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Abstract
Objectives: In order to control and manage the traffic flow in contexts
of congestion, real-time highway traffic flow models play a significant role
in intelligent transportation system. The objective of our investigation is to
examine the effect of psychological driver sensitivity (PDS) when coupled
with passing behaviour. Methods: In this study, we developed the lattice
hydrodynamic (LH) model which is a good and simple representation for
solving traffic problems. Its variants have been valuable tools in traffic research
and also contributed to our understanding of traffic phenomena and the
development of traffic management strategies. The effect of the proposed LH
model with the factor PDS and passing is examined through linear stability
analysis. Employing nonlinear stability analysis, we are able to establish the
permissible range of PDS values in conjunction with a passing constant,
ensuring the existence of kink soliton solution for themKdVequation. Findings:
To validate our theoretical findings, we conducted numerical simulation,
conclusively demonstrating that the integration of PDS with passing in the
proposed model, can efficiently mitigate traffic congestion. When we fix the
passing coefficient and vary the PDS coefficient, we identify the enlargement
of stable region with small PDS values. Similarly, by fixing the PDS coefficient
varying passing coefficient reveals the enlargement of stable region with small
passing values. Novelty: Results displayed that the stability performance
of the proposed model is higher than the existing LH model with passing
and found that our proposed model performs better than existing models to
alleviate traffic congestion and improve traffic flow.
Keywords: Traffic flow; Lattice hydrodynamic model (LHM); Psychological
driver sensitivity (PDS); Passing effect; Stability

1 Introduction
Indeed, traffic jams have become a significant concern over the past few decades
due to the exponential growth of automobiles on the roads. As urbanization and
economic development decades to progress, the number of vehicles has surged, leading
to increased traffic congestion in many cities around the world. Traffic congestion has
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broad effects on daily commuters and on implications for various aspects of society, including the economy, environment and
public health. To address these challenges, researchers have been working on various strategies and solutions to alleviate traffic
congestion and improve trafficflow.Therefore, a large number of trafficmodels have been proposed to explain trafficphenomena
such as car-following models (1–9), continuum models (10–12) and AI models (13,14) but observations have shown that the lattice
hydrodynamic model (15,16) has also been used to solve traffic problems and its variants have been useful tools in the research of
traffic, as well as in the development of trafficmanagement strategies and an understanding of traffic phenomena. Our proposed
problem is based on this model and it treats traffic flow as a fluid-like phenomenon, applying principles from fluid dynamics
to model the movement of vehicles on the road. To characterize the evolution of the jamming transition in traffic flow, firstly
Nagatani (15) introduced lattice model.

Following that, various extensions have been carried out, taking into considerationmultiple factors.These factors encompass
the presence of the driver’s desire (16), backward-looking and anticipation behavior (17), multi-lane situations (18), integration
of the cooperative deviation (19), the predictive effect (20), driver memory effects (21), connected and non-connected vehicle
behaviours (22), four-way pedestrian traffic incorporating turning capacity (23), optimal current changes with memory (24) and
traffic interruption probability under honk environment (25).

The passing effect in traffic theory refers to a phenomenon in which vehicles overtake another vehicle and can create a
disturbance in the traffic flow behind it. This disturbance is often characterized by a temporary reduction in the speed of
surrounding vehicles and an increase in traffic density, which can lead to a ripple effect, propagate backwards through the
traffic stream. Additionally, psychological headway comes into play when drivers decide how closely they want to follow the
vehicle in front of them while considering the possibility of passing. In real traffic, the driver consistently adapts their velocity
to match the surrounding traffic conditions while driving and relies on their instincts to determine when and how to overtake
other vehicles, taking into account the psychological concept of following distance. When we mention PDS, we’re addressing
the preferred or perceived spacing between vehicles that drivers uphold for reasons of safety and comfort, not the quantifiable
physical distance between the vehicles. In the earlier models, the traffic flow analysis is done through various factors mentioned
above but lacks the information of psychological view of the individual driver, which is very important at the micro as well as
macro level to overcome the issues related to traffic flow. However, to the best of the author’s knowledge, no one has previously
explored the lattice hydrodynamic model incorporating the factors of psychological headway and passing.Therefore, to fill this
gap, we used psychological driver’s view during overtaking (passing) in our study. By considering the psychological driver’s
sensitivity and the passing effect, the lattice hydrodynamics traffic flowmodel can better capture real-world traffic phenomena,
including the propagation of traffic waves, the formation of congestion, and the emergence of passing maneuvers.

The paper’s structure comprises four sections, each addressing distinct aspects of research on traffic flow modeling. These
sections and their respective contents are detailed as follows: Section 2 introduces a refined and versatile latticemodel for single-
lane traffic, incorporating both the driver’s psychological driver sensitivity and the passing effect. Section 3 undertakes a detailed
linear, nonlinear analysis and numerical simulations of the proposed model. Section 4 provides the concluding remarks.

2 Methodology

2.1 Modelling

Nagatani (15) developed the first basic lattice hydrodynamic model with the intention of investigating the growth and
propagation of “density waves” in traffic flow on a unidirectional single-lane highway. The model equation is described as

𝜌𝑗(𝑡+𝜏)−𝜌𝑗(𝑡)+𝜏𝜌0 [𝜌𝑗(𝑡)𝑣𝑗(𝑡)−𝜌𝑗−1(𝑡)𝑣𝑗−1(𝑡)] = 0 (1)

𝜌𝑗(𝑡+𝜏)𝑣𝑗(𝑡+𝜏) = 𝜌0𝑉 (𝜌𝑗+1) (2)

Here, Equations (1) and (2) are the dynamical equations for “the conservation of mass” and “flow evolution equation”. In the
context of time t, 𝜌𝑗(𝑡) stands for the local density and 𝑣𝑗(𝑡) corresponds to the velocity at the jth location on one-dimensional
lattice. The average density is 𝜌0 and the driver’s receptiveness is quantified by 𝑎 = 1/𝜏 . In the above expression, the “optimal
velocity function” is

𝑉 (𝜌𝑗(𝑡)) = 𝑉𝑚𝑎𝑥
2 [𝑡𝑎𝑛ℎ( 1

𝜌𝑗
− 1

𝜌𝑐
)+𝑡𝑎𝑛ℎ( 1

𝜌𝑐
)] (3)
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where V𝑚𝑎𝑥 and 𝜌𝑐 denote the maximal velocity and the safety-critical density, respectively. Later on, Nagatani extended
the above model to incorporate the impact of passing by assuming that drivers attempt to overtake sluggish vehicles in order
to maintain their preferred travel speed. As soon as the driver encounters congestion or reduced vehicle speeds at site- j, the
vehicles attempt to pass the vehicles ahead of them and the amount of passing depends on howmuch the traffic volume at site-
j+1 differ from that at site- j the traffic volume at the next site- j+2. On account of the passing effect, the flow evolution equation
is given as

𝜌𝑗(𝑡+𝜏)𝜈𝑗(𝑡+𝜏) = 𝜌0𝑉 (𝜌𝑗+1(𝑡)) +𝛾[𝜌0𝑉 (𝜌𝑗+1(𝑡)−𝜌0𝑉 (𝜌𝑗+2(𝑡))] (4)

where 𝛾 is the passing constant and V(.) is the “optimal velocity function” as discussed above. Here, we use the above equation
to determine the flow at site- j, where driver is positioned. If the driver is at site- j, the driver will look ahead mainly at least
two vehicles or more. If the driver encounters a large number of vehicles ahead of them, either driver can slow down their
speed or attempt to pass/overtake the vehicles at site- j+1 to move on the next site- j+2 for smooth driving. To do so, the
driver usually estimates the difference in the optimal flow of leading sites and accordingly, he reacts as well as takes action.
Subsequently, scholars have achieved notable progress within the domain of lattice hydrodynamic models for traffic flow and
introduced a range ofmodifications and considerations (24) to improve themodel’s authenticity and practicality.The importance
of understanding human reactions to the environment is critical in developing road systems that prioritize safety and efficiency
with the increasing number of vehicles on roads. Drivers’ psychological headway (PH) (1) is considered in these modifications,
providing insights into decision-making and response while driving, walking or cycling. The resulting model equation is as
follows:

𝑑𝑣𝑛(𝑡)
𝑑𝑡 = 𝑎[𝑉 (𝛼𝑛Δ𝑥𝑛)−𝑣𝑛(𝑡)] +𝜆Δ𝑣𝑛(𝑡) (5)

Here, 𝛼𝑛 represents the psychological response coefficient. It has been shown that a car-following model with a lower PH
than an optimal velocity difference model can increase stability in situations of high traffic density. Meanwhile, heterogeneous
models with higher psychological holdover can be more stable when traffic density is low.

However, there has been limited research so far on LH trafficmodel, specifically considering psychological factors. Individual
distinctions contribute to the discrepancy between psychological and actual distances. People vary in their perceptions of
the same headway, some drivers interpret it as far, while others gauge it as relatively near. In this phenomenon, the view or
perspective of the driver about passing plays an important role, which is called the psychological behaviour of the driver. As we
know, during passing, the driver always looks forward to headway to make the decision to pass the vehicles. In order to see the
effect of psychological driver sensitivity (PDS) with passing, we modified the LH model in which the continuity equation was
retained, but the flow evolution equation is altered to incorporate the influence of PDS passing and we have

𝜌𝑗(𝑡+𝜏)𝜈𝑗(𝑡+𝜏) = 𝜌0𝑉 (𝛼𝜌𝑗+1(𝑡)) +𝛾[𝜌0𝑉 (𝛼𝜌𝑗+1(𝑡))−𝜌0𝑉 (𝛼𝜌𝑗+2(𝑡))] (6)

Here 𝛼is the psychological sensitivity coefficient in view of density. Whenever 𝛼 > 1, it means the psychological driver’s
sensitivity is higher than their actual sensitivity. For low density, driver becomes more confident and willing to drive more
quickly. Similarly, we get the opposite response when 𝛼 < 1. The updated “optimal velocity function” is

𝑉 (𝛼𝜌𝑗(𝑡)) = 𝑉𝑚𝑎𝑥

2𝑡𝑎𝑛ℎ( 1
𝛼𝜌𝑗

1
𝜌𝑐

𝑡𝑎𝑛ℎ( 1
𝜌𝑐

(7)

The density equation can be obtained by removing the velocity 𝜈𝑗 from Equations (1) and (6) and we have

𝜌𝑗(𝑡+2𝜏)−𝜌𝑗(𝑡+𝜏) +𝜏𝜌2
0[𝑉 (𝛼𝜌𝑗+1)−𝑉 (𝛼𝜌𝑗)]−𝛾𝜏𝜌2

0[𝑉 (𝛼𝜌𝑗+2)−2𝑉 (𝛼𝜌𝑗+1) +𝑉 (𝛼𝜌𝑗)] = 0 (8)

when we take 𝛼 = 1, then the equation reduces to the one discussed by Nagatani (15).

3 Results and Discussion

3.1 Linear Stability Analysis
The objective of this section is to perform linear stability analysis, shedding light on the impact of passing maneuvers and the
psychological sensitivity of drivers on stability of traffic flow. For uniform traffic, we define the optimal velocity as 𝑉 (𝛼𝜌0) and
the traffic density as 𝜌0. Now, let’s examine the stable solution for homogeneous traffic flow which is given by

𝜌𝑗(𝑡) = 𝜌0 (9)
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𝑉 (𝛼𝜌𝑗(𝑡)) = 𝑉 (𝛼𝜌0) (10)

Assume that the steady-state density of site-j is perturbed slightly by 𝜂𝑗(𝑡). Then

𝜌𝑗(𝑡) = 𝜌0 +𝜂𝑗(𝑡) (11)

𝑉 (𝛼𝜌𝑗(𝑡)) = 𝑉 (𝛼𝜌0)+𝑉 ′(𝛼𝜌0)𝛼𝜂𝑗(𝑡) (12)

Using Equation (11) in Equation (8), we get

𝜂𝑗(𝑡+2𝜏)−𝜂𝑗(𝑡+𝜏) +𝜏𝜌2
0𝑉 ′(𝛼𝜌0)[𝜂𝑗+1 −𝜂𝑗]−𝛾𝜏𝜌2

0𝑉 ′(𝛼𝜌0)[𝜂𝑗 −2𝜂𝑗+1 +𝜂𝑗+2] = 0 (13)

where 𝑉 ′(𝛼𝜌0(𝑡)) = 𝑑𝑉 (𝛼𝜌)
𝑑𝜌 at 𝜌 = 𝜌0.

Using the expression 𝜂𝑗(𝑡) = 𝑒𝑖𝑘𝑗+𝑧𝑡in Equation (13), we get

𝑒2𝑧𝑡 −𝑒𝑧𝑡 +𝛼𝜏𝜌2
0𝑉 ′(𝛼𝜌0)[𝑒𝑖𝑘 −1]−𝜏𝛾𝜌2

0𝑉 ′(𝛼𝜌0)[1−2𝑒𝑖𝑘 +𝑒2𝑖𝑘] = 0 (14)

By taking 𝑧 = 𝑧1(𝑖𝑘)+𝑧2(𝑖𝑘)2 +...into Equation (14), we obtain

2𝜏𝑧1(𝑖𝑘)−2𝜏𝑧2(𝑖𝑘)2 − 𝜏2

2 [𝑧2
1(𝑖𝑘)2]+2𝜏2𝑧2

1(𝑖𝑘)2 −𝜏𝑧1(𝑖𝑘)−𝜏𝑧2(𝑖𝑘)2 +𝜏𝜌2
0𝛼𝑉 ′(𝛼𝜌0)(𝑖𝑘)

+𝜏𝜌2
0𝛼𝑉 ′(𝛼𝜌0)( (𝑖𝑘)2

2 )−𝛾𝜏𝜌2
0𝛼𝑉 ′(𝛼𝜌0)(𝑖𝑘)2 = 0

(15)

We have calculated the coefficient of first and second-order terms of ik and (ik)2, respectively as

𝑧1 = −𝜌2
0𝛼𝑉 ′(𝛼𝜌0) (16)

𝑧2 = 3
2𝜏(𝜌2

0𝑉 ′(𝛼𝜌0))2 − 1−2𝛾
2 (𝜌2

0𝑉 ′(𝛼𝜌0) (17)

Long-wavelength waves cause the “uniform steady-state flow” to become “unstable” when 𝑧2 < 0 and become stable as long as
𝑧2 > 0. As a result, the “neutral stability curve” is represented by

𝜏 = 1−2𝛾
3𝜌2

0𝛼𝑉 ′(𝛼𝜌0) (18)

It is evident from Equation (18) that the parameters 𝛼 and 𝛾 actively contribute to stabilize traffic flow, ensuring a steady flow
profile for a comfortable experience.

The phase diagrams in density-sensitivity for the basicmodel and proposedmodel are compared in Figure 1. On comparison,
it becomes clear that the latter displays a more stable zone for this specific value of 𝛼 = 0.9. This indicates that the proposed
model represents a refinement of existing work. It emphasises the value of psychological driver’s sensitivity as well as passing
and how it affects maintaining a reliable and secure traffic flow.

Figure 2 shows the neutral stability curves in density-sensitivity space and the apex of each curve indicates the critical point
for different values of 𝛼 when the passing rate is different. The stable region lies above the neutral curves, where traffic jams are
not observed, while the unstable region lies below the neutral curves, where density waves are observed.

Figure 2 clearly illustrates that the amplitude of these curves grows with the increase in the values of 𝛾 for 𝛼 = 0.9. This
suggests that higher values of 𝛾 lead to the expansion of an unstable region. Figure 2, also shows that as 𝛾 goes up, so does
the amplitude of the stability curve for 𝛼 = 1.1 to 1.2. This implies that higher values of 𝛾 contribute to the enlargement of
an unstable region. The neutral stability curves increase along with the psychological sensitivity coefficient 𝛼, but the critical
points get decreased. In addition to this, it is also noted that the value of critical density, which is the point of inflexion of the
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Fig 1. Comparative diagram in density-sensitivity forbasic and p roposed model with 𝛼 = 0.9 and 𝛾 = 0

Fig 2. Phase diagram in density-sensitivity for different value of 𝛾 with fix 𝛼
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neutral stability curve, decreases with growth in the value of 𝛼. However, the stable region is decreasing for lower values of 𝛾 at
low density while it enhances at a higher value of density.

By comparing different part of Figure 2, we noticed that the amount of traffic congestion is reducing with decreases in the
value of psychological sensitivity because drivers estimate that the psychological headway is smaller than the actual headway
and try to overtake the leading vehicles. On the other hand, if the driver thinks that he needsmore space to overtake as compared
to actual headway, it may lead to congestion which is clear from the patterns of Figure 2 for 𝛼 = 1 and 𝛼 = 1.1.

Therefore, we can draw the conclusion that decreasing psychological driver sensitivity can enhance stability in high-traffic
conditions, whereas utilizing model featuring a larger psychological driver sensitivity yields greater instability in situations of
low traffic density.Therefore, by altering psychological and passing values, one can understand the psychological view of drivers
in the study of the transportation system and its application in reducing traffic congestion.

3.2 Nonlinear

To investigate the nonlinear behavior near the critical point, we used the slower variables X and T. Nonlinear analysis allows for
the examination of complex interactions between variables that may not be evident in a linear analysis. It can reveal emergent
behaviors, stability, instability, and other intricate characteristics that are not apparent in simpler linear analysis. The analysis is
focused on a coarse scale, which means they looked at large-scale patterns in the traffic flow. For a small positive parameter 𝜀,
the slow variables X and T are defined as

𝑋 = 𝜀(𝑗 +𝑏𝑡),𝑇 = 𝜀3𝑡 (19)

where b is constant to be determined. Let 𝜌𝑗satisfy the following equation:

𝜌𝑗(𝑡) = 𝜌𝑐 +𝜀𝑅(𝑋,𝑇 ) (20)

The following nonlinear partial differential equation is obtained by using Equations (19) and (20) to expand Equation (8) up to
the fifth order of 𝜀:

𝜀2𝜅1𝜕𝑋𝑅 +𝜀3𝜅2𝜕2
𝑋𝑅 +𝜀4(𝜕𝑇 𝑅 +𝜅3𝜕3

𝑋𝑅 +𝜅4𝜕𝑋𝑅3)
+𝜀5(𝜅5𝜕𝑇 𝜕𝑋𝑅 +𝜅6𝜕4

𝑋𝑅 +𝜅7𝜕2
𝑋𝑅3) = 0 (21)

where the coefficients 𝜅𝑖(𝑖 = 1,2...,7) are
𝜅1 = 𝑏 +𝛼𝜌2

𝑐𝑉 ′(𝛼𝜌𝑐),
𝜅2 = 3

2 𝑏2𝜏2 + 𝜏𝛼𝜌2
𝑐𝑉 ′(𝛼𝜌𝑐)

2 −𝛾𝛼𝜌2
𝑐𝑉 ′(𝛼𝜌𝑐),

𝜅3 = 7
6 𝑏3𝜏3 + 𝜏𝛼𝜌2

𝑐𝑉 ′(𝛼𝜌𝑐)
6 −𝛾𝛼𝜌2

𝑐𝑉 ′(𝛼𝜌𝑐),
𝜅4 = 𝜏𝛼3𝜌2

𝑐𝑉 ‴(𝛼𝜌𝑐)
6 ,

𝜅5 = 3𝑏𝜏2,
𝜅6 = 15

24 𝑏4𝜏4 + 𝜏𝛼𝜌2
𝑐𝑉 ′(𝛼𝜌𝑐)

24 −14 𝛾𝜏𝛼𝜌2
𝑐𝑉 ′(𝛼𝜌𝑐)
24 ,

𝜅7 = 𝜏𝛼3𝜌2
𝑐𝑉 ‴(𝛼𝜌𝑐)
12 −𝛾 𝜏𝛼3𝜌2

𝑐𝑉 ‴(𝛼𝜌𝑐)
6 .

where 𝑉 ′ = 𝑑𝑉 (𝜌)
𝑑𝜌 and 𝑉 ‴ = 𝑑3𝑉 (𝛼𝜌)

𝑑𝜌3 at 𝜌 = 𝜌𝑐.
In the neighborhood of critical point 𝜏𝑐, we define 𝜏 = 𝜏𝑐(1+𝜀2) and choosing 𝑏 = −𝛼𝜌2

𝑐𝑉 ′(𝛼𝜌𝑐), we get

𝜀4(𝜕𝑇 𝑅 +𝜇1𝜕3
𝑋𝑅 +𝜇2𝜕𝑋𝑅3)+𝜀5(𝜇3𝜕2

𝑋𝑅 +𝜇4𝜕4
𝑋𝑅 +𝜇5𝜕2

𝑋𝑅3) = 0 (22)

where the coefficients 𝜇𝑖(𝑖 = 1,2,3,4,5) are
𝜇1 = −𝛼𝜌2

𝑐𝑉 ′(𝛼𝜌𝑐)(− 7
54 (1−2𝛾)2 + 1

6 −𝛾),
𝜇2 = 𝛼3𝜌2

𝑐𝑉 ‴ (𝛼𝜌𝑐)
6 ,

𝜇3 = −𝜏𝛼𝜌2
𝑐𝑉 ′(𝛼𝜌𝑐)( 1−2𝛾

2 ),
𝜇4 = 𝛼𝜌2

𝑐𝑉 ′(𝛼𝜌𝑐)[ 1
24 ( 58

9 )(1−2𝛾)3 + 1
24 (1−14𝛾)+(𝛾 − 1

6 )(1−2𝛾)],
𝜇5 = − 𝜏𝛼3𝜌2

𝑐𝑉 ‴(𝛼𝜌𝑐)
6 ( 1−2𝛾

2 ).
In order to derive the standard mKdV equation, we perform the following transformations in Equation (22):
𝑇 ′ = 𝜇1𝑇 ,𝑅 = √ 𝜇1𝜇2

𝑅′
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After implementing the transformation in Equation (22), we obtain

𝜕𝑇 𝑅′ −𝜕3
𝑋𝑅′ +𝜕𝑋𝑅′3 +𝜀

−
𝑀[𝑅′] = 0, (23)

where
−
𝑀[𝑅′] = 1𝜇1

(𝜇3𝜕2
𝑋𝑅′ + 𝜇1𝜇5𝜇2

𝜕2
𝑋𝑅′3 +𝜇4𝜕4

𝑋𝑅′)
We obtain the usual mKdV equation after neglecting the (𝜖) terms in Equation (23) and intended kink-soliton solution is

given by

𝑅′
0(𝑋,𝑇 ′) = √𝑐𝑡𝑎𝑛ℎ√ 𝑐

2(𝑋 −𝑐𝑇 ′) (24)

The solvability condition must be met in order to calculate the propagation velocity for the kink-antikink solution

(𝑅′
0𝑀[𝑅′

0]) = ∫∞
−∞ 𝑑𝑋𝑅′

0𝑀[𝑅′
0] = 0 (25)

with
−
𝑀[𝑅′

0] =
−
𝑀[𝑅′].

By solving Equation (25), the value of 𝑐 is

𝑐 = 5𝜇2𝜇5
2𝜇2𝜇4 −3𝜇1𝜇5

. (26)

Hence, the “kink-antikink” solution is given by

𝜌𝑗(𝑡) = 𝜌𝑐 +𝜀√𝜇1𝑐
𝜇2

𝑡𝑎𝑛ℎ√ 𝑐
2(𝑋 −𝑐𝜇1𝑇 ), (27)

with 𝜀2 = 𝜏𝜏𝑐
−1 and the amplitude 𝐴 of the solution is

𝐴 = √𝜇1
𝜇2

𝜀2𝑐. (28)

Two coexisting phases can be understood by the “kink-antikink” soliton solution. There is a congested high density phase as
well as a low-density phase that is free to move, which may be separated from one another using the equation 𝜌𝑗 = 𝜌𝑐 ± 𝐴 in
the phase space (𝜌,𝑎).

3.3 Simulation

We used “numerical simulation” to validate the theoretical findings of the proposed model with the influence of the
psychological driver’s sensitivity and passing effect. Periodic boundary conditions are established in order to explicitly replicate
traffic behaviour and the initial conditions are

𝜌𝑗(0) = 𝜌𝑗(1) = {𝜌0−𝐴𝑖𝑓0≤𝑗< 𝑀
2

𝜌0−𝐴𝑖𝑓 𝑀
2 ≤𝑗<𝑀

where 𝐴 is the initial disturbance and 𝑀 = 100 is the total number of sites, the relevant parameters are 𝜌0= 𝜌𝑐= 0.2, 𝑉𝑚𝑎𝑥 and
𝐴 = 0.005.

Figures 3, 4, 5 and 6 offer a clear depiction of the spatiotemporal evolution of density, specifically between time
t=20000−20300. For the values 𝛼 =0.9 and 𝑎 =2.6, stable region is reached, the perturbation at the beginning dies out over
time, and the flow becomes uniform as shown in Figure 3 (part first). In pattern (part second) and pattern (part third), a further
increase in 𝛾 from 0 to 0.4 illustrates that the perturbation creates stop-and-go traffic that travels the other way. It’s amplified
with an increase in the value of 𝛾 (part second and third), which increases the amplitude of these kink-antikink density waves.
When𝛼 =1 and 𝑎 =3.2, as the stability is satisfied, the spatiotemporal evolution of density has become uniform for 𝛾 = 0 while it
becomes fluctuation for 𝛾 = 0.2 and 0.4 as shown in patterns (part second) and (part third) of Figure 4 respectively. Furthermore,
these fluctuations get amplified with increasing passing rates. To check the effect of advanced psychological driver’s sensitivity
on traffic flow, we also analyzed the results for 𝛼 =1.1 and 1.2; the graphical representations for these are shown in Figures 5
and 6, respectively. For 𝑎 =1.3 and 𝑎 =2.8, initially, when 𝛾 = 0, we reach into the stable zone, so the fluctuation does not appear,
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Fig 3. Spatiotemporal evolutions of density at time t=20300 for 𝑎 =2.6, 𝛼 = 0.9 with different 𝛾

Fig 4. Spatiotemporal evolutions of density at time t=20300 for 𝑎 =3.2, 𝛼 = 1 with different 𝛾

Fig 5. Spatiotemporal evolutions of density at time t=20300 for 𝑎 =2.8, 𝛼 = 1.1 with different 𝛾
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Fig 6. Spatiotemporal evolutions of density at time t=20300 when 𝑎 = 1.3 and 𝛼 = 1.2 with different 𝛾

and congestion does not appear as shown in Figure 5 (part first) and Figure 6 (part first). But as the value of the passing increases,
we enter into the unstable region and therefore the congestion appears in the form of kink-antkink density waves, which are
the solution of the mKdV equation.

In Figure 7, we observe the changes in density as time progresses beyond t = 20,300s for 𝛾 = 0.0, 0.2, 0.4 for different values
of 𝛼. On Looking towards the Figure 7 (part first) that is plotted for 𝛼 = 0.9 and 𝑎 = 2.6 for different values of 𝛾, it is obvious
that for lower values of 𝛾, the perturbation which is added to the initial flow of traffic dies out after a long time and traffic flow
becomes uniform for 𝛾 = 0. As the value of 𝛾 increases from 0.2 to 0.4, a small perturbation is converted into stop-and-go traffic
waves and these observations are the same as those that happen in real traffic that travels in the reverse direction. A similar kind
of phenomenon is happening for all values of psychological driver sensitivity, as shown in patterns (part second), (part third)
and (part fourth) of Figure 7. These density profiles show distinct travelling waves with varying speeds, which are separated
by a growing and decaying density region. The number of stop-and-go waves decreases with an increase in the coefficients of
psychological driver sensitivity in overtaking, whichmeans that the psychological sensitivity enhances the stability of the traffic
flow.

It can be observed that an increase in the value of 𝛼 corresponds to better stability of traffic flow. It is clear from Figure 7
(part first to fourth) that the integration of passing constants for fixed PDS plays a significant role in alleviating traffic jams,
thus providing empirical validation for the theoretical findings. The amplitude of density waves is weakened with the decrease
in the coefficient of psychological sensitivity and passing.The lack of fulfillment of the stability condition leads to the evolution
of initial disturbances into a congested flow. Due to the unsatisfied stability condition, the initial disturbances transform into a
congested flow.

Moreover, the study shows that when the coefficient of passing is equal to zero, the traffic jam completely disappears, and the
flow of traffic becomes uniform.This finding emphasizes the importance of implementing efficient traffic control strategies that
consider the impact of PDS on traffic flow stability. Overall, Figure 7 provide valuable insights into the dynamics of traffic flow
and how it can be stabilized through PDS measures. Thus, these simulations underscore the importance of PDS and passing
effect in influencing traffic stability. It is observed that a larger PDS does not effectively alleviate traffic congestion when traffic
density is high. However, under low traffic density, a larger PDS improves traffic stability and increases traffic flux.

To effectively distinguish traffic situations, “density differences” are plotted in phase space 𝜌𝑗(𝑡) against 𝜌𝑗(𝑡)−𝜌𝑗(𝑡−1) at
time t=20300s for different values of 𝛾, in Figure 8 correspond to the patterns in Figure 7 between time t=20000–20300s. The
configuration depicted in Figure 8 corresponds to a set of dispersed points within the phase space plot. When 𝛼 is set to lower
values, the pattern assumes a limit cycle, resembling the scenario presented in Figure 8 (part first to third), indicating periodic
traffic behavior.With increasing 𝛼, the pattern shifts to exhibit scattered plots surrounding a closed loop, representing irregular
traffic patterns. This chaotic behavior reflects the distinct characteristics associated with chaos, where the points on the right
and left ends represent states of traffic congestion and smoothly flowing traffic, respectively.
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Fig 7. Density profiles at time t=20300s for different values of 𝛾 with fix 𝛼

Fig 8. Plot of density difference 𝜌𝑗(𝑡) against 𝜌𝑗(𝑡) − 𝜌𝑗(𝑡−1) at time t=20300s for different values of 𝛾 with fix 𝛼

4 Conclusion
In this study, we investigated the effect of psychological driver’s sensitivity (PDS) with a passing effect in a new lattice model.
After combining these factors, the traffic flow becomes more efficient, safe, and stable and gives better performance to existing
models which clearly seen from our findings. The influence of psychological factor with passing is investigated using linear
stability analysis. Nonlinear stability analysis revealed the range of PDS with a passing constant for which the kink soliton
solution exists. For lesser values of the coefficient of PDS and passing effect, the phase diagram shows traffic flow becomesmore
stable. By incorporating the PDSwith passing into the proposed lattice model, the theoretical conclusions are validated through
numerical simulation, demonstrating the effectiveness of the proposed approach in alleviating traffic bottlenecks.
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