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Abstract
Objective: The aim of this research is to gain a comprehensive understanding
of radon diffusion equation in water. Methods: A time fractional radon
diffusion equation with Caputo sense is employed to find diffusion dynamics of
radon in watermedium. The fractional order explicit finite difference technique
is used to find its numerical solution. A Python software is used to find
numerical solution. Findings: The effect of fractional-order parameters on the
distribution and concentration profiles of radon inwater has been investigated.
Furthermore, we study stability and convergence of the explicit finite difference
method. Novelty: The fractional order explicit finite difference method can
be used to estimate approximate solution of such fractional order differential
equations.
Keywords: Radon Diffusion Equation; Finite Difference Method; Caputo;
Fractional Derivative; Python

1 Introduction
Fractional calculus extends traditional calculus by allowing for non-integer or fractional
orders of differentiation and integration (1). Fractional calculus has a wide range
of applications across various fields due to its ability to model complex systems
and phenomena that involve non-integer order derivatives and integrals (2). Some
of the prominent applications of fractional calculus include, Physics, Engineering,
Signal Processing, Biology and Medicine, Chemical Engineering, Astronomy and
Astrophysics etc.The analytical solutions of fractional partial differential equations can
be challenging to obtain, especially for non-trivial cases, as they often involve fractional
derivatives. To handle this, numerical methods are used to obtain solution of fractional
differential equations (3). Finite difference method is one of the widely used numerical
method for solving differential equations in both one and multiple dimensions (4–7).
They are particularly valuable when analytical solutions are not readily available or
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practical. Radon, a radioactive gas, is both colorless and odorless. It occurs naturally through the radioactive decay of elements
like uranium, which are distributed in varying quantities within soil and rock all over the world. This gas, originating in the
ground, can migrate into the atmosphere, as well as infiltrate both underground and surface water. Radon is pervasive in
both outdoor and indoor environments. Given its hazardous nature, numerous researchers investigate the movement of radon
through substances like soil, air, concrete, and activated charcoal (8). In 2022, Shrimangale G.W and Raut S.R developed a
crank-nicolson method to solve radon diffusion equation in soil medium (8). In 2021, Rao T.D. and Chakraverty S. have used
forward and inverse techniques for fuzzy fractional systems applied to radon transport in soil chambers (9). Furthermore, A.
Rybalkin study Radon difussion equation, and they obtained its exact solution (10). In this cotext, we develop a fractional order
Radon diffusion equation, but it is very difficult to obtain its exact solution.Therefore, we develop fractional order explicit finite
difference method (11–13) to investigate the diffusion of radon in water medium. Furthermore, we create Python code to visually
represent the approximate solution graphically.

2 Methodology

2.1 Some Preliminaries

Definition 1. The Caputo time-fractional derivative of order γ,(0 < γ ≤ 1) is defined by (3),

∂ γV (ζ ,τ)
∂τγ =

1
Γ(1− γ)

τ∫
0

∂V (ζ ,τ)
∂η

dη
(τ −η)γ (1)

2.2 Mathematical Modeling

The Fick’s second law elaborates the change in concentration with respect to both time and position occurs. This law can be
expressed as follows

∂V (ζ ,τ)
∂τ

= D
∂ 2V (ζ ,τ)

∂ζ 2 −µV (ζ ,τ) (2)

where µ is the radon decay constant.
In this paper, we focus on the time-fractional order radon diffusion equation given below (10),

∂ γV (ζ ,τ)
∂τγ = D

∂ 2V (ζ ,τ)
∂ζ 2 −µV (ζ ,τ) ; 0 < ζ < L,0 < γ ≤ 1,τ ≥ 0 (3)

initial condition:

V (ζ ,0) = 0; 0 < ζ < L (4)

boundary conditions:

V (0,τ) =V0 and
∂V (0,τ)

∂τ
= 0; τ ≥ 0 (5)

Here, V = V (ζ ,τ) is the concentration of radon at space ζ and time τ , D is the diffusion coefficient, µ is the radon decay
constant and ∂ γV (ζ ,τ)

∂τγ is considered in Caputo sense.

2.3 Finite Difference Scheme

Let (ζi,τk); i = 0,1,2, ...,M and k = 0,1,2, ...,N be the exact solution of time fractional radon diffusion Equations (3), (4)
and (5) at the mesh point (ζi,τk), where τk = kτ ′, k = 0,1,2, . . . ,N and ζi = ih, i = 0,1,2, . . . ,M, where τ ′ = T

N and h = L
M .

LetV k
i be the numerical approximation of the pointV (ih,kτ ′).We approximate time-fractional derivative in the Caputo sense

as follows (3)
∂ γV (ζi,τk)

∂τγ ≈ 1
Γ(1−γ)

τk+1∫
0

1
(τk+1−η)

∂V (ζi,τ)
∂η dη
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= τ−γ

Γ(2−γ)
[
V k+1

i −V k
i
]
+ τ−γ

Γ(2−γ) ∑k
j=1 b j

[
V k− j+1

i −V k− j
i

]
+O(τ)

where b j = ( j+1)1−γ − j1−γ , j = 0,1,2, · · · ,N.
Also, we approximate the second order space derivative as follows,

∂ 2V (ζ ,τ)
∂ζ 2 =

V (ζi−1,τk)−2V (ζi,τk)+V (ζi+1,τk)

h2

∂ 2V (ζi,τk)
∂ζ 2 =

V k
i−1−2V k

i +V k
i+1

h2

Therefore, substituting in Equation (4), we get
τ−γ

Γ(2−γ)
[
V k+1

i −V k
i
]
+ τ−γ

Γ(2−γ) ∑k
j=1 b j

[
V k− j+1

i −V k− j
i

]
= D

[
V k

i−1−2V k
i +V k

i+1
h2

]
−µV (ζi, tk)[

V k+1
i −V k

i
]
+∑k

j=1 b j

[
V k− j+1

i −V k− j
i

]
= DΓ(2−γ)τγ

h2

[
V k

i−1 −2V k
i +V k

i+1
]
−µΓ(2− γ)τγV (ζi, tk)

Put r = DΓ(2−γ)τγ

h2 and µ ′ = µΓ(2− γ)τγ we have,

[
V k+1

i −V k
i
]
+∑k

j=1 b j

[
V k− j+1

i −V k− j
i

]
= r

[
V k

i−1 −2V k
i +V k

i+1
]
−µ ′V k

i (6)

After simplification,
V k+1

i = rV k
i−1 +(1−2r−µ ′)V k

i + rV k
i+1 −∑k

j=1 b j

(
V k− j+1

i −V k− j
i

)
= rV k

i−1 +(1−2r−µ ′)V k
i + rV k

i+1 +b1
[
V k−1

i −V k
i
]
+b2

[
V k−2

i −V k−1
i

]
+b3

[
V k−3

i −V k−2
i

]
+ · · ·+bk−1

[
V 1

i −V 2
i
]
+bk

[
V 0

i −V 1
i
]

V k+1
i = rV k

i−1 +(1−2r−µ ′−b1)V k
i + rV k

i+1 +∑k−1
j=1(b j −b j+1)V

k− j
i +bkV 0

i (7)

We approximate initial condition as follows

V 0
i , i = 0,1,2, · · · ,M.

Also,V k
0 = 0 and ∂V (L,τ)

∂ζ = 0, which givesV k
M+1 =V k

M−1.
Now, for k = 0, we obtain

V 1
i = rV 0

i−1 +(1−2r−µ)V 0
i + rV 0

i+1
Therefore, the complete fractional approximated initial boundary value problem is,

V 1
i = rV 0

i−1 +(1−2r−µ)V 0
i + rV 0

i+1 f or k = 0 (8)

V k+1
i = rV k

i−1 +(1−2r−µ ′−b1)V k
i + rV k

i+1 +∑k−1
j=1(b j −b j+1)V

k− j
i +bkV 0

i ; f or k ≥ 1 (9)

with initial condition:

V 0
i = 0, i = 0,1,2, · · · ,M (10)

boundary conditions:

V k
0 = 0 and

∂V (L,τ)
∂x

= 0, V k
M+1 =V k

M−1; k = 0,1,2, · · · (11)

The finite difference scheme Equations (8), (9), (10) and (11) can be expressed in matrix form as follows,

V 1 = AV 0 +V ′; f or k = 0 (12)

V k+1 = BV k +∑k−1
j=1(b j −b j+1)V k− j +bkV 0 +V ′; f or k ≥ 1 (13)
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where,V k =
[
V k

1 ,V
k
2 ,V

k
3 , · · · ,V k

M
]
, V ′ = 0 =

[
rV 0

0 ,0, · · · ,0
]T ,

A = [ai j] =


1−2r−µ ′ i f i = j

r i f i = j+1
r i f i = j−1
0 otherwise

and,

B = [bi j] =


1−2r−µ ′−b1 i f i = j

r i f i = j+1
r i f i = j−1
0 otherwise

The above system of equation is solved by using Python software.

2.4 Stability

Theorem 1. The solution of the finite difference scheme Equations (8), (9), (10) and (11) for time fractional radon diffusion
Equations (3), (4) and (5), is stable, when r ≤ min

{
2−µ ′

3 , 2−µ ′

4 |0 ≤ µ ′ ≤ 1
}
.

Proof: Let pi be an eigenvalue of matrix A, so we have, AXi = piXi for some nonzero vector Xi. Now, we choose i such that,
|Xi|= max{|xi|| j = 1,2, . . . ,k}.

Then we have
∑k−1

j=1 ai jx j = pixi
and therefore,

pi = aii +∑k
j=1,i ̸=1 ai j

x j

xi
(14)

Now for i = 1, we get
p1 = a11 +∑k

j=2, j ̸=1 a1 j
x j
x1

= 1−2r− τ−γ +a12
x2
x1

= 1−2r−µ ′+ r x2
x1

≤ 1−2r−µ ′+ r ≤ 1 ≤ 1− r−µ ′ < 1
Theretofore, p1 < 1.
Also, p1v = 1−2r− v+ r x2

x1
≥ 1−2r− v− r x2

x1
≥ 1−2r−µ ′− r ≥−1

When, 1−2r−µ ′− r ≥−1 implies that,
1−3r−µ ′ ≥−1 ⇒ 3r ≤ 2−µ ′ ⇒ r ≤ 2−µ ′

3
Now, for 2 ≤ i ≤ M−1,

pi = 1−2r−µ ′+a12
x2

x1
+a23

x3

x2
≤ 1−2r−µ ′+ r+ r ≤ 1−µ ′ < 1

pi = 1−2r−µ ′+a12
x2

x1
+a23

x3

x2
≥ 1−2r−µ ′− r− r ≥ 1−4r−µ ′ ≥−1

When, 1−4r−µ ′ ≥−1 implies that,
4r ≤ 2−µ ′ ⇒ 4 ≤ 2−µ ′

4 ⇒ 0 ≤ v ≤ 1

−1 ≤ µ ′ ≤ 1 for 2 ≤ i ≤ M−1 when r ≤ 2−µ ′

4 .
Finally, when i = M

pM = aMM +∑k−1
j=1,i ̸=M ai j

x j
pi
≤ 1−2r−µ ′+0+ · · ·+2r ≤ 1−µ ′ ≤ 1

⇒ pM ≥ 1−2r−µ ′−2r ≥−1
Also,

1−4r−µ ′ ≥−1 ⇒ 4r ≤ 2−µ ′ ⇒ r ≤ 2−µ ′

4 ,

Therefore, for 1 ≤ i ≤ M we get,−1 ≤ pM ≤ 1 when r ≤ min
{

2−v
3 , 2−µ ′

4

}
.

Implies, |pM| ≤ 1 when r ≤ min
{

2−v
3 , 2−µ ′

4

}
Therefore, ∥ A ∥2≤ 1 when r ≤ min

{
2−v

3 , 2−µ ′

4

}
, which gives

∥V 1 ∥2=∥ AV 0 ∥2≤∥ A ∥2∥V 0 ∥2
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Now, we have ∥V n ∥2≤∥V n−1 ∥2≤ ·· · ≤∥V 1 ∥2≤∥V 0 ∥2.
Also, eigen values of B are given by,
When i = 1,p1 = b11 +∑k

j=2, j ̸=1 bi j
x j
xi
= 1−2r−µ ′b1 +b12

x2
x1

≤ 1−2r−µ ′−b1 + r
≤ 1− r−µ ′−b1 ≤ 1

Also pi ≥ 1−2r−µ ′−b1 −b12
x2
x1

≥ 1−2r−µ ′−b1 − r ≥ 1

Therefore, µ ′ ≥−1 when 1−3r−µ ′−b1 ≥−1 i.e. r ≤ 2−µ ′−b1
3

When, 2 ≤ i ≤ M−1,
pi = bii +∑k−1

j=1, j ̸=2 bi j
x j
xi
= 1−2r−µ ′b1 +b12

x1
x2
+b23

x3
x2

≤ 1−2r−µ ′−b1 + r+ r
≤ 1−µ ′ ≤ 1

Also, µ ′ ≥ 1−2r−µ ′−b1 − r− r ≥ 1−4r−µ ′−b1 − r ≥−1
Therefore, µ ′ ≥−1 when 1−4r−µ ′−b1 ≥−1 i.e. r ≤ 2−µ ′−b1

4 .
|µ ′| ≤ 1 for 2 ≤ i ≤ M when r ≤ 2−µ ′−b1

4 .
When, i = M, pM = bMM +∑k

j=1, j ̸=M bi j
x j
xi
= 1−2r−µ ′b1 + · · ·+2r xM

xM−1

µ ′ ≤ 1−2r−µ ′−b1 +2r ≤ 1−µ ′−b1 < 1
Also, µ ′ ≥ 1−2r−µ ′−b1 −2r ≥ 1−4r−µ ′−b1 ≥−1
Therefore, µ ′ ≥−1 when 1−4r−µ ′−b1 ≥−1 i.e. r ≤ 2−µ ′−b1

4
Hence, ∥ B ∥2= max

1≤i≤M−1
|pi| ≤ 1 that is ∥ B ∥2≤ 1.

Hence,
∥V k+1 ∥2=∥ BV k +∑k−1

j=1(b j −b j+1)V k− j +bkV 0 ∥2

≤ zB ∥2∥V k ∥2 +(b1 −b2 +b2 −b3 + · · ·+bk−1) ∥V k− j ∥2 +bk ∥V 0 ∥2
≤∥V 0 ∥2

i.e.result is true for k=n+1. Hence, by induction ∥V k ∥2≤V 0 ∥2 .

This shows that the scheme is stable when, r ≤ min
{

2−µ ′−b1
3 , 2−µ ′−b1

4 | 0 ≤ µ ′ ≤ 1
}
.

2.5 Convergence

Theorem 2. Let V k be the exact solution of the time fractional radon diffusion Equations (3), (4) and (5) and V k be the
approximate solution, thenV k converges toV k as (h,τ ′

)→ (0,0) when
r ≤ min

{
2−µ ′−b1

3 , 2−µ ′−b1
4 |0 ≤ µ ′ ≤ 1

}
.

Proof: Let,V k = [V1,V2, . . . ,VN ]
T , V k

= [V 1,V 2, . . . ,V N ] and Ek =V k −V k.
Let us assume that,
|ek

l |= max
1≤i≤N−1

|ek
i |= ||Ek||∞; f or l = 1,2, . . .

and
T k

l = max
1≤i≤N−1

|T k
i |= h2O(τ ′

+h2)

For, k = 1, we have,
|e1

l |= |re0
i−1 +(1−2r−µ ′)e0

i + re0
i+1|

≤ |re0
i−1|+(1−2r−µ ′)|e0

i |+ |re0
i+1|+ |T k

i |
when r ≤ min

{
2−µ ′−b1

3 , 2−µ ′−b1
4 |0 ≤ µ ′ ≤ 1

}
|e1

l | ≤ r|e0
i−1|+(1−2r−µ ′)|e0

i |+ r|e0
i+1|+ |T k

i |
≤ (r+1−2r−µ ′+ r)|e0

i |+ |T k
i | ≤ |e0

i |+ |T k
i |

This implies,
∥ E1 ∥∞≤∥ E0 ∥∞ +r|T k

i |=∥ E0 ∥∞ +rh2(τ ′
+h2)

≤∥ E∞ ∥∞ +τ ′2Γ(2− γ)0(τ ′
+h2)

That is the result hold for n = 1.
For n = k, we assume,
∥ Ek ∥∞≤∥ E0 ∥∞ +kh20(τ ′

+h2)
For n = k+1, we have,
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∥ Ek+1
l ∥= |rek+1

i−1 +(1−2r−µ ′)ek
i + rek

i+1|+ |T k+1
i |+∑k−1

j=1 (b j −b j+1)e
k− j
i +bke0

i |+ |T k
i |

when r ≤ min
{

2−µ ′−b1
3 , 2−µ ′−b1

4 |0 ≤ µ ′ ≤ 1
}
.

|Ek+1
l | ≤ r|ek

i |+(1−2r−µ ′−b1)|ek
l |+ r|ek

i |
+(b1 −b2 +b2 −b3 + · · ·+bk−1)|ek

l |+ r|T k
l |

≤ (r+1−2r−µ ′−b1 + r+b1 −bk +bk)|ek
l |

≤ |ek
l |+ r|T k

l | ≤∥ Ek ∥∞ +r|T k
l |

≤∥ E0 ∥∞ +r|T k
l |+ krh20(τ ′

+h2)

≤∥ E0 ∥∞ +kτ ′2Γ(2− γ)O(τ ′
+h2)+€T M2Γ(2− γ)

|Ek+1
i | ≤∥ E0 ∥∞ +(k+1)τ ′2Γ(2− γ)O(τ ′

+h2)
Therefore, we conclude that if we assume

r ≤ min
{

2−µ ′−b1
3 , 2−µ ′−b1

4 |0 ≤ µ ′ ≤ 1
}

then ∥ Ek ∥∞→ 0 as τ ′ → 0, h → 0 which results in the convergence ofV k
i toV (ζi, tk).

Hence, the proof is complete.

3 Result and Discussion
In this section, we aim to derive approximate solutions for the time fractional Radon diffusion equation while considering both
initial and boundary conditions in water medium. We adopt a finite difference scheme to obtain numerical solutions for the
time fractional Radon diffusion equation. The equation under investigation is the following time-fractional Radon diffusion
equation:

∂ γV (ζ ,τ)
∂τγ = D

∂ 2V (ζ ,τ)
∂ζ 2 −µV (ζ ,τ) , 0 < γ ≤ 1, 0 ≤ ζ ≤ L τ ≥ 0, (15)

Initial condition:

V (ζ ,0) = 0, 0 < ζ < L (16)

Boundary conditions:

V (0,τ) = dcV0 and
∂V (L,τ)

∂τ
= 0, τ ≥ 0 (17)

Exact solution of Equations (15), (16) and (17) for γ = 1 is as follows (10),

V (ζ ,τ) = dcV0


cosh

√
µ
D
(L−ζ )

cosh
√

µ
D

L
− Dπ

L2

∞

∑
n=0

(2n+1)e
−

 (2n+1)2π2D
4L2 +µ

τ

(
(2n+1)2π2D

4L2 +µ
) sin

(2n+1)πζ
2L

 (18)

To estimate approximate solutions of the time –fractional radon diffusion Equations (15), (16) and (17), we consider the
parameters given in the Table 1.

Table 1. Parameters and their values
Parameters Value
Radon diffusivity coefficient in water D 1×10−9 Bq/m3

Spatial length L 1.7278 cm
Radon decay constant µ 2.1×10−6

Adsorption coefficient c 4 m2/kg
Material density d 0.5 g/cm3

Radon concentration in airV0 200 Bq/m3
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ThePython program is used to find the approximate solutions of Equations (15), (16) and (17) by developed finite difference
method given in Equations (8), (9), (10) and (11). In Table 2, the approximate solution of time-fractional radon diffusion
Equations (15), (16) and (17) derived from the fractional finite difference scheme Equations (8), (9), (10) and (11) is compared
with the exact solution for γ = 1, which demonstrating the method’s effectiveness.

Table 2. Absolute error
Absolute Error

ζ → t ↓ 0.2 0.4 0.6 0.8 1.0
0.0 1.03×10−4 5.41×10−5 3.93×10−5 3.34×10−5 3.18×10−5

0.2 8.45×10−5 4.44×10−5 3.22×10−5 2.74×10−5 2.61×10−5

0.4 6.94×10−5 3.64×10−5 2.65×10−5 2.25×10−5 2.14×10−5

0.6 5.69×10−5 2.99×10−5 2.17×10−5 1.85×10−5 1.76×10−5

0.8 4.67×10−5 2.45×10−5 1.78×10−5 1.51×10−5 1.44×10−5

1.0 3.83×10−5 2.01×10−5 1.46×10−5 1.24×10−5 1.18×10−5

In Figures 1, 2 and 3, we plot the dynamics of radon concentration for the variation of control parameters with fixed time
τ = 12 hrs. Figure 1 represents the behaviour of radon concentration in water for γ = 1. It is observed that, at ζ = 0, that is
beginning of the radon diffusion process the concentration is high in the water. As the distance is passed, the concentration is
gradually decreased and moves to attain the resting concentration in the water.

Fig 1. Radon concentration forτ = 12 hrs, γ = 1, h = 0.001

Furthermore, we study the effect of parameter γ on the radon concentration in water. Figure 2 shows the concentration of
radon over space for different control parameter γ and τ = 12 hrs. The amount of radon concentration in Figure 2 is same as
in Figure 1. It is observed that radon concentration decreases more rapidly as γ decreases.

Fig 2. Radon concentration forh = 0.001,τ = 12 hrs
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Figure 3 shows the simulation of radon concentration for different time slots and γ = 1.We observe that radon concentration
gets increases as time passes.

Fig 3. Radon concentration forγ = 1, h = 0.001

We observed that, the approximate solutions obtained by developed method is close to exact solution obtained by A.
Rybalkin (10) for γ = 1. Therefore, our developed scheme is suitable for obtaining numerical solution of fractional order Radon
diffusion equation in water medium.

4 Conclusion
We have successfully formulated an explicit finite difference scheme for fractional-order Radon diffusion equations. We have
conducted a comprehensive analysis of the scheme’s stability and convergence. As an application of this method, we have
obtained numerical solutions for practical problems involving a water medium and have presented these solutions through
graphical simulations. We study the effect of time-fractional order γ on radon concentration and observe that it decreases
rapidly as γ decreases. Furthermore, we observe that radon concentration in water gets increases as time passes.
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