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Abstract
Objectives: The primary aim of this study is to explicitly determine the Euler
characteristic of the parabolic sheaves with rank 2 on a smooth projective
algebraic surface defined over complex numbersCwith the smooth irreducible
parabolic divisor D. Methods: The computation of the parabolic Hilbert
polynomial involves the use of R-filtered sheaves on a smooth projective
surface X , with weights corresponding to the points where the filtration jumps.
The Riemann-Roch theoremandChern class computation have also been used.
Findings: The study provides explicit computations of the parabolic Hilbert
polynomial as well as the parabolic Chern classes for parabolic rank 2 bundles.
Novelty: This work contributes to the understanding of parabolic sheaves on
smooth projective surfaces, bridging the gap between different constructions
of stable bundles. The explicit computation of the parabolic Hilbert polynomial
for rank 2 bundles adds valuable insights to the study of moduli spaces of
parabolic bundles.
Keywords: Euler characteristic; Hilbert polynomial; Chern class; Parabolic
sheaves; Smooth projective algebraic surface

1 Introduction
Understanding moduli spaces is crucial because we often deal with families of spaces
that can transform into another space, known as the moduli space of the family. Each
point in the moduli space corresponds to a space in its own right. The concept of a
”moduli problem” is central to modern algebraic geometry and is closely linked to
physics. This connection necessitates a grasp of the specific parameters associated with
these spaces. To navigate the complexities of moduli spaces, a thorough understanding
of these parameters is essential. One particularly crucial parameter is the Chern classes,
which hold significant importance in the field of algebraic geometry.

Chern classes play a pivotal role as they provide away to quantify and characterize the
geometric features of vector bundles over these spaces.These classes offer essential tools
for understanding the topology and geometry of the underlying spaces, contributing
to the broader study of algebraic geometry. In the realm of physics, Chern classes
find applications in describing characteristic classes of fiber bundles, making them
indispensable for bridging the gap between abstract mathematics and the physical
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world.
This work is dedicated to unraveling the nuances of Chern classes, focusing on specific cases within moduli spaces. The goal

is tomake these intricate conceptsmore accessible and provide valuable insights into the realm of algebraic geometry. A detailed
description of the geometry of the moduli spaces has been discussed in (1).

The parabolic sheaves over curves were introduced by Mehta and Seshadri. This has been extended to the higher dimension
by Maruyama-Yokogawa (2), Biswas, and others. Also, Li, Steer-Wren, Mochizuki, and others extended vector bundles to higher
dimensions.

Assume that over C, X is a smooth projective surface. Assume that D is an irreducible smooth divisor on X . A parabolic
sheaf on X is anR-filtered sheaf Eα := E (α) for α ∈R (cf. Definition [2.1.1]). The weights are the real numbers. It is generally
assumed that the jump happens at rational points.

The study of moduli for the parabolic bundles requires the computation of the Hilbert polynomial, which is an Euler
characteristic for the parabolic sheaves twisted by a large power of an ample line bundle. On X , consider an ample line
bundle H . We write Mpar

H (c∗) for the Gieseker moduli of parabolic bundles with respect to the polarization H . In (3), Mpar
H (c∗)

the Donaldson-Uhlenbeck compactification of the moduli space of parabolic µ-stable bundles was constructed. Also, the
construction of the parabolic analogue of a Gieseker-Uhlenbeck morphism for the moduli space of parabolic bundles on X
with the parabolic structure defined on D has been discussed by R. Parthasarathi. A natural compactification over Riemann
Surface by smooth divisors has been discussed in (4).

To understand the moduli space of parabolic stable sheaves on algebraic surfaces in a differential geometric point of view,
we obtained the Donaldson-Uhlenbeck compactification for the parabolic stable sheaves using Γ-Categorical methods.

The moduli space of parabolic sheaves on algebraic surfaces using Maruyama-Yokogawa construction naturally contains the
parabolic µ -stable bundles as a large open set. It is yet to be studied the relation between the isomorphism classes of χ-stable
bundles coming from the MY-construction and the isomorphism classes of χ-stable bundles coming from the Γ-category.

In order to understand the relation, it is necessary to explicitly compute the parabolic Hilbert polynomial of the parabolic
torsion-free sheaves coming from Maruyama-Yokogawa. The Verlinde formula, an expression for the Euler characteristic of
line bundles on the moduli spaces of stable bundles on a curve, has been discussed in (5).

The aim of this study is to compute the parabolic Hilbert polynomial for the parabolic rank 2 bundle explicitly.

2 Methodology
We discuss some basic concepts related to the idea of a parabolic bundle. For the purpose of this paper, X will denote a smooth
projective surface over the field of complex numbers C. We denote its structure sheaf by OX and its canonical sheaf by KX . Let
D ⊂ X be a smooth irreducible parabolic divisor, and OX (1) be a very ample invertible sheaf on X . For a coherent sheaf E on
X , the image of E ⊗OX OX (−D) in E will be denoted by E (−D) .

2.1 The class of bundles with parabolic structures

Definition 2.1.1 (3) Let E be a torsion-free OX -coherent sheaf on X . Consider a divisor D on X that is effective. For a coherent
sheaf E on X , the image of E ⊗OX OX (−D) in E will be denoted by E (−D) . A quasi-parabolic structure on E over D is a
filtration by OX -coherent subsheaves

E = F1 (E)⊃ F2 (E)⊃ . . . ⊃ Fl (E)⊃ Fl+1 (E) = E (−D)

The integer l denotes the length of the filtration. A parabolic structure is a quasi-parabolic structure, as above, together with a
system of weights {α1, α2, . . . , αl} such that,

0 ≤ α1 < α2 < . . . < αl < 1,

where the weight αi corresponds to the subsheaf Fi (E).
Additionally, we will only look at parabolic structures with rational weights. The parabolic sheaf will be indicated by

(E∗,F∗,α∗). When there is no scope for confusion, it will be denoted by E∗.
For a parabolic sheaf (E∗,F∗,α∗) define the following filtration {Et}, t ∈ R of coherent sheaves on X parametrized by R:

Et := Fi (E)(− [t]D) ,

where [t] is an integral part of t and αi−1 < t − [t] ≤ αi, with the convention that α0 = αl −1 and αl+1 = 1. In particular, we
have Eαi = F i (E) for i = 1, 2, . . . , l + 1. If the underlying sheaf E is locally free, then E∗ will be called a parabolic vector
bundle.
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Calculation of the second parabolic Chern class (3):

2.2 Parabolic Chern class

Lemma 2.2.1 Consider a general parabolic bundle (E∗,F∗,α∗). Then we can compute the parabolic Chern classes of E∗ using
the following formula on X . Let us assume that deg(Fi) = li with corresponding weights αi and ri = rank

(
Fi

Fi−1

)
. Then the

first and second parabolic Chern classes of E∗ are given by,

cpar
1 (E∗) = c1 (E)+

(
∑l

i=1 riαi
)

D (2.2.1)

and

cpar
2 (E∗) = c2 (E)+∑l

i=1 riαi (c1 (E) ·D)−∑l
i=1 αi ( li − li+1)+

1
2

{(
l

∑
i=1

riαi

)
·

(
l

∑
j=1

r jα j

)
−

(
l

∑
i=1

riα2
i

)}
D2 (2.2.2)

The study of Chern classes in families of flat bundles and its various generalizations are discussed in (6).
Using Riemann-Roch theorem we recall that the Euler Characteristic of torsion free sheaf E on a smooth projective surface

can be given by,

χ (E) =
c1(E) · (c1

(E)−KX )

2
− c2 (E)+ rχ (OX )

where r is the rank of the sheaf E . We recall the following formula for the reduced Hilbert polynomial of a torsion free sheaf W
on a smooth projective surface X from (7).

pW (n) =
n2H2

2
+

(
H · c1 (W )

r
− KX ·H

2

)
n+

(
c1 (W )2 −2c2 (W )− c1 (W ) ·KX

)
2r

+χ (OX )
(2.2.3)

Using the above polynomial, we are going to obtain the formula of the reduced Hilbert polynomial for the rank 2 parabolic
torsion free sheaf.

3 Results and Discussion
Let E∗ be the parabolic coherent sheaf with the underlying coherent sheaf E on X .

The following theorem relates the Euler characteristic of the underlying sheaf E of E∗ with the parabolic Chern classes of E .
For computational reasons, we have assumed that the sheaf E∗ is a direct sum of parabolic line bundles. The result is true for
any rank 2 parabolic torsion-free sheaf with a parabolic structure.

Theorem 3.1: Let E∗ be a parabolic sheaf, which is the direct sum of the line bundles Li, i = 1,2. Let αi be the weight
associated with the line bundle Li. The Euler characteristic of a parabolic sheaf E∗ (m) is given by

parχ (E∗ (m)) = χ (E (m))+

(
D2 +KX ·D

2
−D ·Hm

)
(2− (α1 + α2))− c1 (E) ·D+α1L2 ·D+ α2L1 ·D (3.1.1)

Proof. The parabolic filtration of E∗ is given by,

E = L1 ⊕L2 ⊃ L1 ⊕L2 (−D)⊃ L1 (−D)⊕L2 (−D)

together with the system of weights. We use the Definition 1.8 of (2) to see that,

parχ (E∗ (m)) = χ (E (−D)(m))+α1X
(

L1 ⊕L2

L1 ⊕L2 (−D)
(m)

)
+α2χ

(
L1 ⊕L2 (−D)

L1 (−D)⊕L2 (−D)
(m)

)
Which implies,

parχ (E∗ (m)) = χ (E (−D)(m))+α1 [χ ((L1 ⊕L2)(m))−χ ((L1 ⊕L2 (−D))(m))]+
α2 [χ ((L1 ⊕L2 (−D))(m))−χ ((L1 (−D)⊕L2 (−D))(m))]
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We use the formula for Euler Characteristic of torsion-free sheaves on surfaces (2.2.3) and using Problem 5.2(a), Chapter III
of (8) to obtain:

χ (E (−D)(m)) = 2
{

m2H2

2 +
(

H·c1(L1(−D)⊕L2(−D))
2 − KX ·H

2

)
m

+
(c1(L1(−D)⊕L2(−D))2−2c1(L1(−D))c1(L2(−D))−c1(L1(−D)⊕L2(−D))·KX )

4 +χ (OX )

}
Which implies,

χ (E (−D)(m)) = 2
{

m2H2

2 +
(

H·L1(−D)+H·L2(−D)
2 − KX ·H

2

)
m

+
(L1(−D)2+L2(−D)2−L1(−D)·KX−L2(−D)·KX)

4 +χ (OX )

}
Which implies,

χ (E (−D)(m)) = 2
{

m2H2

2 +
(

H·L1−H·D+H·L2−H·D
2 − KX ·H

2

)
m

+
(L2

1−2L1·D+D2+L2
2−2L2·D+D2−L1·KX+D·KX−L2·KX+D·KX)

4 +χ (OX )

}
Rearranging the terms, we get:

χ (E (−D)(m)) = 2
{

m2H2

2 +
(

H·L1+H·L2
2 − KX ·H

2 −H ·D
)

m

+
(L2

1−2L1·D+L2
2−2L2·D−L1·KX−L2·KX)

4 + D2+D·KX
2 +χ (OX )

}
Also,

χ ((L1 ⊕L2)(m))−χ ((L1 ⊕L2 (−D))(m)) = 2
{

m2H2

2 +
(

H·L1+H·L2
2 − KX ·H

2

)
m+

(L2
1+L2

2−L1·KX−L2·KX)
4 +χ (OX )

}
−2
{

m2H2

2 +
(

H·L1+H·L2(−D)
2 − KX ·H

2

)
m+

(L2
1+L2(−D)2−L1·KX−L2(−D)·KX)

4 +χ (OX )

}
Implies,

χ ((L1 ⊕L2)(m))−χ ((L1 ⊕L2 (−D))(m)) = 2


(

H ·L2 −H ·L2 (−D)

2

)
m+

(
L2

2 −L2 (−D)2 −L2 ·KX +L2 (−D) ·KX

)
4


Thus,

χ ((L1 ⊕L2)(m))−χ ((L1 ⊕L2 (−D))(m)) = 2

{(
H ·D

2

)
m+

(
2L2 ·D−D2 −D ·KX

)
4

}

Similarly,

χ ((L1 ⊕L2 (−D))(m))−χ ((L1 (−D)⊕L2 (−D))(m)) = 2


(

H ·L1 −H ·L2 (−D)

2

)
m+

(
L2

2 −L2 (−D)2 −L2 ·KX +L2 (−D) ·KX

)
4


Thus,

χ ((L1 ⊕L2 (−D))(m))−χ ((L1 (−D)⊕L2 (−D))(m)) = 2

{(
H ·D

2

)
m+

(
2L1 ·D−D2 −D ·KX

)
4

}
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Putting all these values in original equation, we get,

parχ (E∗ (m)) = 2
{

m2H2

2 +
(

H·L1+H·L2
2 − KX ·H

2 −H ·D
)

m+
(L2

1−2L1·D+L2
2−2L2·D−L1·KX−L2·KX)

4 + D2+D·KX
2 +χ (OX )

}
+2α1

{(H·D
2

)
m+

(2L2·D−D2−D·KX)
4

}
+2α2

{(H·D
2

)
m+

(2L1·D−D2−D·KX)
4

}
Rearranging the terms, we get:

parχ (E∗ (m)) = 2
{

m2H2

2 +
(

H·L1+H·L2
2 − KX ·H

2

)
m+

(L2
1+L2

2−L1·KX−L2·KX)
4 +χ (OX )− L1·D+L2·D

2 + D2+D·KX
2 −H ·D

}
+2α1

{(H·D
2

)
m+ L2·D

2 − D2+D·KX
4

}
+2α2

{(H·D
2

)
m+ L1·D

2 − D2+D·KX
4

}
Thus, further reducing, we obtain:

parχ (E∗ (m)) = χ (E (m))+(2− (α1 +α2))

(
D2 +D ·KX

2
− (H ·D)m

)
− (1−α1)L2 ·D− (1−α2)L1 ·D.

Further, we rearrange the terms to get the formula stated in the theorem.
Theorem 3.2: Let F∗ be any parabolic subbundle of rank 1 with weight α of E∗. The parabolic Hilbert polynomial of F∗ (m)

is given by,

parχ ( F∗ (m)) = χ (F (m))+(1−α)

(
D2 +D ·KX

2
− (D ·H)m

)
− (1−α)c1(F) ·D

Proof. The Euler characteristic of the parabolic sheaf F∗ using Definition 1.8 (2) is given by:

parχ ( F∗ (m)) = χ (F (−D)(m))+αχ
(

F
F(−D) (m)

)
= χ (F (−D)(m))

+α (χ (F (m))−χ (F (−D)(m))) = (1−α)(χ (F (−D))(m))+α (χ (F)(m))

Now we substitute the usual Euler characteristic of the torsion-free sheaf on surfaces, and we obtain:

parχ ( F∗ (m)) = (1−α)
{

m2H2

2 +
(

H·c1(F(−D))
1 − KX ·H

2

)
m+ (c1(F(−D))2−c1(F(−D))·KX

2 +χ (OX )
}

+α
{

m2H2

2 +
(

H·c1(F)
1 − KX ·H

2

)
m+ (c1(F)2−c1(F)·KX

2 +χ (OX )
}

Which implies,

parχ ( F∗ (m)) = (1−α)
{

m2H2

2 +
(

H·F−H·D
1 − KX ·H

2

)
m+ F2−2F ·D+D2−F ·KX+D·KX

2 +χ (OX )
}

+α
{

m2H2

2 +
(

H·F
1 − KX ·H

2

)
m+ F2−F ·KX

2 +χ (OX )
}

Reducing further, we get:

parχ ( F∗ (m)) = m2H2

2 +
(

F ·H−D·H
1 − KX ·H

2

)
m+ F2−2(F ·D)+D2−F ·KX+D·KX

2 +χ (OX )

+α
(
(D ·H)m+ 2(F ·D)−D2−D·KX

2

)
Which implies,

parχ ( F∗ (m)) = m2H2

2 +
(

F ·H − KX ·H
2

)
m+ F2−F ·KX

2

+χ (OX )− (1−α)(D ·H)m+(1−α) D·KX
2 +(1−α) D2

2 − (1−α)(F ·D)

Further, we rearrange the terms to get the formula stated in the theorem.
Let us consider some examples.

https://www.indjst.org/ 1699

https://www.indjst.org/


Parthasarathi & Gargi / Indian Journal of Science and Technology 2024;17(16):1695–1701

If L is a line bundle and D is a Cartier divisor on X such that L = OX (D), then c(L) = 1+D (in other words, c1 (L) is the
class of D). (Notice that if D

′ is another choice for a divisor that gives L, then it is linearly equivalent to D, hence rationally
equivalent, so c1 (L) is well-defined.)

Example 3.1. Every line bundle on Pn is of the form OP2 (a) for some a ∈ Z, corresponding to the divisor aH ; therefore,
this line bundle has a total Chern class 1 + aH . Hence, a direct sum of line bundles O(a)⊕ O(b) f or some a,b ∈ Z,has a
total Chern class (1 + aH)(1 + bH) = 1 + (a + b)H + abH2.

Example 3.2. Let X = P2 and E = OP2 (a)⊕ OP2 (b) , with a, b > 0 be a rank 2 bundle on P2. Then c(E) =
(1 + aH)(1 + bH) (where H = c1 (OP2 (a)) is the class of a line bundle). We consider a parabolic structure for E as follows:

E = OP2 (a)⊕ OP2 (b) ⊃ OP2 (a) ⊕ OP2 (−bD) ⊃ OP2 (−aD) ⊕ OP2 (−bD) = E (−D)

together with the system of weights α1 =
1
3 and α2 =

2
3 corresponding to E1 = OP2 (−aD) ⊕ OP2 (−bD) and E2 = OP2 (a) ⊕

OP2 (−bD) respectively. We have

E1 = {(s1,s2) ∈ E | s1|D = 0, s2|D = 0}

E2

E1
= {(s1,s2) ∈ E | s1|D ̸= 0, s1|D ̸= 0}

Clearly, E (−D) = E1. Also, c1(E) = c1 (OP2 (a)) ⊕ c1(OP2(b)) = (a+b)H . And since we know the total Chern class c(E),
we also know that c2 (E) = abH2.

Also, KP2 = −3H .
Substituting these values in

parχ (E∗ (m)) = χ (E (m))+

(
D2 +KX ·D

2
−D ·Hm

)
(2− (α1 + α2))− c1 (E) ·D+α1L2 ·D+ α2L1 ·D

We get,

parχ (E∗ (m)) = 2
{

m2H2

2 +
(

H·c1(E)
r − KX ·H

2

)
m+ (c1(E)

2−2c2(E)−c1(E)·KX
2r +χ (OX )

}
+
(

D2−3H·D
2 −D ·Hm

)(
2−
( 1

3 +
2
3

))
−aH ·D+ 1

3 c1(OP2(b)) ·D+ 2
3 c1 (OP2 (a)) ·D

parχ (E∗ (m)) = 2
{

m2H2

2 +
(

H·(a+b)H
2 + 3H2

2

)
m+

(
(a+b)2H2−2abH2+3(a+b)H2

2

)
+1
}

+
(

D2−3H·D
2 −D ·Hm

)
− (a+b)H ·D+ 1

3 bH ·D+ 2
3 aH ·D

parχ (E∗ (m)) = m2H2 +(a+b+3)H2m+

(
a2 +b2 +3(a+b)

2

)
H2 +2+

(
D2 −3H ·D

2
−D ·Hm

)
− 1

3
aH ·D− 2

3
bH ·D

parχ (E∗ (m)) = m2 +(a+b+3)m−
(

m+

(
1
3

a+
2
3

b+
3
2

))
H ·D+

(
a2 +b2 +3(a+b)

2

)
+

D2

2
+2

(Because H2 = O2
P2 = 1)

If we consider a specific divisor D to be the line z = 0 in P2, then D2 = degD

(
ND/P2

)
= 1 (as ND/P2 ∼ OP2 (1)). Also,

H ·D = 1.
When we change these values in the equation above, we obtain:

parχ (E∗ (m)) = m2 +(a+b+3)m−m−
(

1
3

a+
2
3

b+
3
2

)
+

(
a2 +b2 +3(a+b)

2

)
+

1
2
+2
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parχ (E∗ (m)) = m2 +(a+b+2)m+

(
a2 +b2

2
+

7a+5b
6

)
+1

Specifically, if we consider E = OP (1)⊕ OP2 (1), we get:

parχ (E∗ (m)) = m2 +4m+4

Using Equations (2.2.1) and (2.2.2), we can define the parabolic Chern classes for a rank 2 parabolic bundle as: Let E∗ be a rank
2 parabolic bundle over X with underlying sheaf E . Now, as per the definition of the parabolic Chern classes, we have:

cpar
1 (E∗) = c1 (E)+(α1 + α2)D,

cpar
2 (E∗) = c2 (E)+(α1 + α2)(c1 (E) ·D)+α1α2D2.

Thus, for the above example 3.2, we get,

cpar
1 (E∗) = (a+b)H +D

cpar
2 (E∗) = abH2 +(a+b)(H ·D)+

2
9

D2

4 Conclusion
In summary, the paper achieves its objectives by providing a comprehensive analysis of parabolic rank 2 bundles and offering
a detailed computation of the parabolic Hilbert polynomial. These contributions significantly enrich the existing body of
knowledge in the field of algebraic geometry and pave the way for future research avenues.
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