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Abstract
Objectives: This article develops the third order Runge-Kutta method, which
uses a linear combination of the arithmetic mean, root mean square, and
centroidal mean, to solve hybrid fuzzy differential equations. Methods:
Seikkala’s derivative is taken into account, and a numerical example is provided
to show the efficacy of the proposed method. The outcomes demonstrate that
the suggested approach is an effective tool for approximating the solution of
hybrid fuzzy differential equations. Findings: The comparative analysis was
carried out using the third order Runge-Kutta method that is currently in use
and is based on arithmetic mean, root mean square, and centroidal mean.
Compared to other methods, the suggested method offers a more accurate
approximation. Novelty: In this study a new formula has been developed by
combining three means Arithmetic Mean, Root Mean Square, and Centroidal
Mean using Khattri’s formula. And the developed formula is used to solve the
third order Runge-Kutta method for the first order hybrid fuzzy differential
equation. All real life problems which can be modeled in to an initial value
problem can be solved using this formula.
Keywords: Hybrid fuzzy differential equations; Triangular fuzzy number;
Seikkala’s derivative; third order Runge-Kutta method; Arithmetic mean; Root
mean square; Centroidal mean; Initial value problem

1 Introduction
Hybrid systems can be used to represent control systems that are capable of managing
complicated systems with both discrete time dynamics and continuous time dynamics.
Hybrid fuzzy differential systems are differential systems that interact with a discrete
time controller while using fuzzy valued functions.
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AThird order Runge-Kuttamethod based on linear combination of threemeans of various combinations have been proposed
by EvangelinDianaRajakumari P andGethsi Sharmila R in (1), (2) and (3). Amethod is proposed by Jeyaraj T andRajanD to solve
fuzzy Initial value problem using explicit Runge-Kutta method in (4). Arithmetic operations of Trigonal fuzzy numbers using
Alpha cuts has been proposed by Kalaiarasi k and Swathi S to handle uncertainty in (5). Iterative methods have been proposed
by Kanade G D and Dhaigude R M for solving Ordinary differential equations in (6). Numerical Solutions of Fuzzy Multiple
Hybrid Single Retarded Delay Differential Equations have been found by Prasantha Bharathi D and Jayakumar T and Vinoth
S in (7). Prasantha Bharathi D, Jayakumar T and Vinoth S have proposed a method to find the Numerical Solutions of Fuzzy
Pure Multiple Neutral Delay Differential Equations in (8). Understanding the Unique Properties of Fuzzy concept in Binary
Trees is done by Renuka Sahu and Animesh Kumar Sharma in (9). Srinivasan R, Karthikeyan N and Jayaraja A have proposed a
technique to resolve transportation problem by trapezoidal fuzzy numbers in (10).

In this study a new formula has been developed by combining three means Arithmetic Mean, Root Mean Square, and
Centroidal Mean using Khattri’s formula. And the developed formula is used to solve the third order Runge-Kutta method
for the first order hybrid fuzzy differential equation. This method is used to solve any real life problem which is modeled as
initial value problem

2 Preliminaries
Definition: 2.1 (Fuzzy Set)

If X is a collection of objects denoted generally by x, then a fuzzy set Ã in X is a set of ordered pairs Ã =
{(

x,µÃ(x)

)
/x ∈ X

}
,

where µÃ(x) is called the membership function or grade of membership of x in Ã.
Definition: 2.2 (Triangular fuzzy number)
It is a fuzzy number represented with three points as follows: Ã = (a1,a2,a3), this representation is interpreted as

membership functions and holds the following condition:
(i) a1 to a2 is increasing function
(ii) a2 to a3 is decreasing function
(iii) a1 ≤ a2 ≤ a3

µ
Ã (x)=



0 , x < a1
x−a1

a2−a1
, a1 ≤ x ≤ a2

a3−x
a3−a2

, a2 ≤ x ≤ a3

0 , x > a3

Now, if you get crisp interval by α - cut operation, interval Ãα shall be obtained as follows ∀α ∈ [0,1] from

a(α)
1 −a1

a2 −a1
= α ,

a3 −a(α)
3

a3 −a2
= α

TheThird order Runge-Kutta method based on a linear combination of Arithmetic mean (AM), Root mean square (RM) and
Centroidal mean (CeM) for IVP was introduced by Khattri as follows

Yn+1 (k1,k2) =
14AM (k1,k2)−RM (k1,k2)+32CeM (k1,k2)

45

3 The Hybrid Fuzzy Differential Equations
The hybrid fuzzy differential equation

ẏ(x) = f (t,y(t),λk (yk )), t ∈ [tk, tk+1] k = 0,1,2, . . .
y(t0) = y0

(3.1)

where tk = 0 is strictly increasing and unbounded, yk denotes y(tk) , f : (t0,∞)×R×R → R is continuous, and each λk : R → R
is a continuous function. A solution to Equation (3.1) will be a function y : (t0,∞) → R satisfying Equation (3.1). For f, let
fk : (tk, tk+1)×R → R where, f (t,yk(t)) = f (t,yk(t),λk (yk)).
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The hybrid fuzzy differential equation in Equation (3.1) can be written in expanded form as

ẏ(t) =



ẏ0(t) = f (t,y0 (t),λ0 (y0)) = f0 (t,y0 (t)),y0 (t0) = y0, t0 ≤ t ≤ t1
ẏ1(t) = f (t,y1 (t),λ1 (y1)) = f1 (t,y1 (t)),y1 (t1) = y1, t1 ≤ t ≤ t2

.

.

.
ẏk(t) = f (t,yk (t),λk (yk)) = fk (t,yk (t)),yk (tk) = yk, tk ≤ t ≤ tk+1

.

.

.

(3.2)

and a solution of Equation (3.1) can be expressed as

y(t) =



y0(t) = y0, t0 ≤ t ≤ t1
y0(t) = y0, t0 ≤ t ≤ t1

.

.
y0(t) = y0, t0 ≤ t ≤ t1

.

.

(3.3)

we note that the solution of Equation (3.1) is continuous and piece wise differentiable over (t0,∞) and differentiable on each
interval (tk, tk+1) for any fixed yk ∈ R and k = 0,1,2, . . .

4. A Third order Runge-Kutta method based on linear combination of Arithmetic mean, Root mean square and
Centroidal mean for hybrid fuzzy differential equation

Consider the IVP Equation (3.1) with crisp initial condition y(t0) = y0 ∈ R and
t ∈ [t0,T ]. Let the exact solution [Y (t)]r = [Y (t;r),Y (t;r)] is approximated by some [y(t)]r = [Y (t;r),Y (t;r)] from the

equation yn+1 = yn +
h
2

[
∑2

i=1 Means
]
where means includes Arithmetic mean (AM), Geometric mean (GM), Contra -

Harmonicmean (CoM),Centroidalmean (CeM), Rootmean Square (RM),Harmonicmean(HaM), andHeronianmean (HeM)
which involves ki,1 ≤ i ≤ 4, where,

k1 = f (tn,yn)
k2 = f (tn +a1h,yn +a1hk1)

k3 = f (tn +(a2 +a3)h,yn +a2hk1 +a3hk2)

where the parameters for the linear combination of Arithmetic mean, Root mean square and Centroidal mean are

a1 =
2
3
,a2 =

−209
810

,a3 =
749
810

The third order formulae based on Runge- Kutta scheme using the Combination of Arithmetic mean, Root mean square and
Centroidal mean are

yn+1 = yn +
h
90

{
7(k1 +2k2 + k3)−

1√
2

(√
k2

1 + k2
2 +

√
k2

2 + k2
3

)
+

64
3

(
k2

1 + k1k2 + k2
2

k1 + k2
+

k2
2 + k2k3 + k2

3
k2 + k3

)}
with the grid points a = t0 ≤ t1 ≤ ·· · ≤ tN = b and h = (b−a)

N = ti+1 − ti
we define

yk,n+1(r)− yk,n(r) = ∑3
i=1 wiki

(
tk,n;yk,n(r)

)
yk,n+1(r)− yk,n(r) = ∑3

i=1 wiki
(
tk,n;yk,n(r)

)
where w1,w2,w3 are constants,

k
_1

(
tk,n;yk,n(r)

)
= min

{
f
(
tk,n,u,λk (uk)

)
\u ∈

[
y
_k,n

(r),yk,n(r)

]
,uk ∈

[
y
_k,0

(r),yk,0(r)

]}
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k1
(
tk,n;yk,n(r)

)
= max

{
f
(
tk,n,u,λk (uk)

)
\u ∈

[
y
_k,n

(r),yk,n(r)

]
,uk ∈

[
y
_k,0

(r),yk,0(r)

]}

k
_2

(
tk,n;yk,n(r)

)
= min


f
(
tk,n + 2

3 hk,u,λk (uk)
)
\u ∈

[
z
_k1

(
tk,n;yk,n(r)

)
,zk1

(
tk,n;yk,n(r)

)]
,

uk ∈

[
y
_k,0

(r),yk,0(r)

]


k2
(
tk,n;yk,n(r)

)
= max


f
(
tk,n + 2

3 hk,u,λk (uk)
)
\u ∈

[
z
_k1

(
tk,n;yk,n(r)

)
,zk1

(
tk,n;yk,n(r)

)]
,

uk ∈

[
y
_k,0

(r),yk,0(r)

]


k
_3

(
tk,n;yk,n(r)

)
= min


f
(
tk,n + 2

3 hk,u,λk (uk)
)
\u ∈

[
z
_k2

(
tk,n;yk,n(r)

)
,zk2

(
tk,n;yk,n(r)

)]
,

uk ∈

[
y
_k,0

(r),yk,0(r)

]


k3
(
tk,n;yk,n(r)

)
= min


f
(
tk,n + 2

3 hk,u,λk (uk)
)
\u ∈

[
z
_k2

(
tk,n;yk,n(r)

)
,zk2

(
tk,n;yk,n(r)

)]
,

uk ∈

[
y
_k,0

(r),yk,0(r)

]


where
z
_k1

(
tk,n;yk,n(r)

)
= y

_k,n
(r)+ 2

3 hkk
_1

(
tk,n;yk,n(r)

)
Zk1

(
tk,n;yk,n(r)

)
= yk,n(r)+

2
3 hkk1

(
tk,n;yk,n(r)

)
z
_k2

(
tk,n;yk,n(r)

)
= y

_k,n
(r)− 209

810 hkk
_1

(
tk,n;yk,n(r)

)
+ 749

810 hkk
_2

(
tk,n;yk,n(r)

)
zk2

(
tk,n;yk,n(r)

)
= yk,n(r)− 209

810 hkk1
(
tk,n;yk,n(r)

)
+ 749

810 hkk2
(
tk,n;yk,n(r)

)
define

Sk

[
tk,n;y

_k,n
(r),yk,n(r)

]
=



7
[

k
_1

(
tk,n,yk,n(r)

)
+2k

_2

(
tk,n,yk,n(r)

)
+ k

_3

(
tk,n,yk,n(r)

)]
− 1√

2

[√
k
_

2

1

(
tk,n,yk,n(r)

)
+ k

_
2

2

(
tk,n,yk,n(r)

)
+
√

k
_

2

2

(
tk,n,yk,n(r)

)
+ k

_
2

3

(
tk,n,yk,n(r)

)]

+ 64
3


k
_

2

1
(tk,n,yk,n(r))+k

_1
(tk,n,yk,n(r))k

_2
(tk,n,yk,n(r))+k

_
2

2
(tk,n,yk,n(r))

k
_1
(tk,n,yk,n(r))+k

_2
(tk,n,yk,n(r))

+
k
_

2

2
(tk,n,yk,n(r))+k

_2
(tk,n,yk,n(r))k

_3
(tk,n,yk,n(r))+k

_
2

3
(tk,n,yk,n(r))

k
_2
(tk,n,yk,n(r))+k

_3
(tk,n,yk,n(r))





Tk

[
tk,n;y

_k,n
(r),yk,n(r)

]
=



7
[
k1
(
tk,n,yk,n(r)

)
+2k2

(
tk,n,yk,n(r)

)
+ k3

(
tk,n,yk,n(r)

)]
− 1√

2

[√
k

2
1
(
tk,n,yk,n(r)

)
+ k

2
2
(
tk,n,yk,n(r)

)
+

√
k

2
2
(
tk,n,yk,n(r)

)
+ k

2
3
(
tk,n,yk,n(r)

)]

+ 64
3

 k2
1(tk,n,yk,n(r))+k1(tk,n,yk,n(r))k2(tk,n,yk,n(r))k2

2(tk,n,yk,n(r))
k1(tk,n,yk,n(r))+k2(tk,n,yk,n(r))

+
k2

2(tk,n,yk,n(r))+k2(tk,n,yk,n(r))k3(tk,n,yk,n(r))+k2
3(tk,n,yk,n(r))

k2(tk,n,yk,n(r))+k3(tk,n,yk,n(r))




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The exact solutions at tk,n+1 is given by

Y
_ k,n+1

(r)≈ Y
_ k,n

(r)+
hk

90
Sk

[
tk,n;Y

_ k,n
(r),Y k,n(r)

]

Y k,n+1(r)≈ Y k,n(r)+
hk

90
Tk

[
tk,n;Y

_ k,n
(r),Y k,n(r)

]
The approximate solutions at tk,n+1 is given by

y
_k,n+1

(r) = y
_k,n

(r)+ hk
90 Sk

[
tk,n;y

_k,n
(r),yk,n(r)

]

yk,n+1(r) = yk,n(r)+
hk
90 Tk

[
tk,n;y

_k,n
(r),yk,n(r)

]

4 Numerical Example
Consider the fuzzy Initial Value Problem{

y
′
(t) = y(t), t ∈ [0,1]

y(0;r) = [0.75+0.25r,1.125−0.125r],0 ≤ r ≤ 1

The exact solution is given by

Y (t;r) =
[
(0.75+0.25r)et ,(1.125−0.125r)et] ,0 ≤ r ≤ 1

at t = 1 we get

Y (1;r) =
[
(0.75+0.25r)e1,(1.125−0.125r)e1] ,0 ≤ r ≤ 1

By the third order Runge - Kutta method based on the combination of Arithmetic mean, Root mean square and Centroidal
mean with N = 2, gives

y(1.0;r) =
[
(0.75+0.25r)(C0,1)

2 ,(1.125−0.125r)(C0,1)
2
]
,0 ≤ r ≤ 1

where

C0,1 = 1+
h
90


7
[
4+2h+ 749

1215 h2
]
− 1√

2

[√
1+

(
1+ 2

3 h
)2

+

√(
1+ 2

3 h
)2

+
(
1+ 2

3 h+ 749
1215 h2

)2
]

+ 64
3

[
1+(1+ 2

3 h)+(1+ 2
3 h)

2

2+ 2
3 h

+
(1+ 2

3 h)
2
+(1+ 2

3 h)(1+ 2
3 h+ 749

1215 h2)+(1+ 2
3 h+ 749

1215 h2)
2

2+ 4
3 h+ 749

1215 h2

]


now consider the hybrid fuzzy initial value problem{
y
′
(t) = y(t)+m(t)λk (y(tk)) , t ∈ (tk, tk+1] , tk = k,k = 0,1,2, . . .
y(t;r) = ((0.75+0.25r)et ,(1.125−0.125r)et ] ,0 ≤ r ≤ 1

where

m(t) =
{

2(t(mod1)) i f t(mod1)≤ 0.5,
2(1− t(mod1)) i f t(mod1)≥ 0.5

λk (y(tk)) =
{

0 , i f k = 0,
µ , i f k ∈ 1,2, . . .
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The hybrid fuzzy Initial value problems is equivalent to the following system of fuzzy Initial value problems.
The exact solution for t ∈ [0,2] is given by y

′
0(t) = y0(t), t ∈ [0,1]

y0(0;r) = [(0.75+0.25r),(1.125−0.125r)],0 ≤ r ≤ 1
y
′
i(t) = yi(t)+m(t)yi−1(t), t ∈ (ti, ti+1] ,yi(t) = yi−1 (ti) , i = 1,2, . . .

y(t)+m(t)λk (y(tk)) is continuous function of t,x and λk (y(tk)), for each k = 0,1,2, . . . , the fuzzy Initial value problem{
y
′
(t) = y(t)+m(t)λk (y(tk)) , t ∈ [tk, tk+1] , tk = k

y(tk) = ytk

has a unique solution on [tk, tk+1]. To numerically solve the hybrid fuzzy IVP, the modified third order Runge - Kutta method
based on Arithmetic mean, Root mean square and Centroidal mean is applied with N = 2 to obtain,

y1,2 (r) approximating x(2.0;r).
Let f : [0,∞]×R×R → R be given by

f (t,y,λk (y(tk))) = y(t)+m(t)λk (y(tk)) , tk = k,k = 0,1,2, . . . ,

Where λk : R → R is given by

λk(y) =
{

0, i f k = 0
y, i f k ∈ {1,2, . . . ,}

Since the exact solution for tε[1,1.5] is

Y (t;r) = Y (1;r)
(
3et−1 −2t

)
,0 ≤ r ≤ 1,Y (1.5;r) = Y (1;r)(3

√
e−3),0 ≤ r ≤ 1

Then Y (1.5;r) is approximately 5.290656 and the exact solution for t ∈ [1.5,2] is

Y (t;r) = Y (1;r)
(

2t −2+ et−1.5(3
√

e−4)
)
,0 ≤ r ≤ 1

Therefore,

Y (2.0;r) = Y (1;r)(2+3e−4
√

e)

Then Y (2.0; r) is approximately 9.677457
The absolute error of the third order Runge-Kutta method based on a linear combination of Arithmetic mean (RK3AM),

Root mean square (RK3RM) and Centroidal mean (RK3CeM) is compared with the absolute error by the individual means for
the r-level set with h = 0.1 and t= 2 of the example is given below.

Table 1. Absolute error of the third order Runge-Kutta method based on a linear combination of RK3AM, RK3RM, RK3CeM and the
individual means for ther-level set with h = 0.1 and t = 2

R t absolute error absolute error absolute error absolute error
hrk3AMRMCeM hrk3AM hrk3RM Hrk3CeM

0 2 3.61E-04 5.42E-04 5.94E-04 8.91E-04 1.50E-03 2.26E-03 8.13E-04 1.22E-03
0.1 2 3.73E-04 5.36E-04 6.14E-04 8.81E-04 1.55E-03 2.23E-03 8.40E-04 1.21E-03
0.2 2 3.85E-04 5.30E-04 6.34E-04 8.71E-04 1.60E-03 2.21E-03 8.67E-04 1.19E-03
0.3 2 3.97E-04 5.24E-04 6.54E-04 8.61E-04 1.65E-03 2.18E-03 8.94E-04 1.18E-03
0.4 2 4.09E-04 5.18E-04 6.73E-04 8.52E-04 1.70E-03 2.16E-03 9.21E-04 1.16E-03
0.5 2 4.21E-04 5.12E-04 6.93E-04 8.42E-04 1.75E-03 2.13E-03 9.48E-04 1.15E-03
0.6 2 4.33E-04 5.06E-04 7.13E-04 8.32E-04 1.81E-03 2.11E-03 9.75E-04 1.14E-03
0.7 2 4.45E-04 5.00E-04 7.33E-04 8.22E-04 1.86E-03 2.08E-03 1.00E-03 1.12E-03
0.8 2 4.58E-04 4.94E-04 7.53E-04 8.12E-04 1.91E-03 2.06E-03 1.03E-03 1.11E-03
0.9 2 4.70E-04 4.88E-04 7.72E-04 8.02E-04 1.96E-03 2.03E-03 1.06E-03 1.10E-03
1 2 4.82E-04 4.82E-04 7.92E-04 7.92E-04 2.01E-03 2.01E-03 1.08E-03 1.08E-03
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The following is the graphical representation for the absolute error of the third order Runge-Kutta method based on the
linear combination of RK3AM, RK3RM, RK3CeM and the individual means for the above example is given below, where
h = 0.1, t = 1.5.

Fig 1. (h = 0.1, t = 1.5)

5 Conclusion
The third order Runge-Kutta approach based on a linear combination of Arithmetic Mean, Root Mean Square, and Centroidal
Mean is used in this study to solve the first order hybrid fuzzy differential equation. The proposed approach’s solution is
compared to that of other methods, and it is observed that the proposed method provides a better result and is appropriate
for handling hybrid fuzzy initial value problems.
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