.

Journal of Materials &Metallurgical Engineering. 2021;11(2). Available from: https://engineeringjournals.stmjournals.in/index.php/JoMME/article/view/
5865.

3) Allegretta I, Legrand S, Alfeld M, Gattullo CE, Porfido C, Spagnuolo M, et al. SEM-EDX hyperspectral data analysis for the study of soil aggregates.
Geoderma. 2022;406:115540. Available from: https://doi.org/10.1016/j.geoderma.2021.115540.

4) Goydaragh MG, Taghizadeh-Mehrjardi R, Jafarzadeh AA, Triantafilis J, Lado M. Using environmental variables and Fourier Transform Infrared
Spectroscopy to predict soil organic carbon. CATENA. 2021;202:105280. Available from: https://doi.org/10.1016/j.catena.2021.105280.

5) Koçak A, Wyatt W, Comanescu MA. Comparative study of ATR and DRIFT infrared spectroscopy techniques in the analysis of soil samples. Forensic
Science International. 2021;328:111002. Available from: https://doi.org/10.1016/j.forsciint.2021.111002.

6) Pärnpuu S, Astover A, Tõnutare T, Penu P, Kauer K. Soil organic matter qualification with FTIR spectroscopy under different soil types in Estonia.
Geoderma Regional. 2022;28:e00483. Available from: https://doi.org/10.1016/j.geodrs.2022.e00483.

7) Sauzier G, Van Bronswijk W, Lewis SW. Chemometrics in forensic science: approaches and applications. The Analyst. 2021;146(8):2415–2448. Available
from: https://doi.org/10.1039/D1AN00082A.

8) Gautam R, Vanga S, Ariese F, Umapathy S. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Techniques
and Instrumentation. 2015;2(1):1–38. Available from: https://doi.org/10.1140/epjti/s40485-015-0018-6.

9) Lei L, Massonnet G. Forensic analysis of white automotive paint of same manufacturer with Raman spectroscopy and chemometrics. Journal of Raman
Spectroscopy. 2024;55(2):148–160. Available from: https://doi.org/10.1002/jrs.6626.

10) Madejova J, Komadel P. Baseline studies of the clayminerals society source clays: infraredmethods. Clays and clayminerals. 2001;49(5):410–432. Available
from: https://doi.org/10.1346/CCMN.2001.0490508.

11) Volkov DS, Rogova OB, Proskurnin MA. Organic Matter and Mineral Composition of Silicate Soils: FTIR Comparison Study by Photoacoustic, Diffuse
Reflectance, and Attenuated Total Reflection Modalities. Agronomy. 2021;11(9):1–30. Available from: https://doi.org/10.3390/agronomy11091879.

12) Calderón F, Haddix M, Conant R, Magrini-Bair K, Paul E. Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy as a Method of
Characterizing Changes in Soil Organic Matter. Soil Science Society of America Journal. 2013;77(5):1591–1600. Available from: https://doi.org/10.2136/
sssaj2013.04.0131.

13) Tinti A, Tugnoli V, Bonora S, Francioso O. Recent applications of vibrational mid-Infrared (IR) spectroscopy for studying soil components: a review.
Journal of Central European Agriculture. 2015;16(1):1–22. Available from: https://doi.org/10.5513/JCEA01/16.1.1535.

14) Dhillon GS, Gillespie A, Peak D, Van Rees KCJ. Spectroscopic investigation of soil organic matter composition for shelterbelt agroforestry systems.
Geoderma. 2017;298:1–13. Available from: https://doi.org/10.1016/j.geoderma.2017.03.016.

15) Pedersen JA, SimpsonMA, Bockheim JG, Kumar K. Characterization of soil organic carbon in drained thaw-lake basins of Arctic Alaska using NMR and
FTIR photoacoustic spectroscopy. Organic Geochemistry. 2011;42(8):947–954. Available from: https://doi.org/10.1016/j.orggeochem.2011.04.003.

16) Ma F, Du C, Zhang Y, Xu X, Zhou J. LIBS and FTIR–ATR spectroscopy studies of mineral–organic associations in saline soil. Land Degradation &
Development. 2021;32(4):1786–1795. Available from: https://doi.org/10.1002/ldr.3829.

17) Peltre C, Gregorich EG, Bruun S, Jensen LS, Magid J. Repeated application of organic waste affects soil organic matter composition: Evidence from
thermal analysis, FTIR-PAS, amino sugars and lignin biomarkers. Soil Biology and Biochemistry. 2017;104:117–127. Available from: https://doi.org/10.
1016/j.soilbio.2016.10.016.

18) Smith BC. How to properly compare spectra, and determining alkane chain length from infrared spectra. Spectroscopy. 2015;30(9):40–46. Available from:
https://www.spectroscopyonline.com/view/how-properly-compare-spectra-and-determining-alkane-chain-length-infrared-spectra.

19) Saikia BJ, Parthasarathy G, Sarmah NC. Fourier transform infrared spectroscopic estimation of crystallinity in SiO2 based rocks. Bulletin of Materials
Science. 2008;31(5):775–779. Available from: https://doi.org/10.1007/s12034-008-0123-0.

20) Calderón FJ, Reeves JB, Collins HP, Paul EA. Chemical Differences in Soil Organic Matter Fractions Determined by Diffuse-Reflectance Mid-Infrared
Spectroscopy. Soil Science Society of America Journal. 2011;75(2):568–579. Available from: https://doi.org/10.2136/sssaj2009.0375.

21) Fakhry A, Osman O, Ezzat H, Ibrahim M. Spectroscopic analyses of soil samples outside Nile Delta of Egypt. Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy. 2016;168:244–252. Available from: https://doi.org/10.1016/j.saa.2016.05.026.

22) Chauhan R, Kumar R, Sharma V. Soil forensics: A spectroscopic examination of trace evidence. Microchemical Journal. 2018;139:74–84. Available from:
https://doi.org/10.1016/j.microc.2018.02.020.

23) Kikkawa HS, Naganuma K, Kumisaka K, Sugita R. Semi-automated scanning electron microscopy energy dispersive X-ray spectrometry forensic analysis
of soil samples. Forensic Science International. 2019;305:109947. Available from: https://doi.org/10.1016/j.forsciint.2019.109947.

24) Prandel LV, Vander Freitas Melo, Testoni SA, Brinatti AM, Saab SDC, Dawson LA. Spectroscopic techniques applied to discriminate soils for forensic
purposes. Soil Research. 2020;58(2):151–160. Available from: https://doi.org/10.1071/SR19066.

25) ChenW, Peng L, Hu K, Zhang Z, Peng C, Teng C, et al. Spectroscopic response of soil organic matter in mining area to Pb/Cd heavy metal interaction: A
mirror of coherent structural variation. Journal of Hazardous Materials. 2020;393:122425. Available from: https://doi.org/10.1016/j.jhazmat.2020.122425.

26) Zeng R, Rossiter DG, Zhao YG, Li DC, Zhang GL. Forensic soil source identification: comparing matching by color, vis-NIR spectroscopy and easily-
measured physio-chemical properties. Forensic Science International. 2020;317:110544. Available from: https://doi.org/10.1016/j.forsciint.2020.110544.

27) Chauhan R, Kumar R, Diwan PK, Sharma V. Thermogravimetric analysis and chemometric based methods for soil examination: Application to soil
forensics. Forensic Chemistry. 2020;17:100191. Available from: https://doi.org/10.1016/j.forc.2019.100191.

28) Chauhan R, Kumar R, Kumar V, Sharma K, Sharma V. On the discrimination of soil samples by derivative diffuse reflectance UV–vis-NIR spectroscopy
and chemometric methods. Forensic Science International. 2021;319:110655. Available from: https://doi.org/10.1016/j.forsciint.2020.110655.

29) Paltseva AA, Deeb M, Iorio ED, Circelli L, Cheng Z, Colombo C. Prediction of bioaccessible lead in urban and suburban soils with Vis-NIR diffuse
reflectance spectroscopy. Science of The Total Environment. 2022;809:151107. Available from: https://doi.org/10.1016/j.scitotenv.2021.151107.

30) Newland TG, Pitts K, Lewis SW. Multimodal spectroscopy with chemometrics: Application to simulated forensic soil casework. Forensic Chemistry.
2023;33:100481. Available from: https://doi.org/10.1016/j.forc.2023.100481.

https://www.indjst.org/ 1096

https://doi.org/10.1039/D0AY01634A
https://engineeringjournals.stmjournals.in/index.php/JoMME/article/view/5865
https://engineeringjournals.stmjournals.in/index.php/JoMME/article/view/5865
https://doi.org/10.1016/j.geoderma.2021.115540
https://doi.org/10.1016/j.catena.2021.105280
https://doi.org/10.1016/j.forsciint.2021.111002
https://doi.org/10.1016/j.geodrs.2022.e00483
https://doi.org/10.1039/D1AN00082A
https://doi.org/10.1140/epjti/s40485-015-0018-6
https://doi.org/10.1002/jrs.6626
https://doi.org/10.1346/CCMN.2001.0490508
https://doi.org/10.3390/agronomy11091879
https://doi.org/10.2136/sssaj2013.04.0131
https://doi.org/10.2136/sssaj2013.04.0131
https://doi.org/10.5513/JCEA01/16.1.1535
https://doi.org/10.1016/j.geoderma.2017.03.016
https://doi.org/10.1016/j.orggeochem.2011.04.003
https://doi.org/10.1002/ldr.3829
https://doi.org/10.1016/j.soilbio.2016.10.016
https://doi.org/10.1016/j.soilbio.2016.10.016
https://www.spectroscopyonline.com/view/how-properly-compare-spectra-and-determining-alkane-chain-length-infrared-spectra
https://doi.org/10.1007/s12034-008-0123-0
https://doi.org/10.2136/sssaj2009.0375
https://doi.org/10.1016/j.saa.2016.05.026
https://doi.org/10.1016/j.microc.2018.02.020
https://doi.org/10.1016/j.forsciint.2019.109947
https://doi.org/10.1071/SR19066
https://doi.org/10.1016/j.jhazmat.2020.122425
https://doi.org/10.1016/j.forsciint.2020.110544
https://doi.org/10.1016/j.forc.2019.100191
https://doi.org/10.1016/j.forsciint.2020.110655
https://doi.org/10.1016/j.scitotenv.2021.151107
https://doi.org/10.1016/j.forc.2023.100481
https://www.indjst.org/

	Introduction
	Methodology
	2.1 Study area
	2.2 Sample collection
	2.3 Sample pretreatment
	2.4 ATR-FTIR setup
	2.5 Multivariate data analysis
	2.5.1 Principal Component Analysis (PCA)
	2.5.2 Linear Discriminant Analysis (LDA)
	2.5.3 Data pre-processing
	2.5.4 Discrimination power (DP)


	Results and Discussion
	3.1 Characterization of soil samples
	3.2 Visual inspection and Preliminary Discrimination of spectra
	3.3 Chemometric Discrimination
	3.3.1 Top Soil
	3.3.2 Depth Soil


	Conclusion

