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Abstract
Objectives: The main objective of this paper is to derive some of the
results of lattice ordered Γ−semirings, distributive lattice, lattice ideals and
Γ−morphisms.Methods: To establish the results, we use some conditions like
commutativity, simple, multiplicative Γ−idempotent, additively idempotent,
and finally, use the concept of lattice ideal in Γ−semirings. Findings: First
we give some examples of lattice ordered Γ−semirings and then study some
results regarding lattices, distributive lattices, commutative lattice ordered
Γ−semirings and finally lattice ideals and Γ−morphisms. The unique feature of
this study is that the concept of gamma is new for the study of lattices.Novelty:
We consider a condition (c.f. Theorem 4.1.5) for an additively idempotent
Γ−semiring due to which it becomes a distributive lattice ordered Γ−semiring.
Again, in general, the sum of k−ideals of a Γ−semiring need not be k−ideal.
Indeed, 2 N and 3 N are k− ideals of N, N is a set of non-negative integers.
Clearly, 2 N + 3N = N/{1} = I(say) is not a k− ideal, because 2 ∈ I, 3 = 2 + 1 ∈
I but 1 ̸∈ I. However, this condition does not hold in the case of a lattice ordered
Γ−semiring.
AMS Mathematics subject classification (2020): 16Y60.
Keywords: Lattices; additive idempotent; multiplicative Γ-idempotent; k-ideal;
lattice ideal; Γ-morphism

1 Introduction
Semiring is a generalization of both an associative ring as well as of distributive
lattices, it has many applications in different areas of idempotent analysis, physics,
topological space, coding theory, fuzzy theory, computer science, graph theory, etc. The
underlying semirings in idempotent analysis, syntactic semirings,Max-plus algebra and
Kleene algebra are those whose additive reduct is a semilattice, that is, idempotent and
commutative. Many researchers are investigating different types of semirings, including
ternary semirings, complimented semirings, Γ−semirings, lattices in semirings and
others. The study of semirings aims to extend the techniques derived from semigroup
theory or ring theory and explore their practical uses. In 2015, Bhuniya and Mondal (1)
studied the distributive lattice congruence on a semiring with a semilattice and proved
many results regarding lattices.
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In 1995, the idea of Γ−semiring was presented by (2) as a speculation of semiring as well as Γ-ring. Sharma and Gupta (3)

introduced the concept of complementation of Γ− semirings. Since the complimented elements play an important role in
lattices.Therefore, anothermajor source of inspiration for the theory of Γ− semirings is lattice theory. So, Sharma (4) introduces
the concept of lattices in Γ semirings. In 2021, P.Jipsen, O. Tuyt, and D. Valota (5) studied the structure of finite commutative
idempotent involutive residuated lattices. In this paper, we generalizes the results of semirings (6) to Γ semirings. For further
study of semirings, Γ −semirings and their generalization, one may refer to (2–4,6,7).

As a continuation of the paper “Lattices in Γ Semirings” (4) we here, consider and investigate some of the results of lattice
ordered Γ−semiring, distributive lattice, lattice ideals and Γ−morphisms.

2 Preliminaries

One can refer to (3,4,7), for the definitions of Γ−semiring and their identity elements 0 and 1, simple, multiplicative Γ−
idempotent and additive idempotent. Now we include some necessary preliminaries for the sake of completeness. A lattice
is a partially ordered set in which every two elements have a unique least upper bound and unique greatest lower bound. Let
(A, ≤) be a lattice. We define an algebraic system (A, ∧, ∨) where ∧ and ∨ are two binary operations on A such that for a
and b in A, a ∨ b is the least upper bound of a, b and a ∧ b is the greatest lower bound of a and b. A lattice is a distributive
lattice if the meet operation distributes over the join operation and the join operation distributes over the meet operation. That
is, for any a, b and c, a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) . An element a in a lattice
(A, ≤) is called a universal lower bound if, for every element b ∈ A, we have a ≤ b. An element a in a lattice (A, ≤) is called
a universal upper bound if, for every element b ∈ A,we have b ≤ a. Let R be a Γ− semiring. Then R is called partially ordered
Γ− semiring if and only if there exists a partial order relation ≤ on R satisfying the following conditions if x ≤ y and z ≥ 0
then (i) x + z ≤ y + z (ii) xαz ≤ yαz (iii) zαx ≤ zαy, for all x, y, z ∈ R and α ∈ Γ.

The following theorems are proved in (4).
Theorem 2.1. Let R be a Γ− semiring. Then R is a bounded distributive lattice having unique minimal element 0 and unique

maximal element 1 if and only if R is commutative, Γ− idempotent and simple Γ− semiring.
Theorem 2.2. Let R be a Γ− semiring. A commutative Γ− semiring is a bounded distributive lattice if and only if it is simple

multiplicative Γ− idempotent Γ− semiring.

3 Methodology

Following (4,6), we will establish some results of lattice ordered Γ−semiring by using some conditions like commutativity,
simple, multiplicative Γ−idempotent, additively idempotent, etc. Further, we find that the sum of k−ideals of a lattice ordered
Γ−semiring is again a k−ideal, however, it does not hold in the case of the sum of k−ideals of a Γ−semiring.

4 Main results and discussions

4.1 Lattice- ordered Γ−semirings

We start this section by giving some examples of lattice- ordered Γ−semirings and then generalize some of the results of lattice-
ordered semirings from (6) to Γ− semirings.

Definition 4.1.1. Let R be a Γ−semiring. Then R is called lattice -ordered Γ−semiring if and only if it also has the structure
of a lattice such that x+ y = x∨ y and xαy = x∧ y for all x, y ∈ R and α ∈ Γ, where partial order here is the one induced
naturally by the lattice structure on R. If R is a distributive lattice then R is distributive lattice ordered Γ−semiring. Any lattice
ordered Γ−semiring is a partially ordered Γ−semiring.

A lattice- ordered Γ−semiring is an additively idempotent. Also, if x and y are elements of lattice ordered Γ−semiring and
α ∈ Γsatisfying xαy = x or yαx = x,, α ∈ Γ then x ≤ y. Therefore, if x is an element of a lattice ordered Γ−semiring R and
α ∈ Γ then x = xα1 ≤ 1.

Example 4.1.2. Any bounded distributive lattice R is a distributive lattice ordered Γ−semiring. If we define x+ y = x∨ y
and xαy = x∧y for all x,y ∈ R and α ∈ Γ then the set of all complemented elements of R is a sub Γ−semiring (c.f. (3), theorem
3.13).

Example 4.1.3.The Γ−semiring R of all ideals of R is lattice ordered Γ−semiring but in general, it is not a distributive lattice
ordered Γ−semiring.
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Example 4.1.4. Let X and Y be bounded distributive lattices. Then R = X ×Y is again a bounded distributive lattice on
which operations of join and meet are defined by (x,y)∨

(
x
′
,y

′
)
= (x∨x

′
, y∨y

′
) and (x,y)∧

(
x
′
,y

′
)
= (x∧x

′
, y∧y

′
). Define

an operation ∗ on a Γ−semiring R by (x,y)∗
(

x
′
,y

′
)
= (x∧ x

′
, y∨ y

′
). Then (R,∨,∗) is a commutative additively idempotent

Γ−semiring but not a distributive lattice ordered Γ−semiring since(x,y)∗
(

x
′
,y

′
)
≥ (x,y)∧

(
x
′
,y

′
)
.

We now consider a condition for an additively idempotent Γ−semiring which is a distributive lattice ordered Γ−semiring.
Theorem 4.1.5 . Let R be an additively idempotent Γ−semiring satisfying the condition that x ∈ yΓR ∩RΓy whenever x ≤ y

in R. Then (R,+, ∧) is a distributive lattice and multiplication distributes over ∧ from either side. Further, if R is simple then
it is a distributive lattice ordered Γ−semiring.

Proof. Let r ∈ R then surely r ≤ r and so there exists an element r∗ of R and α ∈ Γ satisfying r∗αr = r. Again, if r1 ≤ r in
R then there is an element r2 of R satisfying r1 = rαr2,α ∈ Γand so (r∗αr)αr2 = rαr2 = r1. By hypothesis, we know that if
x,y ∈ Rthen there exist elements x1 ,x2 , y1 ,y2 of R and α,β ∈ Γ such that x = (x+ y)αx1 = x2α(x+y) and y = (x+ y)βy1 =
y2β (x+ y). Now, xβy1 = x2α (x+ y)βy1 = x2αy, while yαx1 = y2β (x+ y)αx1 = y2βx. Then y = xβy1 + yβy1 ≥ xβy1 =
x2αy ≤ x2αx + x2αy = x so xβy1 ≤ x, xβy1 ≤ y. Similarly , yαx1 ≤ x, yαx1 ≤ y. Therefore, xβy1 + yαx1 ≤ x + x = x
and similarly xβy1 + yαx1 ≤ y.Let r ∈ Rsuch that r ≤ x,r ≤ y. Then there exists an element r1 of R and α ∈ Γ such that
r = r1α(x+y) and hence r = r1αx+ r1αy = r1α (x+ y)αx1 + r1α (x+ y)βy1 = rαx1 + rβy1 ≤ yαx1 +xβy1 = x2αy+y2βx.
Thus, yαx1+xβy1 = x2αy+y2βx is a well -defined infimumof x and y in R, which is independent of the choice of x1 ,y1 ,x2 , y2
and we will denote it by x∧y. If z is another element of R and α,β ,γ ∈ Γ then zγx = (zγx+ zγy)αx1 and zγy = (zγx+ zγy)βy1
and so zγx∧zγy = (zγx)βy1+(zγy)αx1 = zγ (xβy1 + yαx1) = zγ(x∧y). Similarly, (x∧ y)γz = xγz∧yγz . Thus, multiplication
distributes over ∧ from either side. Since y = xαx1 + yαx1, this implies that yαx1 ≤ y and so there exists an element t of R
satisfying yαx1 = tαy. Set s = (x+ y)∗∧ t. Then sαy = [(x+ y)∗∧ t]αy = (x+ y)∗ αy∧ tαy = y∧ tαy = y∧ yαx1 = yαx1 ≤ x.
Similarly, sβx = x∧ tβx ≤ x. Therefore, yαx1 = sαy = sα (x+ y)βy1 = (sαx+ sαy)βy1 ≤ xβy1. Similarly, xβy1 ≤ yαx1.Thus,
x∧ y = xβy1 = yαx1 = x2αy = y2βx. To complete the proof that R is a distributive lattice, we must show that if x,y and z are
elements of R then z∧ (x+ y) = (z∧ x)+ (z∧ y). It is trivial that z∧ (x+ y) ≥ (z∧ x)+ (z∧ y) .Now, we establish the reverse
inequality. Since z ≤ z+x+y, so by the hypothesis that there exists an element r of R and α ∈ Γsuch that z = rα(z+x+y). Let
r1 = (z+ x+ y)∗∧ r. Then as above z = r1α(z+ x+ y), r1αx ≤ x and r1αy ≤ y. Therefore, z+ r1αx = r1α (z+ x+ y+ x) = z.
Thus, r1αx ≤ z and r1αy ≤ z . Hence, z∧ (x+ y) = r1α (x+ y) = r1αx+ r1αy ≤ (z∧ x)+ (z∧ y). Finally, if R is simple then
for x,y ∈ Rand α ∈ Γ , we have xαy ≤ x and xαy ≤ yand so xαy ≤ x∧ y. Hence, R a distributive lattice ordered Γ−semiring.

Theorem 4.1.6. Let x,y and z are elements of a lattice ordered Γ−semiring Rand α ∈ Γthen:
(i) x+ xαy = x
(ii) xαy+ z = (x+ z)αy+ z
(iii) x ≤ y implies that zαx ≤ zαy and xαz ≤ yαz
(iv) x ≤ y implies that xαx ≤ xαy ≤ yαy
(v) xαy∧ xαz ≥ xα(y∧ z) and yαx∧ zαx ≥ (y∧ z)αx
(vi) (x∧ y)α (x+ y)≤ yαx+ xαy
(vii) If x+ y = 1 then x∧ y = xαy+ yαx
(viii) If x+ y = 1 then xαz ≤ y or zαx ≤ y implies z ≤ y
(ix) If x+ y = x+ z = 1 then x+ yαz = x+(y∧ z) = 1.
Proof. Simple and straightforward.
Corollary 4.1.7. Let R be a commutative lattice ordered Γ−semiring and x,y and z are elements of R satisfying x+ y =

x+ z = 1 then x∧ (y∧ z) = xαy∧ xαz , α ∈ Γ.
Proof. By Theorem 4.1.6(ix) and (vii) the result follows.
Theorem4.1.8. Let x and ybe elements of a lattice ordered Γ−semiring R satisfying x+y= 1 then (xα)m−1x+(yα)n−1y= 1,

for all positive integers m and nand α ∈ Γ.
Proof. It is a direct consequence of Theorem 4.1.6(ix).
Theorem 4.1.9. Let R be a lattice ordered Γ−semiring.Then R is a multiplicatively Γ− idempotent if and only if xαy = x∧y

for all x,y ∈ R and α ∈ Γ.
Definition 4.1.10. An element x of a Γ−semiring R is a unit if and only if there exists an element y of R satisfying

xαy = 1 = yαx for all x,y ∈ R and α ∈ Γ. The element y of R is called the inverse of x in R. Let us denote the set of all
elements of R having units by U(ΓR). This set is non-empty since 1 ∈ U(ΓR) and is not all of R.

Theorem 4.1.11. Let R be a lattice ordered Γ−semiring. Then Ris simple and positive with 1 as its only unit.
Definition 4.1.12. An element r of a Γ−semiring R is said to be semiprime if for any element x of R there exists α ∈ Γ such

that xαx ≤ r implies that x ≤ r.
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Theorem 4.1.13. Let r be a semiprime element of a lattice ordered Γ−semiring R and if x and y are elements of Rand
α ∈ Γthen the following conditions are equivalent:

(i) xαy ≤ r
(ii) yαx ≤ r
(iii) x∧ y ≤ r
Proof. Straightforward.
Corollary 4.1.14. If y and z are semiprime elements of a lattice ordered Γ−semiring R then y∧ z is semiprime.
Letx and y be elements of a partially ordered monoid (M, ∗). We define the interval [x,y] = {z ∈ M | x ≤ z ≤ y}.

(This set may be empty). We will denote the set of all such intervals by int(M). Define the operation [∗] on int(M) by
[x,y] [∗] [h,k] = [x∗h, y∗k]. It is easy to see that if (M, ∗) is a partially ordered monoid with identity element e then (int(M), [∗])
is amonoid with identity element [e,e]. In particular, we note that if R is a lattice ordered Γ−semiring then (R,+) and (R,α) are
partially orderedmonoids. Further, if R is a lattice ordered Γ−semiring then (int (R) , [∨] , [∧]) is a lattice and (int (R) , [+] , [α ])is
a lattice ordered Γ−semiring.

Theorem 4.1.15. Let R be a distributive lattice-ordered Γ−semiring then in int (R) = {[x,y] | z ∈ R, x ≤ z ≤ y} then
(i) [x,y] [+] [z, t] = {u+ v | u ∈ [x,y] , v ∈ [z, t]}
(ii) [x,y] [α ] [z, t]⊇ { uαv | u ∈ [x,y] , v ∈ [z, t] , α ∈ Γ}.
Proof. (i) If u ∈ [x,y] and v ∈ [z, t] then x+ z ≤ u+ v ≤ y+ t and so u+ v ∈ [x,y] [+] [z, t]. Conversely, if w ∈ [x,y] [+] [z, t]

then x ≤ w∧ y ≤ y and z ≤ w∧ t ≤ t. Moreover, (w∧ y)+(w∧ t) = w∧ (y+ t) = w. Thus, we have equality.
(ii) u ∈ [x,y] and v ∈ [z, t] then xαz ≤ xαv ≤ uαv ≤ yαv ≤ yαt and so uαv ∈ [x,y] [α] [z, t].

4.2 Lattice ideals in Γ− semirings

In this section, we generalize some of the results of lattice ideals of semirings to Γ− semirings and study Γ−morphisms of
lattice ordered Γ− semirings.

Definition 4.2.1. A subset X of a lattice L is called a lattice ideal if and only if x ∈ X and y ∈ L imply that x∧ y ∈ X . In
particular, if x ∈ X and y ≤ x then y ∈ X . Thus, every subset X of L is contained in a unique smallest lattice ideal of L, namely
[X ] = {y ∈ L | y ≤ x for some x ∈ X}. If x ∈ L, then we write [x] instead of ({x}).

Example 4.2.2. Let R be a lattice ordered Γ−semiring and let e ̸= x ∈ R, e is themultiplicative identity. Set [x] = {r ∈ R | r ≥
x} and define an operation ∗ on [x] by r ∗ r

′
= rαr

′
+ x, α ∈ Γ. Then by Theorem 4.1.6, clearly ([x] ,+,∗) is a lattice ordered

Γ−semiring with additive identity x and multiplicative identity e.
Definition 4.2.3. An ideal I of a Γ− semiring R is called k−ideal if for x, y ∈ R, x + y ∈ I and y ∈ I implies that x ∈ I.
Definition 4.2.4.An ideal I of a Γ− semiring R is called a strong ideal if and only if x + y ∈ I implies that x ∈ I and y ∈ I.
Theorem 4.2.5 . Let R be a lattice ordered Γ−semiring and I be an ideal of R. Then the following conditions are equivalent:
(i) I is a lattice ideal
(ii) I is a strong ideal
(iii) I is a k−ideal.
Proof. (i) Implies (ii). Let x and y be elements of R such that x+ y ∈ I . Then x = x∧ (x∨ y) = x∧ (x+ y) and so by (i),

x ∈ I . Similarly, y ∈ I and so I is a strong ideal of R.
(ii) Implies (iii). This is trivial.
(ii) Implies (i). Let x ∈ I and r ∈ R. Then x = x∨ (x∧ r) = x+(x∧ r) ∈ I and so by (iii) x∧ r ∈ I . Thus, I is lattice ideal of R.
The sum of k−ideals of a Γ−semiring need not be a k−ideal. Indeed, 2 N and 3 N are k− ideals of N, N is a set of non-

negative integers. But 2 N + 3N = N/{1} = I(say) is not a k− ideal, because 2 ∈ I and 3 = 2 + 1 ∈ I but 1 ̸∈ I. However,
the condition does not hold in case of a lattice ordered Γ−semiring.

Corollary 4.2.6. If {Ik|k ∈ Ω} is a family of k−ideals of a lattice ordered Γ−semiring R then ∑ j∈Ω I j is a k−ideal.
Proof. Let x ∈ ∑ j∈Ω I j and y ∈ R. Then there exists a finite subset Λ of Ω and elements xk ∈ Ik for all k ∈ Λ such that

x = ∑k∈Λ xk. Then by Theorem 4.2.5, x∧ y = (∑k∈Λ xk)∧ y = ∑k∈Λ (xk ∧ y) ∈ ∑ j∈Ω I j and so ∑ j∈Ω I j is a lattice ideal of R and
hence by Theorem 4.2.5, ∑ j∈Ω I jis a k−ideal of R.

Theorem 4.2.7. Let R be a lattice ordered Γ−semiring and I an ideal of R which is also a lattice ideal of R.If x and y are
elements of R and α ∈ Γ satisfying xαy ∈ I then (x)Γ(y)⊆ I .

Proof. Let r,r1, and r2be elements of R and α,β ,γ ∈ Γ then rαxβ r1 ≤ x and yγr2 ≤ y.This implies that (rαxβ r1)δ (yγr2)≤
xδy, α,β ,γ,δ ∈ Γ. Thus, (rαxβ r1)δ (yγr2) ∈ I . Since every element of (x)Γ(y) is a finite sum of elements of R of this form, it
follows that (x)Γ(y)⊆ I .

Theorem 4.2.8. Let R be a lattice- ordered Γ−semiring. If I is an ideal of R which is also a lattice ideal. Then I is prime if
and only if x and y are elements of R and α ∈ Γ satisfying xαy ∈ I implies that either x ∈ I or y ∈ I .
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Proof. Let I be prime and x, y ∈ R and α ∈ Γ satisfying xαy ∈ I . By Theorem 4.2.7, (x)Γ(y) ⊆ I . Thus, either (x) ⊆ I or
(y)⊆ I . This implies that either x ∈ I or y ∈ I . Converse follows from (c.f., (8), Proposition 3.4).

Let R and Sbe two lattice- ordered Γ−semirings. If f : R → S is a Γ−morphism of Γ−semirings R and S then f is a
Γ−morphism between the semigroups (R, +) and (S, +) and so is order-preserving. Further, if r ≥ r1 in R then r1 + r =
r1 ∨ r = r. Therefore, f (r1)∨ f (r) = f (r1)+ f (r) = f (r1 + r) = f (r). Thus, f (r)≥ f (r1).

Theorem 4.2.9. Let R and S be lattice- ordered Γ−semiring and f : R→ S be a Γ−morphism of Γ−semirings . Let g : R→ S
be a Γ−morphism of lattices. Then

(i) f (r∧ r1)≤ f (r)∧ f (r1) for all r,r1 ∈ R;
(ii) g(r+ r1)≥ g(r)+g(r1) for all r,r1 ∈ R
Moreover, if either f or g is bijective then the corresponding inequality becomes an equality.
Proof. Since Γ−morphisms of Γ−semirings between lattice -ordered Γ−semirings are order-preserving, therefore we have

f (r∧ r1) ≤ f (r) and f (r∧ r1) ≤ f (r1). Furthermore, if f is bijective then it has an inverse. Therefore, f−1 ( f (r)+ f (r1)) =
f−1( f (r+ r1)) = r+ r1 = f−1( f (r))+ f−1( f (r1)) and so f−1 is a Γ−morphism between the semigroups (S,+) and (R, +).
This implies that f−1 is an order preserving and so f−1(( f (r)∧ f (r1)) ≤ f−1( f (r)∧ f−1 f (r1)) = r ∧ r1. This implies that
f (r)∧ f (r1)≤ f (r∧ r1), and thus we have equality. The proof of (ii) is similar.

Definition 4.2.10. Let Rbe a partially ordered Γ−semiring. Then a function h : R → R is called a middle function if and only
if the following conditions are satisfied.

(i) If x ≤ y in R then h(x)≤ h(y)
(ii) If x ∈ R then h(h(x)) = h(x)≥ x
(iii) If x, y ∈ R then h(xαy)≤ h(x)αh(y) for all x,y ∈ R and α ∈ Γ.
If R is a lattice ordered Γ−semiring and h : R → R is a middle function then h(xαy)≤ h(x)∧h(y) for all x,y ∈ R and α ∈ Γ,

since h is order preserving. The following result gives necessary and sufficient conditions for equality.
Theorem 4.2.11. Let R be a lattice ordered Γ−semiring and h : R → R is middle function then h(xαy) = h(x)∧h(y) for all

x,y ∈ R and α ∈ Γ if and only if h(xαy) = h(yαx)and h(xαx) = h(x) for all x, y ∈ Rand α ∈ Γ.
Proof. Let h(xαy) = h(x)∧h(y) for all x,y∈R and α ∈Γ then the result follows. Conversely, assume that h(xαy) = h(yαx)

and h(xαx) = h(x) for all x, y ∈ R and α ∈ Γ. Then x ∧ y ≤ h(x) ∧ h(y). Now, h(x∧ y) ≤ h(h(x)∧h(y)) = h([h(x) ∧
h(y)]α[h(x)∧h(y)])≤ h(h(xαy))≤ h(h(x)αh(y)) = h(xαy) ,α ∈ Γ.The reverse inequality, that is h(xαy)≤ h( x∧y) is always
true, and so we have equality.

5 Conclusion
In this paper, we study different results in lattices, lattice ideals and Γ−morphisms of lattice ordered Γ− semirings by using some
of the conditions such as simple, multiplicative Γ− idempotent, additive idempotent, distributive lattices, semiprimeness and
units in Γ− semirings. We consider a condition x ∈ yΓR ∩RΓy whenever x ≤ y in R in theorem 4.1.5 and find, that (R,+, ∧)
is a distributive lattice and multiplication distributes over ∧ from either side. Finally, we prove that the sum of k−ideals of a
lattice ordered Γ−semiring is a k−ideal. However, in general, this condition does not hold for Γ−semirings. Since the concept of
gamma is new in the theory of semirings so the ideas described in this article for lattices in Γ− semirings have a lot of potential
for nourishing and therefore, this article is very useful as it invites the researchers to exploremore in different structure of lattices
in Γ−semirings.
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