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Abstract
Objectives: In applied sciences and engineering, fuzzy fractional differential
equations (FFDEs) and fuzzy fractional integral equations (FFIEs) are a
crucial topic. The main objective of this work is to discover an analytical
approximate solution for the fuzzy fractional Volterra-Fredholm integro
differential equations (FFVFIDE). In the Caputo concept, fractional derivatives
are regarded. Methods: The Shehu transform is challenging to exist for
nonlinear problems. So, the Shehu transform is combined with the Adomian
decomposition method is called the Shehu Adomian decomposition method
(SHADM) and has been proposed to solve both linear and nonlinear FFVFIDEs.
Findings: Both linear and nonlinear FFVIFIDEs can be solved using this
technique. For nonlinear terms, Adomian polynomials have been used. The
main benefit of this approach is that it converges quickly to the exact solution.
Figures and numerical examples demonstrate the expertise of the suggested
approach.Novelty: The comparison between the exact solution and numerical
solution is shown in figures for various values of fractional order α . The
numerical evolution demonstrates the efficiency and reliability of the proposed
SHADM. The proposed approach is rapid, exact, and simple to apply and
produce excellent outcomes.
Keywords: Fractional calculus; fuzzy number; Mittag Leffler function; Shehu
Adomian decomposition method; fuzzy fractional Volterra-Fredholm integro
differential equation

1 Introduction
Standard calculus is an extension of fractional calculus.This entails taking the derivative
of functions during any order.With the help of fractional differential operators,memory
and heredity features of various substances and procedures in electrical circuits, control,
biology, electromagnetic processes, porous media, biomechanics, and electrochemistry
have been recorded. A fuzzy number is used to represent measurement uncertainty.
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Lotfi Zadeh created fuzzy sets in 1965, and since then, they have been used in a large number of applications. A new and
significant topic of mathematics is the fuzzy theory of fractional and integro differential equations. In recent years, several
academics have examined fuzzy fractional models and have produced innovative concepts for fuzzy fractional differential
equations (FFDEs), fuzzy fractional integral equations (FFIEs), and fuzzy fractional integro-differential equations (FFIDEs).
Then, FFDEs and FFIEs are used for a range of problems in applied mathematics, including those in biology, physics, medicine,
and geography. In Physics, computer science, industrial engineering, artificial intelligence, and operations research, it has several
practical problems. It may be translated to fractional order uncertain process problems.

Thete et al. (1) introduced the modified Laplace transform Adomian decomposition method to solve non-linear integro-
differential equations. Abdul Majid et al. (2) solved the fuzzy Volterra- integro differential equations using the general linear
method. Zia Ullah et al. (3) introduced the Laplace Adomian decomposition method to find the solution of fuzzy Volterra-
integro differential equations. Georgieva et al. (4) used the Adomian decomposition method to solve nonlinear Volterra-
Fredholm fuzzy integro-differential equations. Bargamadi et al. (5) proposed the second Chebyshev wavelets method to solve
the system of fractional-order Volterra-Fredholm integro differential equations with weakly singular kernels.

In the field of Fuzzy Fractional Differential Equations (FFDEs) and Fuzzy Fractional Volterra-Fredholm Integro Differential
Equations (FFVFIDE), there have beennumerous implementations to find the exact andnumerical solutions (6,7). Nagwa et al. (8)
proposed the usage of the fuzzyAdomian decompositionmethod for solving some fuzzy fractional partial differential equations.
Alqudah et al. (9) introduced the novel numerical investigations of fuzzy Cauchy Reaction-Diffusion models via generalized
fuzzy fractional derivative operators. In (10) the modified Adomian decomposition method (MADM) is used to determine the
solution of the fuzzy fractional order Volterra-Fredholm integro-differential equations. In (11), the fractional residual power
series (FRPS) technique is used to approximate the solutions for a class of fuzzy fractional Volterra integro-differential equations
(FFVIDEs). Saima Rashid et al. (12) On fuzzy Volterra-Fredholm integro differential equation associated withHilfer-generalized
proportional fractional derivative [J]. Sachin Kumar et al. (13) proposed the Chebyshev spectral method for solving fuzzy
fractional Fredholm-Volterra integro-differential equation. Gethsi Sharmila et al. (14) introduced the Shehu transform method
for solving linear fuzzy fractional differential equations. Savla et al. (15) proposed the Shehu Adomian decomposition method
for solving the fuzzy fractional biological population model.

However, the transform combined with the decomposition method is found to be the research gap in FFVFIDEs. So,
the aforementioned articles assisted in the development of the SHADM for FFVFIDEs. In this paper, the Shehu transform
method is merged with the Adomian DecompositionMethod (ADM) to establish themethodology named the Shehu Adomian
decomposition method (SHADM) is applied to solve fuzzy fractional Volterra-Fredholm integro differential equations. When
compared to traditional methods, the proposed method can reduce the volume of computing effort while retaining high
numerical accuracy; the size reduction equates to an enlargement in the approach’s performance. In this paper, SHADM is
utilized to generate both analytical and approximate solutions of linear and nonlinear FFVFIDE.

The general form of FFVFIDE: (7)

Dα
a+ ỹ(x;r)− p(x;r)ỹ(x;r) = g(x;r)+λ

∫ x

a
k1(s;r)F̃(y(s;r))ds+ γ

∫ b

a
k2(s;r)G̃(y(s;r))ds

with q−1 < α ≤ q, and subject to the initial condition

ỹs(0) = [y, ȳ] = δi, i = 0,1, . . . .,q−1, q ∈ N, x > a ≥ 0

Where λ ,γ is a parameter. Dα
t ỹ(x, t) is the fractional derivative of the function ỹ(x;r) = [y(x;r),y(x;r)] in Caputo’s sense,

g(x;r) is the source term, F̃(y(t;r)) = [F(y(t;r)),F(y(t;r))], G̃(y(t;r)) = [G(y(t;r)),G(y(t;r))] may be the general linear or
nonlinear differential operator. Also, p(x;r) is a continuous real-valued function with non-negative or non-positive values on
[a,b], f : [a,b]→ RF is continuous, and ỹs(0) ∈ RF .

The construction of this paper is as follows: Section 1 affords the introduction of FFVIDEs and basic tools of fractional
derivative, fuzzy number, and Shehu transform. Section 2 constructs the methodology of the Shehu Adomian decomposition
method for FFVFIDE. Section 3 gives numerical examples of linear and nonlinear FFVFIDE to illustrate the accuracy of this
method. Section 4 offers the conclusion.

1.1 Basic Tools

The essential definitions of fractional calculus, fuzzy numbers, and the Shehu transform are provided in this section.
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1.1.1 Fractional Calculus
Definition 1.1

Fractional derivative in Caputo’s sense is demarcated as:

C
x Dα

b f (x) =
1

Γ(n−α)

∫ b

x
(t − x)n−α−1

(
− d

dt

)n

f (t)dt

Definition 1.2
The form of the Mittag-Leffler function is,

Eσ (z) =
∞

∑
n=0

zn

Γ(nσ +1)
, σ ∈C, Re(σ)> 0

A further generalization of the above equation is demarcated in the form

Eσ ,φ(z) =
∞

∑
n=0

zn

Γ(nσ +φ)
, σ ,φ ∈C, Re(σ)> 0, Re(φ)> 0

1.1.2 Fuzzy Number
Definition 1.3 (Triangular fuzzy number)

It’s a three-point fuzzy number represented by N = (θ1,θ2,θ3). The membership function of N is as follows:

µN(x) =



0, ψ < θ1,
ψ −θ1

θ2 −θ1
, θ1 ≤ ψ ≤ θ2,

θ3 −ψ
θ3 −θ2

, θ2 ≤ ψ ≤ θ3,

0, ψ > θ3

(1)

1.1.3 Shehu Transform
Definition 1.4

Over the set of functions, the Shehu transform of the function f (t) is defined as (16)

B =

{
f (t)|∃, τ1,τ2 > 0, | f (t)|< Me

|t|
t j i f t ∈ (−1) j × (0,∞)

}
By the following formula:

f (u) = S[ f (t)] =
∫ ∞

0
f (t)e−

st
u dt, t > 0

Special properties of the Shehu transform are given:
1. S[1] = u

s ;

2. S
[

tq

Γ(q+1)

]
= uq+1

sq+1 ; q > 0
Definition 1.5
The Caputo fractional derivative of Shehu transform is given by:

S [Dα
t f (x, t)] =

sα

uα S[ f (x, t)]−
q−1

∑
k=0

sα−(k+1)

uα−(k+1) f (k)
(
0+
)
, q−1 < α ≤ q. (2)

2 Methodology
This section explains the methodology of Shehu Adomian decomposition method for FFVFIDEs.
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2.1 Shehu Adomian Decomposition Method for Fuzzy Fractional Volterra-Fredholm Integro
Differential Equations

In this section, the SHADM is derived to solve FFVFIDEs. To demonstrate the core principle of this method, consider a general
FFVFIDE with an initial condition of the following kind:

Dα
t ỹ(x;r) = g(x;r)+ p(x;r)ỹ(x;r)+λ

∫ x
0 k1(s;r)F̃(y(s;r))ds+ γ

∫ b
0 k2(s;r)G̃(y(s;r))ds (3)

with q−1 < α ≤ q, and the initial condition

ỹs(0) = [y, ȳ] = δi, i = 0,1, . . . ,q−1, q ∈ N

Where Dα
t ỹ(x, t) is the fractional derivative of the function in Caputo’s sense, g(x, t) is the source term, F(y(x)) may be the

general linear or nonlinear differential operator. The parametric form of (Equation (3)) is,

Dα
t y
_
(x;r) = g(x;r)+ p(x;r)y

_
(x;r)+λ

∫ x
0 k1(s;r)F

_
(y(s;r))+ γ

∫ b
0 k2(s;r)G

_
(y(s;r))ds (4)

Dα
t ȳ(x;r) = g(x;r)+ p(x;r)ȳ(x;r)+λ

∫ x
0 k1(s;r)F̄(y(s;r))+ γ

∫ b
0 k2(s;r)Ḡ(y(s;r))ds (5)

Using the Shehu transform on Equation (4),

S
[

Dα
t y
_
(x;r)

]
= S[g(x;r)]+S[p(x;r)y

_
(x;r)]+S

[
λ
∫ x

0
k1(s;r)F

_
(y(s;r))ds

]
+S
[

γ
∫ b

0
k2(s;r)G

_
(y(s;r))ds

]
Using the Shehu transform’s differentiation characteristic and the initial conditions in Equation (3),

S[y
_
(x;r)] = ∑m−1

k=1
u−α+k

s−α+k y
_
(k)(0;r)+

uα

sα S[g(x;r)]+
uα

sα S[p(x;r)y
_
(x;r)]

+
uα

sα S
[

λ
∫ x

0
k1(s;r)F(y(s;r))

]
ds+

uα

sα S
[

γ
∫ b

0
k2(s;r)G(y(s;r))ds

] (6)

Next, using the inverse Shehu transform’s property, then

y
_
(x;r) = S−1

[
∑m−1

k=1
u−α+k

s−α+k y
_
(k)(0;r)

]
+S−1

[
uα

sα S[g(x;r)]
]
+S−1

[
uα

sα S[p(x;r)y
_
(x;r)]

]
+S−1

[
uα

sα S
[

λ
∫ x

0
k1(s;r)F(y(s;r))ds

]]
+S−1

[
uα

sα S
[

γ
∫ b

0
k2(s;r)G(y(s;r))ds

]] (7)

The SHADM represents the solution as,

y
_
(x) = ∑∞

n=0 y
_n
(x) (8)

and decompose the nonlinear phrase as follows:

Ny
_
(x) = ∑∞

n=0 A
_ n
(y(x)) (9)

for a sequence of Adomian’s polynomials An are given by (17),

An =
1
n!

dn

d pn

[
N

(
∞

∑
i=0

yi

)]
,n = 0,1,2, . . .
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For the nonlinear function Ny = F
_
(y),My

_
= G

_
(y), adomian polynomials,

A0 = F(y0)
A1 = y1F1(y0)
A2 = y2F1(y0)+

1
2! y2

1F2(y0)
A3 = y3F1(y0)+ y1y2F2(y0)+

1
3! y3

1F3(y0)
...
B0 = G(y0)
B1 = y1G1(y0)
B2 = y2G1(y0)+

1
2! y2

1G2(y0)
B3 = y3G1(y0)+ y1y2G2(y0)+

1
3! y3

1G3(y0)
...

Substituting Equations (8) and (9) in Equation (7),

∞

∑
n=0

yn(x;r) =S−1

[
m−1

∑
k=0

u−α+k+1

s−α+k+1 y(k)(0;r)

]
+S−1

[
uα

sα S[g(x;r)]
]
+S−1

[
uα

sα S

[
p(x;r)

∞

∑
n=0

yn(x;r)

]]

+S−1

[
uα

sα S

[
λ
∫ x

0
k1(s;r)

∞

∑
n=0

An(y(s;r))ds

]]
+S−1

[
uα

sα S

[
γ
∫ b

0
k2(s;r)

∞

∑
n=0

Bn(y(s;r))ds

]] (10)

If both sides of Equation (10) are described, as follows:

y0(x;r) = S−1
[
∑m−1

k=0
u−α+k+1

s−α+k+1 y(k) (0;r)
]
+S−1

[
uα

sα S[g(x;r)]
]

y1(x;r) = S−1
[

uα

sα S[p(x;r)y0(x;r)
]
+S−1

[
uα

sα S [λ
∫ x

0 k1(s;r)A0(y(s;r))ds]
]

+S−1
[

uα

sα S
[
γ
∫ b

0 k2(s;r)B0(y(s;r))ds
]]

y2(x;r) = S−1
[

uα

sα S[p(x;r)y1(x;r)
]
+S−1

[
uα

sα S [λ
∫ x

0 k1(s;r)A1(y(s;r))ds]
]

+S−1
[

uα

sα S
[
γ
∫ b

0 k2(s;r)B1(y(s;r))ds
]]

The recursive relation is defined as follows:

y0(x;r) = S−1

[
m−1

∑
k=0

u−α+k+1

s−α+k+1 y(k)(0;r)

]
+S−1

[
uα

sα S[g(x;r)]
]

yn+1(x;r) =S−1
[

uα

sα S
[

p(x;r)yn(x;r)
]]

+S−1
[

uα

sα S
[

λ
∫ x

0
k1(s;r)An(y(s;r))ds

]]
+S−1

[
uα

sα S
[

γ
∫ b

0
k2(s;r)Bn(y(s;r))ds

]]
Likewise, by doing the same calculation Equation (5) will be

∞

∑
n=0

ȳn(x;r) = S−1

[
m−1

∑
k=0

u−α+k+1

s−α+k+1 ȳ(k)(0;r)

]
+S−1

[
uα

sα S[g(x;r)]
]
+S−1

[
uα

sα S

[
p(x;r)

∞

∑
n=0

ȳn(x;r)

]]

+S−1

[
uα

sα S

[
λ
∫ x

0
k1(s;r)

∞

∑
n=0

Ān(y(s;r))ds

]]
+S−1

[
uα

sα S

[
γ
∫ b

0
k2(s;r)

∞

∑
n=0

B̄n(y(s;r))ds

]] (11)
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If both sides of Equation (11) are described:

y0(x;r) = S−1
[
∑m−1

k=0
u−α+k+1

S−α+k+1 y(k)(0;r)
]
+S−1

[
uα

sα S[g(x;r)]
]

−
y1(x;r) = S−1

[
uα

sα S [p(x;r)y0(x;r)]
]
+S−1

[
uα

sα S
[
λ
∫ x

0 k1(s;r)A0(y(s;r))ds
]]

+S−1
[

uα

sα S
[
γ
∫ b

0 k2(s;r)B0(y(s;r))ds
]]

y2(x;r) = S−1
[

uα

sα S [p(x;r)y1(x;r)]
]
+S−1

[
uα

sα S
[
λ
∫ x

0 k1(s;r)A1(y(s;r))ds
]]

+S−1
[

uα

sα S
[
γ
∫ b

0 k2(s;r)B1(y(s;r))ds
]]

...

The recursive relation is defined as follows:

y0(x;r) = S−1
[
∑m−1

k=0
u−α+k+1

s−α+k+1 y(k)(0;r)
]
+S−1

[
uα

sα S[g(x;r)]
]

yn+1(x;r) = S−1
[

uα

sα S [p(x;r)yn(x;r)]
]
+S−1

[
uα

sα S
[
λ
∫ x

0 k1(s;r)An(y(s;r))ds
]]

+S−1
[

uα

sα S
[
γ
∫ b

0 k2(s;r)Bn(y(s;r))ds
]]

Following the same procedure, the rest of the components
(

yn(x;r),yn(x;r)
)
can be fully identified, and the series solutions

may be fully determined. Then, using a truncated series, the analytical solution (y
_
(x;r),y(x;r)) as follows:

y(x, t) = lim
N→∞

∑N
n=0 yn(x, t)

y(x, t) = lim
N→∞

∑N
n=0 yn(x, t)

3 Results and discussion
In this section, some numerical examples of linear and nonlinear FFVFIDE using SHADM is presented.

Example 3.1
Consider the following Volterra type FFIDE (11)

Dα
0+ ỹ(x;r) = [r−1,1− r]+

∫ x
0 ỹ(s;r)ds, 0 < β ≤ 1, x ∈ [0,1] (12)

with fuzzy initial condition ỹ(0;r) = 0.
The parametric form of Equation (12) is

Dα
0+y

_
(x;r) = (r−1)+

∫ x
0 y

_
(s;r)ds, (13)

Dα
0+y(x;r) = (1− r)+

∫ x
0 y(s;r)ds (14)

Applying SHADM in section 3 on Equation (13), then obtain

y
_0
(x;r) = (r−1) xα

Γ(α+1)

y
_1
(x;r) = (r−1) x(2α+1)

Γ(2α+2)

y
_2
(x;r) = (r−1) x(3α+2)

Γ(3α+3)

...
y
_n
(x;r) = (r−1) x((n+1)α+n)

Γ((n+1)α+n)

...
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Applying SHADM in section 3 on Equation (14), then obtain

y0(x;r) = (1− r) xα

Γ(α+1)

y1(x;r) = (1− r) x(2α+1)

Γ(2α+2)

y2(x;r) = (1− r) x(3α+2)

Γ(3α+3)
...

yn(x;r) = (1− r) x((n+1)α+n)

Γ((n+1)α+n)
...

Continuing in this way,

y
_
(x;r) = lim

N→∞
∑N

n=0 y
_n
(x;r)

= (r−1)xα Eα+1,α+1
(
xα+1

)
y(x;r) = lim

N→∞
∑N

n=0 yn(x;r)

= (1− r)xα Eα+1,α+1
(
xα+1

)

Fig 1.The approximate and exact solution of Equation (12) for various α .

Figure 1 represents the exact and approximate solution using SHADM for different fractional orders α = 0.5,0.7,0.9, and
the integer order 1. In this figure, the approximate solution almost coincides with the exact one.

Example 3.2
Consider the following nonlinear FFIDE of Fredholm type (7)

Dα
0+ ỹ(x;r) = f̃ (x;r)+0.1x2 ∫ 1

0 sỹ2(s;r)ds, 0 < β ≤ 1, x ∈ [0,1], ỹ(0;r) = 0 (15)

Where [ f̃ f (x;r)]r =
[
rx− (rx)2

40 ,(2− r)− ((2−r)x)2

40

]
.

The parametric form of Equation (15) is

Dα
0+y

_
(x;r) = f

_
(x;r)+0.1x2 ∫ 1

0 sy
_

2(s;r)ds (16)

Dα
0+y(x;r) = f (x;r)+0.1x2 ∫ 1

0 sy2(s;r)ds (17)
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Applying SHADM in section 3 on Equation (16), then obtain

y
_0
(x;r) = xα

Γ(α+1)

(
r− (rx)2

40

)
y
_1
(x;r) = xβ+2(0.1)r2

2Γ3(β+1)

(
1

(β+1) −
r

20(β+2) +
r2

402(β+3)

)
y
_2
(x;r) = xβ+2

2Γ5(β+1)
(0.1)2r2

(β+2)

(
1

(β+1) −
r

20(β+2) +
r2

402(β+3)

)(
r− (rx)2

40

)
...

Applying SHADM in section 3 on Equation (17), then obtain

y0(x;r) = xα

Γ(α+1)

(
(2− r)− ((2−r)x)2

40

)
y1(x;r) = xβ+2(0.1)(2−r)2

2Γ3(β+1)

(
1

(β+1) −
(2−r)

20(β+2) +
(2−r)2

402(β+3)

)
y2(x;r) = xβ+2

2Γ5(β+1)
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Then the approximate solution is,

y
_
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(
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40
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)
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(
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20(β+2) +
(2−r)2

402(β+3)

)(
(2− r)− ((2−r)x)2

40

)
+ . . .

Fig 2.The approximate and exact solution of Equation (15) for various α

Figure 2 represents the approximate solution using SHADM for different fractional orders α =0.5,0.7,0.9, and also the
exact and approximate solution is shown for the integer order 1. In this figure, the comparison is also given for the exact and
approximate solution when the order is an integer.

4 Conclusion
This study is obtained an analytical and approximate solution for linear and nonlinear FFVFIDEs. The solution of the linear
and nonlinear FFVFIDEs is accomplished using SHADM. Both weak and highly nonlinear problems can be solved using this
technique. The method under consideration is distinctive in that it is based on Adomian polynomials, which enables speedy
convergence of the discovered solution for the nonlinear term of the problem, and it employs a straightforward method to
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evaluate the solution for FFVFIDEs.When increasing the number of terms in the SHADM the approximate solution obtains its
accuracy. From the figures, it concluded that the approximation value almostmatches the exact answerwhen the derivative order
approaches an integer. To investigate the behaviour, we have constructed two-dimensional graphs correlating to each illustrative
example and showing it at different points of uncertainty and fractional ordersα . It may be inferred that the suggested approach
is rapid, exact, and simple to apply and produce excellent outcomes.
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