
INDIAN JOURNAL OF SCIENCE AND TECHNOLOGY

RESEARCH ARTICLE

 

 

OPEN ACCESS

Received: 07-05-2024
Accepted: 24-06-2024
Published: 16-07-2024

Citation: Sakthivel KM, Vidhya G
(2024) Statistical Framework for
Modeling Asymmetrical Data with
Dual Peaks. Indian Journal of
Science and Technology 17(27):
2829-2840. https://doi.org/
10.17485/IJST/v17i27.1540
∗
Corresponding author.

vidhyastatistic96@gmail.com

Funding: None

Competing Interests: None

Copyright: © 2024 Sakthivel &
Vidhya. This is an open access article
distributed under the terms of the
Creative Commons Attribution
License, which permits unrestricted
use, distribution, and reproduction
in any medium, provided the
original author and source are
credited.

Published By Indian Society for
Education and Environment (iSee)

ISSN
Print: 0974-6846
Electronic: 0974-5645

Statistical Framework for Modeling
Asymmetrical Data with Dual Peaks

K M Sakthivel1, G Vidhya2∗
1 Professor, Department of Statistics, Bharathiar University, Coimbatore, Tamil Nadu, India
2 Research Scholar, Department of Statistics, Bharathiar University, Coimbatore, Tamil Nadu,
India

Abstract
Objectives: To create a comprehensive framework that effectively identifies
the most suitable model for asymmetrical data based on its unique character-
istics. Methods: This study proposed a new model named Gompertz-Gumbel
distribution (GGD) based on the results from the framework which utilizes var-
ious statistical tools, as well as information criteria. A dip test is used to check
themodality of the data. To propose a newmodel, the finitemixturemodel con-
cept was employed. The location, scale, shape, and weight parameters of the
GGD were estimated using the maximum likelihood estimation method. Find-
ings: The suggested framework exhibits superior performance in developing a
suitable model for the asymmetrical data with dual peaks, resulting in the best
fit for the data. To validate the effectiveness of the proposedmodel, it has been
compared with various models like Gaussian models and two-component mix-
ture models. The GGD’s properties have also been determined. The various
shapes of the GGD were also analyzed. Novelty: A novel framework is pro-
posed to identify the appropriate model for the asymmetrical data with dual
peaks that outperform the existing models. It shows the significance of the
framework.
Keywords: Lifetime distributions; Mixture models; Information Criteria;
Goodness of fit; Asymmetrical data

1 Introduction
Data plays an important role in many fields in the modern era, including reliability,
economics, finance, medicine, engineering, and so on. However, not all data follow
symmetrical patterns; most belong to asymmetrical patterns, such as being skewed to
the left or right or showing multiple peaks. In such a case, we are unable to determine
which of the current distributions best fits the data. In order to choose the appropriate
model for the asymmetrical data with dual peaks based on the properties of the data,
we designed a model selection procedure as a framework. We incorporate the finite
mixture model in the model selection procedure to develop a new model. Even though
many techniques, such as the transformationmethod, compositemethod, transformed-
transformermethod, 𝛼-power transformation, method of adding a new parameter, etc.,
are described in the literature to generate new distributions, the finite mixture model
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method is one of the best methods for unimodal as well as bimodal datasets.
The first noteworthy investigation of the finite mixture model was presented by renowned biometrician Karl Pearson (1). He

created a model that combined two normal probability distributions with different means and variances in a proportionate way.
After that, several researchers have since created a proportionate mix of probability distributions with different parameters.
Subsequently, Lindley (2) developed the Lindley distribution by combining exponential and gamma distributions with varying
proportions. Following that, several researchers have developed the one-parameter mixture model by combining exponential
and gamma distributions with different proportions. The study’s authors first developed a model, which they subsequently
applied to real-time data.

To determine the importance of the one-parameter mixture model, Vijay Sharma (3) did a comparison study on many one-
parameter mixture models. The Kpenadidum distribution is a one-parameter mixture model created by Barinaadaa (4) using
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜃) , 𝑔𝑎𝑚𝑚𝑎(3,𝜃) ,𝑔𝑎𝑚𝑚𝑎(4,𝜃) with different mixing proportions. Ganaie (5)exponentiated the one-parameter
Aradhana mixture model to boost the model’s flexibility, whereas Tesfalem Eyob (6) changed the mixture model by adding more
parameters to the distribution. Iwok Iberedem Aniefiok (7) combined two gamma distributions to create a single-parameter
model and examined their characteristics. Mohammed Benrabia (8) introduced a two-parameter mixture model by combining
exponential and gamma distributions with some proportions. Geoffrey J McLachlan (9) gives a brief note on finite mixture
models and their importance in statistical analysis. In order to model the continuous data, Pinho (10) created a continuous
cumulative distribution function (cdf) using the PIPE algorithm as a tool.The R package for building and assessing the mixture
models is provided by Lukas Sablica (11). Numerous writers developed and worked on mixture probability models.

Even though much work has been done in a mixture model with various combinations, we often don’t know which model
will suit the data perfectly. It is impractical to test all possible distributions to find the best fit for the data.Moreover, determining
the correct number of the mixture components can be challenging in the classic mixture model. The mixture models typically
assume a specific form for each component (e.g. Gaussian). If the true distribution differs significantly, the model may not fit
well.

In the exponential-gamma mixture models, there are many distributions, such as the Rama distribution (12), Janardan
distribution (13), Sushila distribution (14), and Exponential-Gamma distribution (15) among others. These distributions are
designed for unimodal datasets and often provide a good fit. However, it raises the question: why is the combination of
exponential and gamma distributions particularly effective for making good mixture models?

To address this issue, we incorporated other standard models with diverse properties and shapes to create a mixture of
models. We developed a framework to select the best fitting model for the given data, eliminating the struggle of choosing the
most appropriate model.

Previousworks have focused on either symmetrical, unimodal, or bimodal datasets, while weworkwith data that is unimodal
but also has dual peaks. Dealing with unimodal asymmetric data that contains dual peaks; thus, it is challenging to determine
which distribution would be most appropriate in this scenario. So, we developed an approach to address this issue and identify
which model most closely matches the actual data. This necessitated first determining the characteristics of the data through
a thorough analysis and then selecting the model that would best fit these attributes. Through this process, we developed a
mixture model that accurately represents the data and estimates it reliably.

2 Methodology
A systematic approach to the analysis of dual-peak asymmetric data is provided by this algorithm. This model selection
procedure separates the data into two groups by applying clustering techniques. After the data has been partitioned, the next
step is to fit a probability distribution to each partition. This is done to determine the best-fit model for each group of data.
The best-fit model is then chosen based on factors like goodness of fit, model complexity, and interpretability of the results. A
mixture model is produced by combining the best-fit models; This model thoroughly comprehends the data and spots patterns
and trends that might not be obvious when examining the data.

Fig 1. Framework for selecting a model
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This algorithm consists of the following steps:
Step 1: Consider the data.
Step 2: To determine the pattern of the random variable, visualize the data. likewise, verify the data’s modality.
Step 3: Applying the clustering algorithm, split the data into two groups.
Step 4: To identify the asymmetry, determine the skewness for each component of the data.
Step 5: Take into consideration the fundamental distributions for modeling according to the properties of the data.
Step 6: Use Maximum Likelihood Estimation (MLE) to estimate the parameter values for the first portion of the data using

appropriate probability distributions and determine the model’s adequacy by computing the goodness of fit and information
metrics.

Step 7: Repeat the process for the second half of the data.
Step 8: Based on the minimized values of -2LogLikelihood(-2LL), AIC, BIC, and AICC, select a better model among the

distributions that were taken into consideration in steps 6 and 7.
Step 9: Propose a new model by combining the selected models from Step 8.
The model selection process is refined using goodness of fit tests like Cramer Von Mises (CVM) (16), Anderson Darling (AD)

test (16), Kolmogorov Smirnov (KS) test (16), and information criteria like Akaike Information Criteria (AIC) (17), (18), Bayesian
Information Criteria (BIC) (18), and Corrected Akaike Information Criteria (AICC) (18), ensuring accurate and reliable insights
from the data. The framework provides useful insights that may be applied in a variety of fields, including engineering, finance,
marketing, and healthcare. It does this by effectively analyzing complicated data sets using various analytical tools and statistical
approaches.

It is essential to take into consideration a few assumptions before utilizing the framework. First and foremost, asymmetrical,
dual-peak data needs to be used for the analysis. Furthermore, the framework is especially intended for scenarios in which there
is a significant deviation from a normal distribution. The data must show some degree of skewness, either positive or negative,
to be appropriate for analysis using this approach.Moreover, the frameworkworks best with data that permits outliers to exist in
the dataset and has heavy tails. It’s crucial to remember that this framework was created specifically for univariate data analysis.

It is important to keep in mind that there are certain limitations to this procedure. This framework is specially designed
to handle asymmetrical data with dual peaks and requires dividing the data into two distinct groups. Moreover, the method
encompasses a constrained set of fundamental distributions, not exceeding twenty models that are rudimentary and widely
employed across diverse disciplines. The manual manipulation of this framework with substantial data volumes may engender
numerous challenges and protracted processing times. Subsequent research endeavors are poised to mechanize this process
by leveraging statistical software and generating outcomes via uncomplicated algorithms. This strategic approach is poised to
rationalize the process and enhance efficiency when handling larger datasets.

3 Results and discussion
Using the following real-time application, the inner workings of this framework are thoroughly discussed.

3.1 Applications

The dataset provides comprehensive information on the percentage of land area covered by forests in different countries. With
210 observations, it accurately reflects the forested areas in each country in 2010.The data is presented as a percentage,making it
easy to compare and analyze.The dataset was obtained from http://data.un.org/Data.aspx?d=MDG\&f=seriesRowID\%3a567.

Table 1. Summary of the Forest Coverage Area (FCA) data
Minimum 1st Quartile (Q1) Median Mean 3rd Quartile (Q3) Maximum Skewness Kurtosis
0.01 11.36 32.72 32.93 48.24 98.32 0.4759 2.4751

The results in Table 1 make it evident that there are differences between the mean and median values in our sample. The
data is most likely skewed and not symmetric based on the disparity in central tendency measures. Given that the kurtosis
suggests that the data is light-tailed, and the presence of skewness reinforces the positive skewness of the data, we may adopt
the light-tailed-natured model for both data sections. Despite this non-normality, the data can still be used to create a statistical
model. All things considered, these findings provide insight into the characteristics of our datasets and can guide future studies
and modeling endeavors.

The data’s graphical representation displays two peaks. Moreover, the kernel density plot indicates its asymmetric nature
with a non-symmetric distribution. To confirm the data’s modality, we employed the Hartigan dip test as proposed by Hartigan
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(1985), yielding a dip statistic of 0.02967 (p-value = 0.218). The Hartigan dip test result confirms that the data is unimodal. The
data was then split into two parts using K-mean clustering as part of Step 3 in our framework. The first segment consists of
118 observations, while the second contains 92 observations. The first segment is positively skewed, with a mean of 15.691, a
median of 13.215, and a skewness value of 0.2284.

Themost appropriate distribution for the data is chosen in our study by using fundamentalmodels such as symmetric, heavy-
tailed, light-tailed, positively skewed, and negatively skewed nature models. Since the initial portion of the data is positively
skewed, we may choose a model that exhibits this property. The computation of the tools listed above (in Section 2) for the
different distributions completes Step 6. All the findings were obtained using the R program, which is shown in Table 2 below.
The model is filtered using the findings to choose a superior model.

Table 2. Estimated parameters value and Goodness of fit for the first part of the dataset
Models Estimated parameter -2LL CVM AD KS AIC BIC AICC
Logistic 𝑎̂ =15.242 𝑏̂ =7.0614 923.47 0.3716 (0.086) 2.7956 (0.055) 0.1037 (0.158) 927.47 933.01 927.58
Gumbel 𝑘̂=10.0998 𝜆̂ =9.6648 907.89 0.3332 (0.109) 2.5511 (0.057) 0.0967 (0.220) 911.89 917.43 911.99
Weibull 𝑘̂=1.069 𝜆̂ =16.025 885.04 0.4565 (0.051) 3.2367 (0.051) 0.1168 (0.080) 889.04 894.59 889.15
Gompertz 𝑘̂=0.0436 𝜆̂ =0.0349 866.70 0.3523 (0.097) 3.4606 (0.076) 0.109 (0.121) 870.70 876.25 870.81

Based on the statistical analysis, we can confidently say that a better fit between our model and the data is suggested by lower
KS, CVM, and AD test statistic values. It is a fact that lower KS, CVM, and AD values indicate a preferable model, whereas
higher values suggest that the model does not fit well with the data and may not be a good option. We can compare the p-values
from the KS, CVM, and AD tests for the many possible distributions. A p-value →0 denotes a weaker fit, whereas a p-value →1
denotes a better fit. After careful analysis, we have concluded that Rayleigh, Lindley, Exponential, Gamma, Lognormal, Lomax,
Laplace, Cauchy, and Pareto distributions have greater KS, AD, andCVM statistic values and lower p-values, and hence, we have
ignored them. The best fit for the data is then chosen after computing the information criteria. We have thoroughly examined
the information criteria, and we are confident that the distribution with the lowest values of AIC, BIC, and AICC is the best fit.
Table 2 simplifies the process of selecting the appropriate model. We can state with confidence that the Gompertz distribution
is the best match for the first part of the data based on the parameters listed in the table.

To analyze the second part of the data, we followed the same process as we did for the first part of the data. The results of
this analysis have been tabulated in Table 3. Upon analyzing this part of the data, we found that its mean value is 55.03 and the
median is 51.23. This indicates that the data is asymmetric, with a positive skewness value of 0.8165. This positive skewness
value further confirms the skewed distribution of the data. Given these findings, we recommend selecting a distribution that
closely matches the positive skewness of the data while also being a light-tailed model, as we have previously mentioned. This
will enable us to accurately model and analyze the data to draw meaningful conclusions.

Table 3. Estimated parameters value and Goodness of fit for the second part of the dataset
Model Estimated parameter -2LL CVM AD KS AIC BIC AICC
Logistic 𝑎̂ =53.553 𝑏̂ =8.789 764.97 0.23982

(0.202)
1.7879
(0.121)

0.11421
(0.1813)

768.97 774.013 769.10

Weibull 𝑘̂=3.7444 𝜆̂ =60.846 765.93 0.30817
(0.1281)

2.0558
(0.086)

0.12514
(0.1121)

769.93 774.98 770.07

Lognormal 𝜇 =3.9718 𝜎̂ =0.265 747.53 0.17248
(0.3282)

1.078
(0.319)

0.08434
(0.5296)

751.53 756.58 751.67

Gamma 𝛼=14.0315 𝛽=0.255 751.09 0.20913
(0.2507)

1.3045
(0.231)

0.09308
(0.4028)

755.09 760.14 755.23

Gumbel 𝑘̂=48.046 𝜆̂ =11.507 745.19 0.16738
(0.3411)

1.0561
(0.329)

0.080826
(0.5849)

749.19 754.23 749.32

The results from Table 3 indicated that the Gumbel distribution was the most suitable model for the second part of the data.
With the two necessary components identified and obtained for both parts of the data, we can proceed to the next step.

In step 8 of our analysis, we examined the findings from steps 6 and 7, which revealed that the Gompertz distribution was
a better fit for the first part of the data, while the Gumbel distribution was more suitable for the second part of the data. As we
wanted to combine these two distributions, we used the finite mixture model to create a new distribution called the Gompertz-
Gumbel distribution (GGD) in step 9.The function of theGGD is provided below, which can be used tomodel the entire dataset
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accurately.
In order to ensure the effectiveness and precision of our proposed model in handling data processing tasks, it is of utmost

importance to conduct rigorous testing. Through this testing process, we will be able to showcase that our framework can
generate superior results and surpass the performance of existing models.

To compare the proposed model with previously filtered models and frequently used mixture models such as the two-
component normal distribution and the two-component log-normal distribution, we have repeated step 6 for the proposed
model. The results of this testing process are presented in Table 4, providing a comprehensive overview of the model’s
performance and efficiency.

We also conducted an analysis using the “mclust” package in the R program to generate a Gaussian Mixture Model (GMM)
for our data.Themodel indicated that the data could be represented using four-component Gaussianmixturemodels. However,
after comparing the results with our proposed model, we found that our model performed significantly better than GMM. Our
findings suggest that the proposed model is a superior alternative for modeling the data, as it provides more accurate results.
These results have important implications for further research in this field and can be leveraged to developmore effectivemodels
for similar datasets.

Table 4. Estimated parameters value, Goodness of fit, and Model selection criteria for the data
Model Estimated parameter -2LL CVM AD KS AIC BIC AICC
Gamma 𝛼=1.0541 𝛽=0.0320 1887.22 0.95051

(0.0032)
5.0943
(0.003)

0.1407
(0.0004)

1891.22 1897.92 1891.28

Weibull 𝑘̂=1.1408 𝜆̂ =34.212 1882.84 0.68611
(0.0137)

4.3118
(0.007)

0.1238
(0.0032)

1886.84 1893.53 1886.90

Logistic 𝑎̂ =31.711 𝑏̂ =13.866 1934.40 2.4044
(0.201)

2.1504
(0.076)

0.0923
(0.056)

1938.40 1945.09 1938.46

Normal 𝜇 =32.925 𝜎̂ =23.618 1923.99 0.26448
(0.1708)

2.149
(0.076)

0.08356
(0.107)

1927.99 1934.69 1928.05

Gompertz 𝑘̂=0.0190 𝜆̂ =0.0176 1854.10 0.1958
(0.2759)

2.1504
(0.076)

0.0675
(0.295)

1858.10 1864.79 1858.16

Gumbel 𝑘̂=21.6896 𝜆̂ =19.471 1909.31 0.31553
(0.1222)

2.127
(0.078)

0.0756
(0.182)

1913.31 1920.01 1913.37

Two Com-
ponent
Log-Normal

𝑤 =0.3739 𝜇1=1.6758
𝜎̂1=1.6726 𝜇2=3.7104
𝜎̂2=0.4346

1859.96 0.0684
(0.761)

0.6557
(0.596)

0.0561
(0.523)

1869.96 1886.70 1870.25

Two Compo-
nent Normal

𝑤 =0.0985 𝜇1=32.9279
𝜎̂1=23.6643 𝜇2=32.9232
𝜎̂2=23.6137

1923.992 0.2643
(0.1711)

2.1481
(0.076)

0.083529
(0.1067)

1933.99 1950.73 1934.28

Gompertz-
Gumbel

𝑤 =0.9821 𝑏̂=0.0208 𝜂̂=0.0161
𝜇=10.736 𝛽=0.0162

1846.97 0.1609
(0.358)

1.5934
(0.155)

0.0506
(0.656)

1856.94 1873.67 1857.23

Table 4 and Figure 2 make it clear that our suggested mixed probability model yields the best results, and our approach helps
select a more suitable model for the asymmetrical with dual peak data.

3.2 Gompertz-Gumbel Distribution:

The two-component finite mixture model can be created using

𝑓 (𝑥) = 𝑤1𝑔1 (𝑥)+𝑤2𝑔2 (𝑥) (1)

Where, 𝑔1 (𝑥) ∼ 𝐺𝑜𝑚𝑝𝑒𝑟𝑡𝑧 (𝑏,𝜂), 𝑔2 (𝑥) ∼ 𝐺𝑢𝑚𝑏𝑒𝑙(𝜇,𝛽) and 𝑤1 = 𝜔; 𝑤2 = 1−𝑤1 = 1−𝜔.
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Fig 2. Comparison fit for the data

Let X ~ GGD (𝜔,𝑏,𝜂,𝜇,𝛽) then the Probability density function (pdf) and cumulative distribution function (cdf) for the
GGD are given below and the different shapes of the model are figured in Figure 3 and Figure 4. The pdf of GGD is

𝑓 (𝑥) = 1
(𝑒𝜂 −1)𝜔 +1

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜔𝑏𝜂𝑒(𝜂+𝑏𝑥−𝜂𝑒𝑏𝑥) +(1−𝜔) 𝑒
−𝑒

−
𝑥−𝜇

𝛽 −
𝑥−𝜇

𝛽
𝛽

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2)

And the cdf of GGD is,

𝐹 (𝑥) = ∫
𝑥

−∞
𝑓 (𝑥)𝑑𝑥 =

𝑒−𝑒
𝜇
𝛽 − 𝑥

𝛽 −𝜂𝑒𝑏𝑥 ((𝜔𝑒𝜂𝑒𝑏𝑥+𝜂 −𝑒𝜂𝜔)𝑒𝑒
𝜇
𝛽 − 𝑥

𝛽 +(1−𝜔)𝑒𝜂𝑒𝑏𝑥)
(𝑒𝜂 −1)𝜔 +1

Simplified and rewrite

𝐹 (𝑥) =
(1−𝜔)𝑒−𝑒

𝜇
𝛽 − 𝑥

𝛽 +𝑒−𝜂𝑒𝑏𝑥 (𝜔𝑒𝜂𝑒𝑏𝑥+𝜂 −𝑒𝜂𝜔)
(𝑒𝜂 −1)𝜔 +1

(3)

𝐹𝑜𝑟, 𝑏 > 0, 𝛽 > 0, 𝜂 > 0,1 > 𝜔 > 0,𝜇 ∈ 𝑅;−∞ < 𝑥 < ∞

3.2.1 Properties of the GGD
The Reliability function of X is

𝑆 (𝑥) =
(𝑒𝜂 −1)𝜔 +1−(1−𝜔)𝑒−𝑒

𝜇
𝛽 − 𝑥

𝛽 −𝑒−𝜂𝑒𝑏𝑥 (𝜔𝑒𝜂𝑒𝑏𝑥+𝜂 −𝑒𝜂𝜔)
(𝑒𝜂 −1)𝜔 +1

(4)

The hazard function of X is

ℎ(𝑥) = 𝛽𝜔𝑏𝜂𝑒(𝜂+𝑏𝑥−𝜂𝑒𝑏𝑥) +(1−𝜔)𝑒
−𝑒

−
𝑥−𝜇

𝛽 −
𝑥−𝜇

𝛽

𝛽 ⎛⎜⎜
⎝

(𝑒𝜂 −1)𝜔 +1−(1−𝜔)𝑒−𝑒

𝜇
𝛽 − 𝑥

𝛽 −𝑒−𝜂𝑒𝑏𝑥 (𝜔𝑒𝜂𝑒𝑏𝑥+𝜂 −𝑒𝜂𝜔)⎞⎟⎟
⎠

(5)
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Fig 3. Various shapes of the GGD’s Density Function and cumulative Distribution Function for various parameter values

Fig 4. Various shapes of the GGD’s Survival Function and Hazard Function for various parameter values

Reverse hazard rate of X is

𝜏 (𝑥) =
𝜔𝑏𝜂𝑒(𝜂+𝑏𝑥−𝜂𝑒𝑏𝑥) +(1−𝜔) 𝑒

−𝑒
−
𝑥−𝜇

𝛽 −
𝑥−𝜇

𝛽
𝛽

𝑒−𝑒

𝜇
𝛽 − 𝑥

𝛽 −𝜂𝑒𝑏𝑥 ⎛⎜⎜
⎝

(𝜔𝑒𝜂𝑒𝑏𝑥+𝜂 −𝑒𝜂𝜔)𝑒𝑒

𝜇
𝛽 − 𝑥

𝛽 +(1−𝜔)𝑒𝜂𝑒𝑏𝑥⎞⎟⎟
⎠

(6)

The cumulative hazard rate of X is

𝐻 (𝑥) = −𝑙𝑜𝑔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(𝑒𝜂 −1)𝜔 +1−𝑒−𝑒

𝜇
𝛽 − 𝑥

𝛽 −𝜂𝑒𝑏𝑥 ⎛⎜⎜⎜
⎝

(𝜔𝑒𝜂𝑒𝑏𝑥+𝜂 −𝑒𝜂𝜔)𝑒𝑒

𝜇
𝛽 − 𝑥

𝛽 +(1−𝜔)𝑒𝜂𝑒𝑏𝑥⎞⎟⎟⎟
⎠

(𝑒𝜂 −1)𝜔 +1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(7)

https://www.indjst.org/ 2835

https://www.indjst.org/


Sakthivel & Vidhya / Indian Journal of Science and Technology 2024;17(27):2829–2840

The odds function of X is

𝜋𝑂 (𝑥) =
(1−𝜔)𝑒−𝑒

𝜇
𝛽 − 𝑥

𝛽 +𝑒−𝜂𝑒𝑏𝑥 (𝜔𝑒𝜂𝑒𝑏𝑥+𝜂 −𝑒𝜂𝜔)

(𝑒𝜂 −1)𝜔 +1−(1−𝜔)𝑒−𝑒

𝜇
𝛽 − 𝑥

𝛽 −𝑒−𝜂𝑒𝑏𝑥 (𝜔𝑒𝜂𝑒𝑏𝑥+𝜂 −𝑒𝜂𝜔)

(8)

The log-odds function is

𝐿𝑂(𝑥) = 𝑙𝑜𝑔⎛⎜⎜⎜
⎝

(1−𝜔)𝑒−𝑒

𝜇
𝛽 − 𝑥

𝛽 +𝑒−𝜂𝑒𝑏𝑥 (𝜔𝑒𝜂𝑒𝑏𝑥+𝜂 −𝑒𝜂𝜔)⎞⎟⎟⎟
⎠

−𝑙𝑜𝑔⎛⎜⎜⎜
⎝

(𝑒𝜂 −1)𝜔 +1−(1−𝜔)𝑒−𝑒

𝜇
𝛽 − 𝑥

𝛽 −𝑒−𝜂𝑒𝑏𝑥 (𝜔𝑒𝜂𝑒𝑏𝑥+𝜂 −𝑒𝜂𝜔)⎞⎟⎟⎟
⎠

(9)

The log-odds rate is defined as

𝐿𝑂𝑅(𝑥) =

𝛽𝜔𝑏𝜂𝑒(𝜂+𝑏𝑥−𝜂𝑒𝑏𝑥) +(1−𝜔)𝑒
−𝑒

−
𝑥−𝜇

𝛽 −
𝑥−𝜇

𝛽

𝛽 ⎛⎜⎜
⎝

(𝑒𝜂 −1)𝜔 +1−(1−𝜔)𝑒−𝑒

𝜇
𝛽 − 𝑥

𝛽 −𝑒−𝜂𝑒𝑏𝑥 (𝜔𝑒𝜂𝑒𝑏𝑥+𝜂 −𝑒𝜂𝜔)⎞⎟⎟
⎠

(𝑒𝜂 −1)𝜔 +1−(1−𝜔)𝑒−𝑒

𝜇
𝛽 − 𝑥

𝛽 −𝑒−𝜂𝑒𝑏𝑥 (𝜔𝑒𝜂𝑒𝑏𝑥+𝜂 −𝑒𝜂𝜔)
(𝑒𝜂 −1)𝜔 +1

(10)

nth order statistics

𝑓𝑋(𝑛)
(𝑥) = 𝑛

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
(𝑒𝜂 −1)𝜔 +1

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜔𝑏𝜂𝑒(𝜂+𝑏𝑥−𝜂𝑒𝑏𝑥) +(1−𝜔) 𝑒
−𝑒

−
𝑥−𝜇

𝛽 −
𝑥−𝜇

𝛽
𝛽

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎡
⎢
⎢
⎢
⎣

(1−𝜔)𝑒−𝑒

𝜇
𝛽 − 𝑥

𝛽 +𝑒−𝜂𝑒𝑏𝑥 (𝜔𝑒𝜂𝑒𝑏𝑥+𝜂 −𝑒𝜂𝜔)
(𝑒𝜂 −1)𝜔 +1

⎤
⎥
⎥
⎥
⎦

(𝑛−1)
(11)

1st order statistics

𝑓𝑋(1)
(𝑥) = 𝑛

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
(𝑒𝜂 −1)𝜔 +1

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜔𝑏𝜂𝑒(𝜂+𝑏𝑥−𝜂𝑒𝑏𝑥) +(1−𝜔) 𝑒
−𝑒

−
𝑥−𝜇

𝛽 −
𝑥−𝜇

𝛽
𝛽

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

×
⎡
⎢
⎢
⎢
⎣

(𝑒𝜂 −1)𝜔 +1−(1−𝜔)𝑒−𝑒

𝜇
𝛽 − 𝑥

𝛽 −𝑒−𝜂𝑒𝑏𝑥 (𝜔𝑒𝜂𝑒𝑏𝑥+𝜂 −𝑒𝜂𝜔)
(𝑒𝜂 −1)𝜔 +1

⎤
⎥
⎥
⎥
⎦

(𝑛−1)
(12)
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The pdf of a median of order statistic is

𝑓𝑚+1∶𝑛 (𝑥) = (2𝑚+1)
𝑚!𝑚!

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
(𝑒𝜂 −1)𝜔 +1

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜔𝑏𝜂𝑒(𝜂+𝑏𝑥−𝜂𝑒𝑏𝑥) +(1−𝜔) 𝑒
−𝑒

−
𝑥−𝜇

𝛽 −
𝑥−𝜇

𝛽
𝛽

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

×
⎡
⎢
⎢
⎢
⎣

(1−𝜔)𝑒−𝑒

𝜇
𝛽 − 𝑥

𝛽 +𝑒−𝜂𝑒𝑏𝑥 (𝜔𝑒𝜂𝑒𝑏𝑥+𝜂 −𝑒𝜂𝜔)
(𝑒𝜂 −1)𝜔 +1

⎤
⎥
⎥
⎥
⎦

𝑚

×
⎡
⎢
⎢
⎢
⎣

(𝑒𝜂 −1)𝜔 +1−(1−𝜔)𝑒−𝑒

𝜇
𝛽 − 𝑥

𝛽 −𝑒−𝜂𝑒𝑏𝑥 (𝜔𝑒𝜂𝑒𝑏𝑥+𝜂 −𝑒𝜂𝜔)
(𝑒𝜂 −1)𝜔 +1

⎤
⎥
⎥
⎥
⎦

𝑚

(13)

3.2.2 Estimation
The maximum likelihood estimates of the GGD (𝜔,𝑏,𝜂,𝜇,𝛽) parameters. Consider the following log-likelihood function 𝑙 of a
random sample 𝑋1,𝑋2,𝑋3,…,𝑋𝑛 from a population following GGD(𝜔,𝑏,𝜂,𝜇,𝛽) with pdf (2)

𝑙 = −𝑛𝑙𝑜𝑔 ((𝑒𝜂 −1)𝜔 +1)+∑𝑛
𝑖=1 𝑙𝑜𝑔

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜔𝑏𝜂𝑒(𝜂+𝑏𝑥−𝜂𝑒𝑏𝑥) +(1−𝜔) 𝑒
−𝑒

−
𝑥−𝜇

𝛽 −
𝑥−𝜇

𝛽
𝛽

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(14)

On differentiating Equation (14) with respect to the parameters 𝜔,𝑏,𝜂,𝜇, 𝑎𝑛𝑑 𝛽 and equating to zero, we obtain the following
likelihood equations.

𝜕𝑙
𝜕𝜔 = − 𝑛(𝑒𝑛 −1)

𝜔(𝑒𝑛 −1)+1 +∑𝑛
𝑖=1

𝑏𝜂𝑒(𝜂+𝑏𝑥−𝜂𝑒𝑏𝑥) + 𝑒
−𝑒

−
𝑥−𝜇

𝛽 −
𝑥−𝜇

𝛽
𝛽

𝜔𝑏𝜂𝑒(𝜂+𝑏𝑥−𝜂𝑒𝑏𝑥) +(1−𝜔) 𝑒
−𝑒

−
𝑥−𝜇

𝛽 −
𝑥−𝜇

𝛽
𝛽

= 0 (15)

𝜕𝑙
𝜕𝑏 =

𝑛
∑
𝑖=1

𝜂𝜔𝑏(𝑥−𝜂𝑥𝑒𝑥𝑏)𝑒(𝜂+𝑏𝑥−𝜂𝑒𝑏𝑥) +𝜂𝜔𝑒(𝜂+𝑏𝑥−𝜂𝑒𝑏𝑥)

𝜔𝑏𝜂𝑒(𝜂+𝑏𝑥−𝜂𝑒𝑏𝑥) +(1−𝜔) 𝑒
−𝑒

−
𝑥−𝜇

𝛽 −
𝑥−𝜇

𝛽
𝛽

= 0
(16)
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𝜕𝑙
𝜕𝜇 =

𝑛
∑
𝑖=1

(1−𝜔)
⎛⎜⎜⎜⎜
⎝

1
𝛽 − 𝑒

−
𝑥−𝜇

𝛽
𝛽

⎞⎟⎟⎟⎟
⎠

𝑒
−𝑒

−
𝑥−𝜇

𝛽 −
𝑥−𝜇

𝛽

𝛽
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜔𝑏𝜂𝑒(𝜂+𝑏𝑥−𝜂𝑒𝑏𝑥) +(1−𝜔) 𝑒
−𝑒

−
𝑥−𝜇

𝛽 −
𝑥−𝜇

𝛽
𝛽

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 0
(17)

𝜕𝑙
𝜕𝛽 =

𝑛
∑
𝑖=1

(1−𝜔)
⎛⎜⎜⎜⎜
⎝

𝑥−𝜇
𝛽2 − (𝑥−𝜇)𝑒

−
𝑥−𝜇

𝛽
𝛽2

⎞⎟⎟⎟⎟
⎠

𝑒
−𝑒

−
𝑥−𝜇

𝛽 −
𝑥−𝜇

𝛽

𝛽 −
(1−𝜔)𝑒

−𝑒
−
𝑥−𝜇

𝛽 −
𝑥−𝜇

𝛽
𝛽2

𝛽

𝜔𝑏𝜂𝑒(𝜂+𝑏𝑥−𝜂𝑒𝑏𝑥) +(1−𝜔) 𝑒
−𝑒

−
𝑥−𝜇

𝛽 −
𝑥−𝜇

𝛽
𝛽

= 0
(18)

𝜕𝑙
𝜕𝜂 = − 𝑛𝜔𝑒𝜂

𝜔(𝑒𝑛 −1)+1) +
𝑛

∑
𝑖=1

𝑏𝜔(1−𝑒𝑏𝑥 )𝜂𝑒𝜂+𝑏𝑥−𝜂𝑒𝑏𝑥 + 𝑏𝜔𝑒𝜂+𝑏𝑥−𝜂𝑒𝑏𝑥

𝜔𝑏𝜂𝑒(𝜂+𝑏𝑥−𝜂𝑒𝑏𝑥) +(1−𝜔) 𝑒
−𝑒

−
𝑥−𝜇

𝛽 −
𝑥−𝜇

𝛽
𝛽

= 0
(19)

Now the MLEs 𝜔̂, 𝑏̂, ̂𝜂, ̂𝜇 𝑎𝑛𝑑 ̂𝛽 of the parameters 𝜔,𝑏,𝜂,𝜇, 𝛽 of GGD with pdf (2) can be obtained by solving the likelihood
Equations (15), (16), (17), (18) and (19) with the help of statistical software R.

3.2.3 Simulation Studies
A simulation study is used to assess howwellML estimations perform. For this, we replicate theGompertz-GumbelDistribution
(GGD) parameters 1000 times using different sample sizes, ranging from 25 to 250. Using R programming, we generated a
random sample of GGD by utilizing the Monte Carlo simulation approach. The performance of the MLEs is evaluated for each
sample by computing the mean value, average bias, and root-mean-square error (RMSE), which are displayed in Table 5.

From Table 5, it is observed that the sample size of n increases, and the bias and RMSE tend to decrease. Therefore, a larger
sample size indicates more accurate results

Table 5. Simulation analysis: Mean, Bias, and RMSE values for GGD with various sample sizes
Case (i): 𝜔=0.1, b =0.1, 𝜂=0.2, 𝜇=0.5, 𝛽=1.5 Case (ii): 𝜔=0.1, b =0.5, 𝜂=0.1, 𝜇=2.5, 𝛽=0.1

n Parameters Mean Average Bias RMSE Mean Average Bias RMSE

25

𝜔 0.5181 0.1600 0.1865 0.5184 0.1598 0.1867
b 1.1359 0.3556 0.4658 1.1440 0.3466 0.4658
𝜂 0.0049 0.0049 0.0124 0.0065 0.0003 0.0147
𝜇 0.8989 0.0092 0.0378 2.5820 0.0086 0.0113
𝛽 0.0046 4.1e-03 0.0708 0.0013 1.09e-03 0.0081

50

𝜔 0.5101 0.0502 0.0894 0.5076 -0.0325 0.0756
b 1.0696 0.2517 0.3273 1.089 0.3148 0.4244
𝜂 0.0047 0.0043 0.0114 0.0051 0.0001 0.0116
𝜇 0.8917 0.0022 0.0024 2.5606 0.0050 0.0058

Continued on next page
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Table 5 continued
𝛽 0.0003 8.08e-04 0.0008 0.0003 7.65e-04 0.0008

100

𝜔 0.5045 0.0467 0.0864 0.5028 -0.0471 0.0682
b 1.0525 0.1592 0.3050 1.0495 0.0239 0.1644
𝜂 0.0036 0.0031 0.0083 0.0034 0.0001 0.0086
𝜇 0.8915 0.0019 0.0022 2.3674 0.0021 0.0025
𝛽 0.0003 3.64e-05 0.0001 0.0003 1.74e-04 0.0002

250

𝜔 0.5004 0.0161 0.0549 0.5025 -0.0494 0.0317
b 1.0463 0.0778 0.1615 1.0189 -0.0500 0.1151
𝜂 0.0020 0.0018 0.0062 0.0012 0.0001 0.0033
𝜇 0.8912 0.0012 0.0021 2.0739 0.0015 0.0018
𝛽 0.0002 1.65e-05 0.0001 0.0003 1.39e-05 0.0001

4 Conclusion
This study presents an algorithm that deals with the challenges of asymmetric data with dual peaks. The proposed algorithm
is based on a unique framework that combines various probability distributions, which helps us to determine the best mixture
of probability models for the given data. The new approach has been thoroughly evaluated by subjecting it to numerous
goodness of fit tests and information criteria to ensure that it outperforms existing models. It relies on a finite mixture model,
which combines multiple probability models to provide a more accurate representation of the data. To accurately estimate
the parameters for our proposed model and select the most appropriate model for the data, we use the maximum likelihood
estimationmethod. A thorough analysis was done on the statistical characteristics of our proposedmixturemodel and evaluated
their performance against existing models. We use Geospatial data to demonstrate the performance of the proposed algorithm,
which has shown accuracy and efficiency in selecting the best model for asymmetric data with dual peaks, making it a valuable
tool for researchers and analysts working in various domains.The proposedmodel provides a better fit than the two-component
normal, two-component lognormal, and four-componentGaussianmodels. Additionally, it fits the data better than theGamma,
Weibull, logistic, Gompertz, normal, and Gumbel models.
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