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Abstract

Background/Objectives: The COVID-19 pandemic has created an urgent
need for rapid and accurate diagnosis to facilitate timely treatment and
control spread. However, the initial symptoms can be non-specific, making
early differential diagnosis challenging. Methods: This study proposes an
integrated framework for COVID-19 diagnosis using improved Fuzzy Cognitive
Map (FCM) approach for fast, intelligent screening of COVID-19 cases versus
other respiratory conditions based on risk factors and clinical presentation.
The integrated framework is designed based on combining fuzzy cognitive
maps with different classifiers separately such as Random Forest (RF) classifier,
Gradient Boosting (GB) classifier and Weighted Decision Tree (WDT) approach
to model interrelationships between indicative symptoms and risk factors in
COVID-19. The model is evaluated on a real time COVID-19 dataset of 600
patient details (i.e., 520 non-covid and 80 Covid). Due to the unbalanced
nature of class labels, this work is evaluated based on balanced accuracy
and Matthews's correlation coefficient to identify the appropriate model.
Findings: Among the different combination of classifiers FCM-RF attains
95.91% which outperforms 15.14%, 5.05% and 7.69% higher than normal
FCM, FCM-GB and FCM-WDT. Novelty: The interpretability of the fuzzy map
supplemented by the high predictive performance of random forest provides
an effective decision support system for frontline healthcare workers to make
quick, reliable screening decisions and ensure optimal care pathways. The
integrated approach demonstrates the potential of computational intelligence
in addressing critical diagnosis challenges within complex, urgent medical
scenarios.
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1 Introduction

COVID-19, caused by the highly contagious SARS-CoV-2 virus, has rapidly spread globally, resulting in over 450 million cases
and 6 million deaths as of March 2023 ("), Timely and accurate diagnosis is critical to reduce COVID-19 severity and prevent
fatalities. However, no single diagnostic test is 100% accurate, and traditional methods like RT-PCR testing, rapid antigen
testing, and radiographic imaging have limitations such as long turnaround times, false negatives, and difficulty handling
complex interdependencies . Initially, several clinical and diagnostic methods were developed for COVID-19 disease include
molecular approaches like RT-PCR for detecting viral genome markers®, serological testing, laboratory devices, radiology
detection, and viral cell cultures . Rapid antigen/antibody tests and serological assays have also been developed for accurate
detection of SARS-CoV-2®). However, the accuracy of these clinical diagnostic tests is not guaranteed, and alternate tests
are often necessary to confirm sensitivity and specificity. Additionally, factors such as the establishment of well-equipped
laboratories, expensive testing machines, travel time to competent laboratories, and the scarcity of qualified medical personnel
can impact the results and lead to potential false negatives.

To address these limitations, researchers have turned to innovative computational techniques combining cognitive modeling
and optimization algorithms to improve diagnostic accuracy®. Several studies have demonstrated the efficacy of deep
convolutional neural networks combined with classifiers like Support Vector Machines (SVM) for multi-class classification
of COVID-19 from chest X-ray” and CT scan images®, achieving accuracies exceeding 98% and outperforming other
approaches. Other works have focused on optimizing model hyperparameters and feature selection using novel metaheuristic
algorithms like Binary Sparrow Search for COVID-19 patient data classification, resulting in improved performance over
unoptimized versions®. Hybrid models combining techniques like Sparger Wolf Hawk Optimization with deep neural
networks have also shown promise for COVID-19 assessment!?), For text data, weighting schemes have been employed
to extract informative features from clinical notes for COVID-19 identification and mortality prediction'). Deep learning
methods have effectively utilized both image and text data, proving superior to classical machine learning techniques.
Additionally, Computer Aided Design (CAD) systems have been developed, implementing phases like segmentation, clustering,
and visualization for automated CT scan COVID-19 screening 2.

However, most studies in the literature have focused on computational approaches using Computed Tomography (CT)
images and X-ray images, with Deep Neural Networks being the most commonly used classifier!®). These image-based
approaches may not be suitable for early diagnosis of mild COVID-19 cases, where symptoms overlap with other respiratory
diseases like influenza, pneumontia, and tuberculosis !¥). Furthermore, the computational models primarily focus on chest X-
ray image data for COVID-19 diagnosis, neglecting other symptoms like fever, cough, and fatigue. These models are ineffective
in the early stages of infection, as chest X-ray images may not accurately predict symptoms. No studies have explored the use
of intelligence-based classifiers or combinations thereof for COVID-19 diagnosis using non-image-based datasets, including
clinical symptoms and laboratory results.

There is a need for an integrated approach that leverages the strengths of both cognitive modeling and optimization
algorithms to model complex diagnostic relationships and accurately classify COVID-19 from other respiratory conditions
using non-image-based datasets. By incorporating clinical symptoms and laboratory results, such an approach could enable
early detection, appropriate triage, and better patient outcomes !,

The motivation of this study is to address the limitations of existing image-based approaches for COVID-19 diagnosis by
developing an integrated approach that incorporates clinical symptoms and laboratory results. By leveraging the strengths of
cognitive modeling and optimization algorithms ), the proposed approach aims to model complex diagnostic relationships
and accurately classify COVID-19 from other respiratory conditions, enabling early detection, appropriate triage, and better
patient outcomes. The specific objective of this work is to carry out a controlled experiment using intelligence-based classifiers -
Fuzzy Cognitive Maps (FCM), FCM with Random Forest (FCM-RF), FCM with Gradient Boosting (FCM-GB), and FCM with
Weighted Decision Trees (FCM-WDT) - for early COVID-19 identification using clinical symptoms and laboratory results.
The major area of application of this work is early diagnosis of COVID-19 using non-image-based datasets, including clinical
symptoms and laboratory results. This approach aims to improve diagnostic accuracy and enable timely intervention, especially
in cases of mild COVID-19 infections with non-specific symptoms. This work attempts to solve the following research questions:

RQ1: Which hybrid classifier approach performs better prediction rate for COVID-19 diagnosis?

RQ2: How accurately do the chosen classifiers for COVID-19 differential diagnosis perform in terms of metrics such as
accuracy, precision, recall, F-measure, Matthews Correlation Coefficient, and balanced accuracy?

By addressing these research questions, this study aims to contribute to the existing state-of-the-art approaches by providing
a comprehensive analysis and evaluation of intelligence-based classifiers for early COVID-19 diagnosis using non-image-
based datasets. The integrated approach, combining cognitive modeling and optimization algorithms, is designed to leverage
the strengths of both techniques to model complex diagnostic relationships and accurately classify COVID-19 from other
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respiratory conditions. Improving diagnostic accuracy and efficiency can enable early detection, appropriate triage, and better
patient outcomes, ultimately contributing to more effective management of COVID-19 and similar respiratory diseases.

2 Methodology

This section discusses the approaches used in this work, dataset description and the performance evaluation metrics.

2.1 Approaches

This section discusses in detail about the random forest, gradient boosting approach, weighted decision tree and fuzzy cognitive
maps used for COVID-19 diagnosis.

(i) Random Forest

A random forest is a machine learning method for classification and regression, using ensemble learning to solve complex
problems !”). It uses decision trees and bagging to train a forest, increasing accuracy through bagging. The algorithm determines
the result by averaging or averaging out different trees, with accuracy growing as the number of trees increases.

Bagging: Training set for kth tree:

Xk = {x1k, x2k,....xnk} sampled with replacement from original training set X

Tree training:

hk(x) = learned tree prediction model for training set Xk

Forest prediction:

For classification:

¥ = majority vote {h1(x), h2(x),..., hK(x)}

For regression:

§ = (UK) - hk(x)

Gini impurity:

G=1-> pi2

Where pi is proportion of class i samples at a node

Information gain:

Gain(T,f) = Impurity(Parent node T) - >_oi Impurity(Child node Ti)

Where f is the feature Split, oi is proportion of samples in child node i

(ii) Gradient Boost

Gradient boosting is an advanced method of boosting that turns several weak learners into strong learners '®). Gradient
descent is used to train each new model in this process to minimize the loss function of the previous model, which could mean
squared error or cross-entropy. A boosting method would be gradient boosting. Each time a new weak model is trained, the
technique computes the gradient of the loss function with respect to the predictions made by the current ensemble. The cycle
continues until the gradient is decreased. Then, until a stopping requirement is met, the method is repeated as often as necessary,
adding the new model’s predictions to the ensemble each time.

fm = fin—1— pmgm (1)

(iii) Weighted Decision Tree

The Decision Tree (Weight-Based) approach is a nested approach that creates attribute weights from the COVID - 19
dataset '), applying this approach requires a rudimentary understanding of subprocesses. Instead of the information gain or
gain ratio criteria, the Decision Tree (Weight-Based) approach uses an arbitrary attribute relevance test criterion.

(iv) Fuzzy Cognitive Maps

Fuzzy cognitive maps (FCMs) can model complex interrelationships between clinical variables using graphs with weighted
nodes and edges?”). For COVID-19 diagnosis, FCMs can connect symptom, risk and test nodes to outcome nodes signaling
likelihood of COVID-19 infection. Edge weights represent the strength of influence between nodes based on symptom patterns
in patient data. Appropriate training tunes the edge weights so the FCM mimics real clinical outcomes. A new patient’s
symptoms can then be input to the trained FCM to predict the likelihood of COVID-19 vs other respiratory diseases *!). FCMs
leverage their network structure and training to capture nuanced symptom interactions for accurate COVID-19 screening and
diagnosis from presenting signs ?).

The FCM activation function is:

state_i(t+1) = 1/ (1 + exp(—net_input_i(t))) (2)
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Where:
1. The net input for a concept is calculated as:
net_input_i(t) = X(weight_i,j * state_j(t)) for j in range(num_concepts)
2. The state of each concept is updated iteratively:
For each concept i in FCM:
state_i(t+1) = activation_function(net_input_i(t))
3. Convergence is checked as:

convergence = X(|state_i(t+1) - state_i(t)]) < convergence_threshold for i in range(num_concepts)
4. State_i(t) is the state or activation level of concept i at time t.

5. Weight_i,j is the weight between concept i and concept j in the FCM.

6. Activation_function maps the net input to the activation level of a concept.
7. Convergence-threshold is a predefined threshold to check for convergence.

2.2 Data Set Description

The data are obtained from

which contain 600 patient details having 18 features each. The dataset has 520 non covid findings

and 80 are COVID-19 patient details. The detailed description of dataset is given in Table 1.

Table 1. Dataset Description

Variable

Description

Measured Values (Units)

C1: Patient age

C2: Hematocrit

C3: Hemoglobin
C4: Platelets

C5: Red blood Cells
C6: Lymphocytes
C7: Leukocytes

C8: Eosinophils

C9: Monocytes
C10: Neutrophils
C11: C Reactive Protein
C12: Decision

Age of the patient

Percentage of red blood cells in the total blood volume
Amount of hemoglobin in the blood

Number of platelets in the blood

Number of red blood cells per unit volume of blood
Percentage of lymphocytes in the total white blood cells
Number of white blood cells in the blood

Percentage of eosinophils in the total white blood cells
Percentage of monocytes in the total white blood cells
Percentage of neutrophils in the total white blood cells
Level of C-reactive protein

COVID-19 Stage

Numeric value (years)
Numeric value (%)
Numeric value (g/dL)
Numeric value (10A9/L)
Numeric value (10A12/L)
Numeric value (%)
Numeric value (10A9/L)
Numeric value (%)
Numeric value (%)
Numeric value (%)
Numeric value (mg/dL)
Low, Moderate, High

2.3 Performance Evaluation Measures

In this work, the metrics chosen for evaluating the performance of the proposed approaches are sensitivity, specificity,
Matthews’s correlation coefficient, F1 score, and balanced accuracy. As stated in much of the literature, calculating normal
accuracy is not suitable for class imbalance problems. So, in this work, we calculate balanced accuracy ¥ which gives the exact
performance of the classifier on imbalanced data. Additionally, the Matthews correlation coeflicient is used in many research
works to calculate classifier performance, especially in disease diagnosis . The detailed explanation of these metrics are as
follows:

2.3.1 Specificity
Specificity is a metric that assesses the proportion of correctly detected negatives out of the total number of negative predictions
a model can make. It is also referred to as the true negative rate.

Specificity =TN /(TN + FP) (3)

2.3.2 Sensitivity
Sensitivity is a metric that measures the proportion of actual positives a model correctly predicts out of all positive predictions
it can make. It is also known as the true positive rate or recall.

Sensitivity= TP / (TP + FN) 4)
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2.3.3 Matthews Correlation coefficient

The Matthews correlation coefficient (MCC) is a reliable statistical measure that produces high scores only if a model achieves
good results across all four confusion matrix categories (true positives, false negatives, true negatives, false positives) in
proportion to the positive and negative elements in the dataset. The MCC values range from -1 to +1.

MCC = TNz TP — FN 2 FP/\/(TP+FP)(TP + FN)(TN+FP)(TN+FN) (3)

2.3.4 F1 Score
The F1-score balances precision and recall. It is commonly used when there is class imbalance but can also quantify the accuracy
of an individual test.

F1 = 2 x ([precision * recall] / [precision + recall]) (5)

2.3.5 Balanced Accuracy
Balanced accuracy is the arithmetic mean of sensitivity and specificity. It is used with imbalanced datasets where one target
class is much more frequent than the other.

Balanced accuracy = (Sensitivity + Specificity) / 2 (6)

2.4 Integrated FCM-RF approach for COVID-19 diagnosis

This section discusses the proposed Integrated FCM-RF approach for COVID-19 diagnosis. The first step is to create fuzzy rules
based on the expert’s suggestion. After this next section discusses how the fuzzy cognitive maps integrated with random forest
approach to diagnose COVID-19 effectively. The overall architecture of proposed approach diagrammatically represented in
Figure 1.

Covid and Non-

Covid patients
Database

Training
Dataset (80%)

Independent
Dataset (20%)

Training Testing
[ FCM - RF ] ‘ FCM - GDB ‘ [ FCM - WDT ]
[ K-Fold Cross Validation ] l
l Performance Metrics

# Balanced Accuracy

[ Final Covid Predictor model > F1 Score
> Sensitivity
» Specificity
>

Mathew’s Correlation
— ——— Coefficient
L)

Fig 1. Overall architecture of Proposed System

2.4.1 Expert suggestion and rule creation
The first critical step in developing the COVID-19 diagnosis model was to select the important factors for future analysis.
To assess the degree of connection between various elements and the decision idea, medical specialists were consulted.
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A correlation analysis was also performed on the data to determine the most influential components in the diagnosing
process. Previous studies were also considered for determining the most critical parameters, for example, stating that the
best diagnostic results were obtained by taking into account characteristics such as patient age, hemoglobin, lymphocytes,
leukocytes, neutrophils, and C Reactive Protein. These variables were discovered to have a substantial influence on COVID-19
diagnosis accuracy. Factors such as monocytes and hematocrit, on the other hand, had a low connection and were therefore
excluded from the model. In addition to the choice idea, twelve elements were chosen for the creation of the COVID-
19 diagnosis model. Experts are important in constructing the weight matrix since they have useful knowledge about the
interdependencies between concepts. They contribute by using rules to define the links between concepts. These rules are then
turned into precise weights using linguistic notions in a process known as defuzzification. To guarantee a thorough investigation,
three experts were interviewed individually to characterize the relationships between concepts using If-Then logic. This method
provided for a wide range of expert viewpoints. The methodologies used in this procedure are as follows:

First Expert: If there is a small change in C Reactive Protein (C11), then there is a moderate change in the Decision (C12).

It means: The influence from C11 to C12 is positively moderate.

Second Expert: If there is a small change in C Reactive Protein (C11), then there is a high change in the Decision (C12).

It means: The influence from C11 to C12 is positively high.

Third Expert: If there is a small change in C Reactive Protein (C11), then there is a very high change in the Decision (C12).

It means: The influence from C11 to C12 is positively very high.

To diagnose COVID-19, a comprehensive dataset of clinical and laboratory parameters is required. The dataset should
contain diagnostic labels matching the clinical presentations and lab findings. Various preprocessing techniques are applied
on the dataset including handling missing values, encoding categorical variables, and scaling numerical features. A Fuzzy
Cognitive Map (FCM) model is then constructed to capture the complex interrelationships between the input features and
output diagnosis labels. This model is represented clearly in the Figure 2. The FCM contains nodes representing input attributes
like fever, cough etc. It also has output nodes corresponding to diagnostic labels like COVID-19 positive or negative. Fuzzy
membership functions allow the nodes to take on continuous values between 0 and 1 at any time. Fuzzy rules encode meaningful
correlations between the feature and diagnosis nodes based on clinical expertise or data-driven methods. The weight matrix was
extracted from the dataset using the Hebbian Learning algorithm with sigmoid function. The FCM model’s inference function
parameters were used to scale the column values in the [0, 1] range of the imported data frame with the data and weight matrix.
Thus, 480 records were used to train the weight matrix and 120 to test class imbalance. The inference results are stored in an
array named fcm.inferences with 10 to 100 iterations separately. These results were compared to test data labels.

Fig 2. FCM Graphical Representation

For example, ”IF fever is high AND cough is persistent, THEN COVID-19 test is likely positive”. In parallel, a Random
Forest classifier model is trained on the preprocessed dataset, using the diagnosis labels as targets and features as predictors for
supervised learning. This enables the model to learn non-linear relationships between features for reliable classification. For a
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new case, the feature values are passed through the FCM, which applies fuzzy rules to propagate values and obtain intermediate
fuzzy outputs for the diagnosis nodes. These outputs are fed as inputs to the trained Random Forest model for final COVID-19
prediction. The integrated FCM-RF pipeline is evaluated on metrics like accuracy, sensitivity, and specificity. It is validated on
new datasets for robustness. The fuzzy rules and Random Forest hyperparameters are tuned for optimal performance. Finally,
the interpretable FCM integrated with the accurate Random Forest model is deployed for automated COVID-19 screening
using clinical features.

There are a few reasons why mixing Fuzzy Cognitive Maps (FCMs) and Random Forest models might give better results
than using either method alone: The hybrid model uses the fact that the FCM is easy to understand and the accuracy of the
Random Forest. The FCM is easy to understand because it models the relationships between variables. Random forest makes
predictions that are very correct. Together, they are better than either one alone. FCM lets you use expert knowledge: fuzzy
rules in FCM can store domain experience and clinical insights on COVID-19 diagnosis. This information adds to the Random
Forest model, which is based on facts. FCMs can show links and dependencies between symptoms and diagnoses that don't
follow a straight line. This is better at handling complications. Customization is possible with a two-stage method because the
FCM transformation of inputs can be tuned separately from the Random Forest model training. Each part can be changed to
your liking. When techniques work together, they make up for each other’s flaws. For example, FCMs are less accurate on their
own. Random forests can be too good at fitting and not clear enough. The hybrid method makes up for the flaws. Validation of
real-world performance is needed. Theoretically, combining FCM and Random Forest seems like a good idea, but it will take a
lot of testing on different clinical datasets to prove that it works better in the real world.

Pseudocode:

// Data Collection and Preprocessing

1. Collect dataset with clinical and laboratory features for COVID-19 diagnosis.

2. Preprocess the dataset (cleaning, handling missing values, feature scaling, etc.).

/I FCM Construction

3. Define FCM structure with input nodes for features and output nodes for diagnosis.

4. Determine fuzzy membership functions for each node.

5. Establish fuzzy rules based on expert knowledge or data-driven approaches.

6. Create FCM by connecting nodes and assigning fuzzy rules.

/I Model Tuning

7. Split the dataset into training and testing sets.

8. Perform feature selection if necessary.

9. Train models using training dataset and corresponding diagnosis labels.

// Integration of FCM and Classifiers RE WDT and GB

10. Pass input feature values through FCM to obtain intermediate values for the output node.

11. Feed intermediate values into trained classifier models for final diagnosis prediction.

/] Evaluation

12. Evaluate performance using appropriate metrics (balanced accuracy, sensitivity, specificity, MCC, F1 Score.

// Validation and Optimization

13. Validate framework on independent dataset for generalization evaluation.

14. Optimize framework parameters (e.g., FCM weights, Random Forest, Gradient Boosting and Weighted Decision Tree
hyperparameters) if necessary.

/] Deployment

15. Deploy the integrated framework as a reliable tool for COVID-19 diagnosis.

In a similar way instead of the RF approach, GB and WDT are replaced, and the performance is calculated. Among the
approaches which have highest balanced accuracy will be taken for further modeling. The above pseudocode is implemented
in this proposed work with MATLAB software.

3 Results and Discussion

This section discusses the answers of two research questions RQ1 and RQ2 mentioned in introduction section.

3.1 Performance comparison of classifiers

The data present the model performance in terms of prediction performance for four different models: FCM, FCM-RE, FCM-
GB, and FCM-WDT, across a range of different iteration counts is diagrammatically represented in Figure 3. The FCM has
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the worst performance to begin with but gradually improves as the number of iterations increases, reaching 84.74 after 100
iterations. The FCM-RF and FCM-GB offer the best beginning performance, but their results gradually deteriorate as the
algorithm is iterated. At 100 iterations, FCM-REF suffers the greatest drop in quality, falling to 95.67. Performance-wise, FCM-
WDT falls somewhere in the middle. It gets better with each subsequent iteration, though not quite as quickly as FCM does.
In all models, the most substantial changes in performance are observed in the first 30-50 iterations of the process. After that,
there is an equilibrium in performance. The FCM earns the greatest final value of 84.74 after being run through 100 iterations,
making it the model that performs the best overall. In contrast, the performance of FCM-RF and FCM-GB deteriorates when
more iterations are applied. In conclusion, the FCM is the only model that continues to get better with additional iterations,
whereas the others reach their peak early on and then start to decline significantly. If enough iterations are performed, the FCM
is the optimal model to use.

Accuracy vs Iterations

— FCM
95 FCM-RF
—— FCM-GB
— FCM-WDT

90

85

Accuracy

80

75 A

T T T T T T T T T T
10 20 30 40 50 60 70 80 20 100
Iterations

Fig 3. Prediction Accuracy

The data shows model performance in terms of error rate across different iteration counts for 4 models - FCM, FCM-
RE, FCM-GB and FCM-WDT is diagrammatically represented in Figure 4. FCM starts off with the worst performance but
improves slowly and steadily as iterations increase, ending with a value of 15.26 at 100 iterations. FCM-RF and FCM-GB
have the best initial performance but improve rapidly in early iterations before plateauing in later iterations. FCM-RF levels
off earliest at around 10 iterations. FCM-WDT has performance in between FCM and the other models. It improves steadily
across iterations but not as quickly as FCM-RF/FCM-GB. The most dramatic performance improvements are seen in the first
20-40 iterations for all models. After this the rate of improvement decreases. The overall best performing model is FCM-RF
which achieves the lowest final value of 4.33 at 100 iterations. FCM-GB is comparable at 7.40. In summary, iterative training
leads to substantial performance gains in early iterations for all models, but with diminishing returns later on. FCM-RF is the
overall best performing model given sufficient iterations.

3.2 Training Results and Testing Results

The Table 2 compares COVID-19 diagnosis categorization performance parameters for FCM, FCM-RF, FCM-GB, and FCM-
WDT. FCM-RF has the highest sensitivity at 0.9760, followed by FCM-GB at 0.9615. FCM-RF accurately identifies the most
COVID-19 positive cases, although FCM has the lowest sensitivity. FCM-RF again has the highest specificity at 0.9375,
surpassing FCM’s 0.7813. FCM-RF has the fewest false positives. FCM-RF has better balanced accuracy (sensitivity and
specificity) at 0.9567 than FCM at 0.8474. Matthews Correlation Coefficient (MCC) accounts for all confusion matrix results.
FCM-RF’s maximum MCC is 0.8798, far above FCM’s 0.6158. Finally, FCM-RF scores 0.9831 versus 0.9383 for FCM’s F1. FCM-
RF performs best across all evaluation measures, proving the hybrid model’s COVID-19 diagnosis efficacy. FCM + Random
Forest enhances diagnosis accuracy, precision, and dependability. The FCM-RF technique is predictive, according to the data.
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Error Rate vs Iterations

— FCM
FCM-RF

—— FCM-GB

— FCM-WDT

25+
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Fig 4. Error Rate

Table 2. Training Performance
Performance Metrics FCM FCM-RF FCM-GB FCM-WDT

Sensitivity 09135  0.9760 0.9615 0.9375
Specificity 0.7813  0.9375 0.8906 0.8438
Balanced Accuracy 0.8474  0.9567 0.9260 0.8906
MCC 0.6158  0.8798 0.8067 0.712

F1 Score 0.9383  0.9831 0.9721 0.9559

The Table 3 compares performance metrics for four models - FCM, FCM-RE, FCM-GB, and FCM-WDT on a COVID-19
diagnosis classification task. Looking at sensitivity, FCM-RF achieves the highest score of 0.9808, followed closely by FCM-
WDT at 0.9519. This implies FCM-RF correctly identifies the greatest number of positive COVID-19 cases, while FCM alone
has the lowest sensitivity. For specificity, FCM-RF again scores the best at 0.9375, significantly higher than FCM’s 0.75. So FCM-
RF makes the least false positive errors. In terms of balanced accuracy, which balances sensitivity and specificity, FCM-RF is
superior at 0.9591 balance. FCM is much lower at 0.8077 balance. The Matthews correlation coefficient (MCC) accounts for all
confusion matrix outcomes. Again, FCM-RF obtains the highest MCC of 0.8952, greatly exceeding FCM’s 0.5078. Finally, for
the F1 score, FCM-RF achieves the maximum score of 0.9855, compared to just 0.9091 for FCM. In summary, FCM-RF obtains
the best performance across all evaluation metrics signifying the hybrid model’s effectiveness for COVID-19 diagnosis. The
integration of FCM with Random Forest improves diagnosis accuracy, precision and reliability compared to using only FCM.
The findings highlight the predictive power of the proposed FCM-RF approach.

Table 3. Testing Performance
Performance Metrics FCM FCM-RF FCM-GB FCM-WDT

Sensitivity 0.8654  0.9808 0.9423 0.9519
Specificity 0.7500  0.9375 0.8750 0.8125
Balanced Accuracy 0.8077  0.9591 0.9086 0.8822
MCC 0.5078  0.8952 0.7455 0.6950
F1 Score 0.9091  0.9855 0.9608 0.9212

The FCM-RF outperforms predicted in every parameter on the training set: F1 score of 0.9855, top sensitivity of 0.9808, top
specificity of 0.9375, balanced accuracy of 0.9591, and MCC of 0.8952. It accurately identifies COVID-19 cases with little false
positives. FCM-RF continues to have the highest sensitivity (0.9760), specificity (0.9375), balanced accuracy (0.9567), MCC
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(0.8798), and F1 score (0.9831) on the untested testing set. The persistent high performance of FCM-RF from training to testing
shows its durability and generalization capabilities. The much weaker outcomes of FCM and Random Forest demonstrate its
benefits. The fact that measurements scarcely changed from training to testing suggests that FCM-RF works effectively with new
data. Its excellent training plan passes real-world testing. In conclusion, FCM-RF’s excellent training and testing results support
its COVID-19 prediction ability. The results show that Random Forest enhances FCM accuracy, precision, and reliability.

3.3 Comparison with existing state of the art approaches

In this section, we provide a comprehensive comparative analysis of our proposed integrated framework for early differential
diagnosis of COVID-19 with existing methods and approaches reported in the literature. This analysis aims to clearly
demonstrate the unique features and contributions of our work, as well as its advantages over previous studies.

Several existing studies have explored various methods for COVID-19 diagnosis, including machine learning techniques,
deep learning models, and traditional statistical approaches. However, most of these works have focused on either clinical data
or radiological data in isolation, failing to leverage the complementary information provided by both sources.

For instance, ') have utilized machine learning algorithms or deep learning models to analyze chest X-ray or CT scan images
for COVID-19 detection. While these approaches have shown promising results, they do not incorporate clinical data, which
can provide valuable insights into the patient’s symptoms, medical history, and risk factors. On the other hand, studies such as %
have employed statistical models or machine learning techniques to analyze clinical data, including symptoms, demographic
information, and radiological data, for COVID-19 diagnosis. However, these methods failed to consider laboratory test results
which can reveal crucial information about the disease’s manifestation and progression in the lungs.

From the analysis of comparison between training, testing and comparison between existing state-of-the art approaches the
proposed integrated framework addresses the limitations of existing approaches by combining clinical and laboratory data,
leveraging the strengths of improved fuzzy cognitive maps with machine learning algorithms. The key unique features and
contributions of our work are as follows:

1. Integrated Approach: Our framework is one of the first to integrate clinical and laboratory data for early differential
diagnosis of COVID-19, providing a more comprehensive and holistic perspective on the disease.

2. Improved Fuzzy Cognitive Maps: We have developed a novel variant of the fuzzy cognitive map approach, tailored
specifically for the COVID-19 diagnosis problem. Our improved algorithm incorporates domain knowledge and expert
insights, enabling more accurate modelling of the intricate relationships between symptoms, risk factors, and diagnostic
indicators.

3. Interpretability and Explainability: Unlike many existing approaches that lack transparency, our framework prioritizes
interpretability and explainability, ensuring that healthcare professionals can understand and trust the decision-making
process.

4 Conclusion and Future directions

The proposed integrated framework combines fuzzy cognitive mapping with classifiers such as random forest to achieve rapid,
accurate screening for COVID-19 relative to other respiratory conditions based on clinical features. The FCM-RF model obtains
balanced accuracy of 95.91%, outperforming FCM, FCM-GB, and FCM-WDT by greater than 15%, 5%, and 7%, respectively.
The integration of interpretable FCMs with high-precision random forests yields an efficient decision support system for
COVID-19 diagnosis in the frontline. The framework highlights the potential for computational intelligence techniques to
resolve diagnostic difficulties in emergency medical situations. While the results are encouraging, further improvements in
computational efficiency and accuracy could help improve clinical applicability. It would be advantageous to test the framework
on larger, more heterogeneous patient datasets and implement it with optimization techniques such as quantum annealing.
Exploring alternative cognitive models and classifiers may provide additional benefits. Overall, the integrated approach
demonstrates a diagnostic framework that is highly flexible and merits further research and development.
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