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Abstract
Objectives: Consider a graph G(V,E)is the connected, undirected graph. This
study creates a new parameter named the Fractional Star Domination Number
(FRSDN), which is denoted by γgs(G) to calculate the minimum weight with the
star of all vertices of G and the function values of all edges. Methods: This
study evaluates the γgs(G) of some standard graphs and bounds by generalizing
the value that is provided by the function value of an edges. Findings: This
study evaluated γgs(G) on some standard graphs, such as paths, cycles, and the
rooted product of paths and cycles. Finally, we obtain some bounds on γgs(G)

for some general graphs, as well as the exactness value yielded by them. For
any graph G without isolated vertices, we have γgs(G) ≥ γ f ′ (G). Novelty: The
new parameter FRSDN of G is created by combining the fractional dominating
function and the star dominating set.
Keywords: Domination Number; Star Domination Number; Fractional
Dominating Function; Fractional Domination Number; Fractional Star
Domination Number

1 Introduction
A Graph G has vertex set V (G) and an edge set E(G) and is an undirected connected
graph. The open neighbourhood of an edge q, which is defined as the collection of all
edges adjacent to q and is denoted by Nbhd(q). The closed neighbourhood of an edge
is defined as follows Nbhd[q] = Nbhd(q)∪{q}.The star of r is the gathering of all edges
that are incident to the vertex r, and it is notated by S∗(r) . Here, the degree of the vertex
r is notated as deg(r) = |S∗(r)| for all r ∈V (G). The maximum and minimum degrees
of the graph G are denoted by △( G) and δ ( G), respectively. A set Sd ⊆ V is called
the Star Dominating Set (SRDS) if the star of r intersects the star of some vertex in Sd ,
for every vertex r ∈ V − Sd . The Star Domination Number (SRDN) is the minimum
cardinality among all SRDSs of G. The function f : V (G) → [0, 1] is said to be the
fractional dominating function if ∑r∈Nbhd[y] f (r)≥ 1 for all y ∈ V (G). The fractional
domination number is the minimumweight of all FRDFs of G and is denoted by γ f (G).

The function g : E(G)→ [0, 1] is known as the Fractional Star Dominating Function
(FRSDF) of G, if it satisfies ∑q∈S∗(r) g(q)≥ 1 for every r ∈V , where S∗(r) is the star of
r. Here, w(g) = ∑q∈E(G) g(q) represents the weight. The Fractional Star Domination

https://www.indjst.org/ 64

https://doi.org/10.17485/IJST/v17sp1.111
https://doi.org/10.17485/IJST/v17sp1.111
https://doi.org/10.17485/IJST/v17sp1.111
https://doi.org/10.17485/IJST/v17sp1.111
amuthas@alagappauniversity.ac.in
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
www.iseeadyar.org.
https://www.indjst.org/


Shanthi et al. / Indian Journal of Science and Technology 2024;17(SP1):64–70

Number (FRSDN) of a graphG is the minimum weight of all FRSDFs of G and it is denoted by γgs(G).
In (1)proposed many ideas that are related to split domination are proposed, and illustrated in some divisible dominating

graphs. In (2,3) investigated some domination such as F-domination and total domination. The results of fractional graphs
concerning the intuitionistic dominating functions are provided in (4). In (5) introduced the concept of reinforcement numbers
using half domination. The impacts of fractional domination and whole edge domination are provided when removing a
vertex or removing or adding an edge from the graph, and some results related to the parameters are covered in (6) and (7).
The information on star partitioning is given in (8), and the bounds and algorithms of signed star domination numbers in some
classes of graphs are introduced (9). In (10) initiated the study of fractional eternal domination in graphs.

The star domination is merged with several other known dominating parameters. To the best of our understanding, the
FRSDF has not yet been researched. In this paper, the fractional star dominating function of G is created by combining the
fractional dominating function and star-dominating set. In this paper, we begin investigating the Fractional Star-Dominating
Function (FRSDF), which is an extension of an edge fractional dominating function. Here, we add the additional condition that
the sum of the function values of the edges incident at each vertex is at least one. In internet systems, rooted product graphs
are used to link the internet from one system to another. The rooted product of a path Pr and a cycle Cr′ is a graph created by
taking one copy of an r-vertex graph Pr and r copies of Cr′ and then merging the j-th vertex of Pr with all vertices of the j-th
copy ofCr′ . This graph is denoted by Pr⊙Cr′ , refer

(11).
In Section 2, we evaluate the exact values of FRSDN on some standard graphs and discuss the rooted product of paths and

cycles. For any graph G without isolated vertices, we have γgs(G) ≥ γ f ′ (G). In other words, the fractional star dominating
function of a graph G implies the edge fractional dominating function of G, but the converse need not be true. Also, in Section
3, we show some of the bounds and sharpness.

2 Methodology

Some results about FRSDN

In this section, we obtain the exact value of the FRSDN for some common graphs, such as paths, cycles, a star graph, a complete
graph, and a complete bipartite graph. The FRSDN of the rooted product of paths and cycles are also determined.

Observation 2.1 (12) For any graph G, we have γ f ′ (G) = γ(L(G)). Hence it follows that γ f ′ (Cn) = γ f (Cn) =
n
3 and γ f ′ (Pn) =

γ f (Pn−1) =
⌈ n−1

3

⌉
..

Theorem 2.2 For any path Pr′ with r
′ ≥ 2, then γgs (Pr′) =

⌈
r′
2

⌉
.

Proof Consult the graph G = Pr′ , which has at least two vertices, as well as its vertex set V (G) = {ri : 1 ≤ i ≤ r
′} and an

edge set E(G) = {q j : j = 1, 2, ... , r
′ −1}. Here, we allot a value of one to each pendant edge of the graph G.

Case(i): When r
′
= 2k+3, k ∈ N. This case is divided into two sub-cases.

Sub case(i): A function g is defined as g : E(G)→ [0, 1] by g(q j), where 1 ≤ j ≤ r
′ −1. In this case, we distribute the values

g(q1) = g(qr′−1)= 1 and g(q2y+3) = 1 or g(q2y+2) = 1 where, y ∈ Z,
(

0 ≤ y <
⌊

r′−2
2

⌋)
, and the rest of the edges are set to 0.

Therefore, the weight of g is w(g) = ∑q∈ε(G )g(q) = ∑g
(
qj
)
=
⌈

r
′

2

⌉
.

Sub case(ii): Here, we provide the value g(q1) = g(qr′−1)= 1, and we set the value of 1
t as g(q2y+2) or g(q2y+3) or g(q r′ −1

2
),

where t ∈ Z > 0, and we allocate the value of 1− 1
t as g(q2y+3) or g(q2y+2) or g(q r′ −1

2 +1
). In this case, we have the weight of g,

which is w(g) = ∑q∈ε(G )g(q) = ∑g
(
qj
)
=
⌈

r
′

2

⌉
.

Case(ii): For r
′
= 2k, k ∈ N and r

′
= 3.

For r
′
= 3, we have g(q1) = g(q2) = 1. Thus γgs (P3) = 2 =

⌈
r′
2

⌉
. For r

′
= 2k, k ∈ N. We used g(q1) = g(qr′−1)= 1 and

g(q2y+3) = 1, otherwise 0. Then the weight of g is w(g) = ∑q∈E (G )g(q) = ∑g
(
qj
)
=

⌈
r
′

2

⌉
. As a result, in all of the preceding

cases, γgs (Pr′) =
⌈

r′
2

⌉
.

Corollary 2.3 If γ f (Pr′) =
⌈

r′
3

⌉
and γgs

(
Pr′

)
=
⌈

r
′

2

⌉
, then γ f (Pr′ )≤ γgs(Pr′ ).

Lemma 2.4 (13) For any graph without isolated vertices γss′ (G) = γs′ (G).
Theorem 2.5 Let G be any with no isolated vertices. Then γgs(G)≥ γ f ′ (G).
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Proof Consider G to be a graph, and g to be a FRSDF of G such that γgs(G) = ∑q∈E(G) g(q). Here, ∑q′∈Nbhd[q] g(q
′
) =

S∗(x)+ S∗(y)− g(q) ≥ 1 for every q = xy ∈ E(G), where S∗(x) and S∗(y) are the stars of x and y. Therefore, g is a fractional
edge dominating function of G. Hence γgs(G)≥ γ f ′ (G).

Theorem 2.6 For any cycleCr′ with r
′ ≥ 3 , γgs(Cr′ ) =

r
′

2 .
Proof TakeCr′ the graph that has at least three vertices and has |V (G)|= r

′
= |E(G)|.

Case(i): When r
′ is even.

Sub case(i): A function g is defined as g : E(G)→ [0, 1] by g(q j), where 1 ≤ j ≤ r
′ . In this case, for all j = 1, 2, ... r

′ are
assigned a value g(q j) =

1
2 . Therefore, the weight of g is w(g) = ∑q∈E(G) g(q) = ∑g(q j) =

r
′

2 .

Sub case(ii): In this case, we assign the value 1 to g(q2k), where k is an integer which is (1 ≤ k ≤ r
′

2 ); otherwise, we assign
the value 0 to all remaining edges. Then the weight of g is w(g) = ∑q∈E(G) g(q) = ∑g(q j) =

r
′

2 .
Case(ii): When r

′ is odd.
In this case, the only way to assign a value is to have g(q j) =

1
2 for all j = 1, 2, ... r

′ .Thus, the weight is w(g) = ∑g(q j) =
r
′

2 .
Hence γgs(Cr′ ) =

r
′

2 .
Corollary 2.7 If γ f (Cr′ ) =

r
′

3 and γgs(Cr′ ) =
r
′

2 , then γgs(Cr′ )> γ f (Cr′ ).
Theorem 2.8 For the star graph K1, r′ , then γgs(K1, r′ ) = r

′ .
Proof Let G = K1, r′ be a star graph with the vertex set V (G) = {p∪ pi : i = 1,2, ... ,r

′}, and the set of pendant edges
{(ppi) : i = 1,2, ..., r

′}.

Fig 1. K1, r′

We determine a function g : E(G)→ [0, 1]. If the function value of each pendant edge is 1, then the FRSDN of K1, r′ is r
′ .

Again, if the function value of some of the pendant edges is zero, then our assumption will be violated. As a result, all pendant
edges can only have a value of 1. Hence, γgs(G) = r

′ .
Theorem 2.9 For Kr′ with r

′ ≥ 3, then γgs(Kr′ ) =
q
′

r′−1
.

Proof Consider G = Kr′ as a complete graph with |V (G)| = r
′ and |E(G)| = q

′
= (r

′
)(r

′−1)
2 , where q

′ is the cardinality of

edges in G. We have a function g : E(G)→ [0, 1] as follows; here, we assign the value 1
r′−1

for all qi,(1 ≤ i ≤ (r
′
)(r

′−1)
2 ). Thus,

the weight of g is w(g) = ∑q∈E(G) g(q) = |E(G)|
r′−1

= q
′

r′−1
.

Corollary 2.10 If Kq′ , r′ is a complete bipartite graph, then γgs(Kq′ , r′ ) = max{q
′
, r

′}.

Theorem 2.11 If Pr⊙Cr′ has a rooted product with r ≥ 2 and r
′ ≥ 3, then γgs(Pr⊙Cr′ ) =

rr
′

2 .
Proof Consider G = Pr⊙Cr′ as a rooted product of path and cycle graphs with r ≥ 2 and r

′ ≥ 3. A graph G has an edge set
of E(G) = {(X ∪Y ) = bt ∈ E(G) : 1 ≤ t ≤ rr

′
+ r−1} where X = {q

′
i ∈ E(Cr′ ) : i = 1,2, ...,rr

′} and Y = {q j ∈ E(Pr) : j =
1,2, ...,r−1} and vertex set as |V (G)|= rr

′ . Here, we have three cases.
Case(i): When r is odd and r

′ is odd. In this case, a FRSDF g : E(G)→ [0, 1] is created by −. Therefore, the weight of g is
w(g) = ∑bt∈E(G) g(bt) = ∑(g(q

′
i)+g(q j)) =

rr
′

2 .
Case(ii):
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Fig 2.The fractional star domination ofP4⊙C5

Sub case(i): If r is odd and r
′ is even. Create a function g : E(G) → [0, 1] by the following two possibilities: g(bt) =

1
u for q′k ∈ X

1− 1
u for q′k+1 ∈ X

0 otherwise
where, u ∈ Z > 0 and k ∈ Z as (1 ≤ k ≤ rr

′

2 ) (or)− .Thus, the weight of g isw(g) = ∑bt∈E(G) g(bt) = ∑(g(q
′
i)+g(q j)) =

rr
′

2 .
Sub case(ii): If r is even and r

′ is odd. Define a function g : E(G) → [0, 1] by the following two possibilities: g(bt) ={
1 for all q2v−1 ∈ Y and q′2k ∈ X
0 otherwise

where, v and k are an integers, which is (1 ≤ v ≤ r
2 ) and

(
1 ≤ k ≤

⌈
r′
2

⌉)
(or) otherwise

g(bt) =

{
1
2 for all q′i ∈ X
0 otherwise

. Then the weight of g is w(g) = ∑bt∈E(G) g(bt) = ∑(g(q
′
i)+g(q j)) =

rr
′

2 .

Sub sub case(i): If r = 2 and r
′ is odd, then we assign the value 1

u for all q j ∈ Y and q
′
i for some i and put 1− 1

u for q
′
i+1 ∈ X ,

where u is any positive integer. Here, the weight of g is w(g) = ∑bt∈E(G) g(bt) =
rr

′

2 .
Sub sub case(ii): If r ≥ 4 and r

′ is odd, then we assign the value 1
2 for all q

′
i ∈ X and 0 for all q j ∈ Y . Thus, the weight of g is

w(g) = ∑bt∈E(G) g(bt) =
rr

′

2 .
Case(iii): When r is even and r

′ is even. We determine a function g : E(G)→ [0, 1] by the following two possibilities:

g(bt) =

{
1 for all q′2k−1 ∈ X and q′2k ∈ X
0 otherwise

where k as an integer, which is (1 ≤ k ≤ rr
′

2 ) (or) −. Therefore, the weight of g is w(g) = ∑bt∈E(G) g(bt) =

∑(g(q
′
i)+g(q j)) =

rr
′

2 . Hence, γgs(Pr⊙Cr′ ) =
rr

′

2 .

3 Result and discussion
Bounds on γgs(G)

In this section, we present some bounds on the fractional star domination number of some general graphs and trees, as well
as discuss the exactness of the bounds.

Theorem 3.1 If any graph of order c and size d has δ (G)≥ 1, then γgs(G)+d ≥ c.
Proof Here, G is a graph with δ (G)≥ 1, where δ denotes the minimum degree. It has the order c and the size d.
To prove: γgs(G)+ d ≥ c. Let g be a FRSDF of G and ∑q∈S∗(r) g(q)≥ 1 for each vertex r ∈ V (G). Thus, γgs(G) = w(g) =

∑q∈E(G) g(q)≥ 1 ≥ c−d. This implies that γgs(G)+d ≥ c. This bound is sharp for P2.

Theorem 3.2 If any graph G has δ (G)≥ 1, then γgs(G)≥ r
′

2 .
Proof Assume G as a graph with δ (G)≥ 1, where δ denotes the minimum degree, and its order is r

′ . Let g be a FRSDF of
G that is γgs(G) = ∑q∈E(G) g(q) = 1

2 ∑r∈V (G) ∑q∈S∗(r) g(q)≥ 1
2 ∑r∈V (G) 1 = r,

2 . Hence, γgs(G) ≥ r
′

2 . This bound is sharp for Pr′ ,
where r

′ is even, as well as for the graphs Cr′ , Kr′ , and Kc,d , where c = d, here c and d are the vertex cardinality of first and
second partition of Kc,d .
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Theorem 3.3 For any graph G with δ (G)≥ 1, then max{γ f ′ (G), r
′

2 , r
′ −h1} ≤ γgs(G)≤ (h1 +h2)−1, where h1 and h2 are

the number of odd and even vertices of G, respectively.
Proof Consider G as a graph with δ (G)≥ 1. Let r

′be the order of G, and q
′ be the size of G, and h1 and h2 are the number

of odd and even vertices of G. By theorems (2.5) and (3.2), we have γgs(G)≥ γ f ′ (G) and γgs(G)≥ r
′

2 .
Claim 1: γgs(G) ≥ r

′ − h1. Let g be a FRSDF of G and ∑q∈S∗(r) g(q)≥ 1 for every vertex r ∈ V (G). Take h1 and h2

as h1 = {ri : i is odd} and h2 = {r j : j is even}. Here, h1+h2 = r
′ . Enough, we must prove that γgs(G) ≥ h2. If h1 =

h2 and △(G) ≤ 2, then γgs(G) = w(g) = ∑q∈E(G) g(q)≥ r
′

2 ≥ h1+h2
2 = h2. Thus, γgs(G) = h2. Suppose that h1 = h2 and

△(G) > 2, we have γgs(G) = w(g) = ∑q∈E(G) g(q)≥ r
′

2 = h1+h2
2 = h2. Thus, γgs(G) = h2. If h1 ̸= h2, then always h1 > h2.

Here, γgs(G) = w(g) = ∑q∈E(G) g(q)≥ r
′

2 = h1+h2
2 = 1

2 (∑ri∈h1
1+∑r j∈2 1) = 1

2 (2h2 +1)> h2. Thus, γgs(G) > h2. Therefore,
γgs(G)≥ h2 = r

′ −h1.
Claim 2: γgs(G)≤ (h2+h1)−1. Enough to prove that γgs(G)≤ q

′ . Here, γgs(G) = q
′ for a star graph; otherwise, γgs(G)< q

′ .
Clearly, we have γgs(G) ≤ q

′
= r

′ −1 = (h1 +h2)−1. Hence max{γ f ′ (G), r
′

2 , r
′ −h1} ≤ γgs(G) ≤ (h1 +h2)−1. For P2, this

bound becomes sharp.
Theorem 3.4 For any tree Twith△(G)≥ 2, we have γgs(T)+∆(T)≥ max

{
γ f (T)+

⌈
r′
q′

⌉
,
⌈
|p(ε)|

2

⌉
+1

}
, where q

′and r
′ are

the size and order, and |p(E)| is the cardinality of pendant edges.
Proof Think of T as a tree with△(T )≥ 2 and g as a FRSDF of G.
Claim 1: γgs(T)+∆(T)≥ γ f (T)+

⌈
r′
q′

⌉
.. Here, we have two cases.

Case(i):△(T ) = 2. For path graph, γgs(T ) = ∑q∈E(T ) g(q)≥ ∑ r∈V (T ) g(r) = γ f (T ). Thus γgs(T)+∆(T)≥ γ f (T)+
⌈

r′
q′

⌉
..

Case(ii): △(T ) > 2. For any tree graph, γgs(T ) = ∑q∈E(T ) g(q)≥ ∑ r∈V (T ) g(r) = γ f (T ). Thus γgs(T)+∆(T) ≥ γ f (T)+⌈
r′
q′

⌉
..

Claim 2: γgs(T)+∆(T)≥
⌈
|p(E )|

2

⌉
+1.

Enough to prove that, γgs(T ) ≥ |p(E)|. For the star graph, γgs(T ) = |p(E)| and path graph γgs(T ) ≥ |p(E)|. Thus,
for any tree, γgs(T ) = ∑q∈E(T ) g(q)≥ |p(E)|. We have γgs(T) +∆(T) ≥ |p(E )| ≥

⌈
|p(E )|

2

⌉
+ 1 for △ ≥ 2. Finally, we have

γgs(T)+∆(T) ≥ max
{

γ f (T)+
⌈

r′
q′

⌉
,
⌈
|p(E )|

2

⌉
+1

}
from the previous two inequalities. This completes the proof. Also, this

bound is sharp for path P4.

Fig 3. Sharpness onP4=P4

Figure 3 provides the equality of the theorem (3.4) bound.
Proposition 3.5 (10) For any n ∈ N:
1. γ∞

f (Kn) = 1.
2. γ∞

f (Pn) = α (Pn) =
⌈ n

2

⌉
.

3. γ∞
f (Cn) = γ (Cn) =

⌈ n
3

]
if n ≥ 3.

Observation 3.6 (7)

1.For the path graph Pn with n ≥ 3,γwhe (Pn) =

{
1 if 3 ≤ n ≤ 4

Pn has no WDES, Otherwise .

2.For the cycle graphCn with n ≥ 3,γwhe (Cn) =

 1 if n = 3
2 if n = 4

Cn has noW DES, Otherwise
.

3.For the complete graph Kn with n ≥ 3,γwhe (Kn) =

 1 if n = 3
2 if n = 4

Kn has no WDES, Otherwise
.

4.For a Wheel graphWn with n ≥ 3,γwhe (Wn) =

{
2 if n = 3

Wn has noW DES, Otherwise .
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5.For star graph Sn with n ≥ 3,γwhe (Sn) = 1.
Note 3.7:
For the previous theorems (2.2), (2.6), (2.8) and (2.9), proposition (3.5) and the observation (3.6), we conclude the following

comparisons here r
′
= n:

(i) If γgs(Kr′ ) =
q
′

r′−1
and γ∞

f (Kr′ ) = 1, then γgs(Kr′ )> γ∞
f (Kr′ ).

(ii) Ifγgs (Pr′) =
⌈

r′
2

⌉
and γ∞

f (Pr′) = α (Pr′) =
⌈

r′
2

⌉
, then γgs(Pr′ ) = γ∞

f (Pr′ ) = α(Pr′ ).

(iii) If γgs (Cr′) =
r′
2 and γ∞

f (Cr′) = γ (Cr′) =
⌈

r′
3

⌉
, then γgs (Cr′)≥ γ∞

f (Cr′) .

(iv) If γgS (Pr′) =
⌈

r′
2

⌉
and γwhe (Cr′) =

 1 if n = 3
2 if n = 4

Cr′ has no WDES, Otherwise
, then γgs(Pr′ )> γwhe(Pr′ ) with r

′
= 3, 4.

(v) If γgs(Cr′ ) =
r
′

2 and γwhe (Cr′) =

 1 if n = 3
2 if n = 4

Cr′ has no WDES, Otherwise
, then γgs(Cr′ )> γwhe(Cr′ )with r

′
= 3 and γgs(Cr′ ) =

γwhe(Cr′ ) with r
′
= 4 .

(vi) If γgs(Kr′ ) =
q
′

r′−1
and γwhe (Kr′) =

 1 if n = 3
2 if n = 4

Kn has no WDES, Otherwise
, then γgs(Kr′ ) > γwhe(Kr′ ) with r

′
= 3 and

γgs(Kr′ ) = γwhe(Kr′ ) with r
′
= 4 .

(vii) If γgs
(
K1,r′

)
= r′ and γwhe (Sn) = 1, then γgs

(
K1,r′

)
> γwhe (Sn) .

4 Conclusion
This study presents a new parameter called fractional star domination, which combines the fractional dominating function and
star domination. The exact value of the FRSDN of some known graphs, such as paths, cycles, and trees have been calculated.
Here, the accurate value of the FRSDN of the rooted product of paths and cycles are also obtained. In addition, the bounds
for fractional star domination on some general graphs and trees were determined, as well as the sharpness of the bound. The
inequality of the graphs for any simple graph G are γgs(G)≥ γ f ′ (G). In the future, the changing and unchanging fractional star
domination when a vertex is erased or an edge is eliminated or an edge is inserted to G may be studied.
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