
Abstract
Objectives: The load balancing becomes an important point for performance and stability of the system. Therefore, it is 
needed an algorithm for enhancing the system performance by balancing workload among VMs. Methods: Task schedul-
ing algorithms are used to achieve the load balancing and QoS. The proposed Load Balancing Decision Algorithm(LBDA) 
to manage and balance the load between the virtual machines in a datacenter along with reducing the completion time 
(Makespan) and Response time. Findings: The mechanism of LBDA is based on three stages, first calculates the VM capac-
ity and VM load to categorize the VMs’ states (Under loaded VM, Balanced VM, High Balance VM, Overloaded). Second, 
calculate the time required to execute the task in each VM. Finally, makes a decision to distribute the tasks among the 
VMs based on VM state and task time required. Improvements: We compared the result of our proposed LBDA with Max-
Min, Shortest Job Firstand Round Robin. The results showed that the proposed LBDA is more efficient than the existing 
algorithms.

An Efficient Load Balancing Scheme for Cloud 
Computing

Atyaf Dhari* and Khaldun I. Arif

Department of Computer Science, College of Education for Pure Science, Thi_Qar University, Iraq;  
Atyafcomsinc@gmail.com,khaldun.i.a.2014@gmail.com

Keywords: Cloud Computing, LBDA, Load Balancing, Makespan, Response Time, Task Scheduling

1.  Introduction
Cloud computing environment is a computing paradigm 
for managing and accessing services over the internet it 
is defined as “a paradigm for enabling ubiquitous, con-
venient, on-demand network access to a shared pool of 
configurable computing resources that can be rapidly 
provisioned and released with minimal management 
effort or service provider interaction”1. Cloud computing 
indicates to the applications and the services executing 
on the deployment network using virtualized resources 
and restore by common Internet protocols and network-
ing standards. It is developed from the grid computing, 
distributed computing and parallel computing. Parallel 
and distributed system included a set of interconnected 
and virtual computers that are provisioning dynamically2. 
The cloud computing characteristics are basically as on-
demand-self-service, broad network access, resource 
pooling, rapid elasticity, measured service and location 
dependency and security3. Cloud computing provides 

three kinds of service to consumer i.e., IaaS, PaaS and 
SaaS4.

Providing the virtualization technology in cloud plat-
forms helps enterprises to rent computing power in the 
form of virtual machines to the users. The users may uti-
lize hundreds or thousands of Virtual Machines (VMs)5. 
Even though the cloud has greatly simplified the capacity 
provisioning process, it poses several novel challenges in 
the area of Quality of Service (QoS) management. QoS 
is fundamental for cloud users, who expect providers 
to deliver the advertised quality characteristics, and for 
cloud providers, who require to obtaining the right trad-
eoffs between QoS levels and operational costs6. One of 
important challenges in cloud computing is a load bal-
ancing in data centre7. To handle a very large size of data 
many techniques to optimize load and simplify opera-
tions are needed to obtaindesirable performance level for 
the users8. There is a need an effective algorithm in term 
of load balancing in the cloud computing. The load can 
be differentiated in various categories, CPU load, delay 

*Author for correspondence

Indian Journal of Science and Technology, Vol 10(11), DOI: 10.17485/ijst/2017/v10i11/110107, March 2017
ISSN (Print) : 0974-6846 

ISSN (Online) : 0974-5645



An Efficient Load Balancing Scheme for Cloud Computing

Indian Journal of Science and Technology2 Vol 10 (11) | March 2017 | www.indjst.org

or network load, memory capacity5. Load balancing 
guarantee that each processor in the system does approxi-
mately the same quantity of load at any point of time8. 
The task scheduling is used to determine the suitable 
resources to execute the tasks that received from users9. 
For increasing the utilization of resources, we use the 
load balancing algorithm. Efficient utilization is achieved 
by using the idle resources until finishing the resources 
of processors that have the high load. The load balanc-
ing mechanism divides the loads within all the resources 
which are available10. The dynamic cloud computing used 
many of load balancing strategies11. The Max-Min algo-
rithm for each task, the minimum completion time is 
calculated, then the task with the maximum of minimum 
completion time is mapped to the corresponding virtual 
machine12. The Shortest-Job-First (SJF) is a various algo-
rithm to CPU scheduling. This way associated with every 
process length’s next CPU burst. The process with shortest 
length assigned to CPU when it is available. When there 
are two processes that have same CPU bursts then sched-
uling based on FCFS13. In Round Robin (RR) approach, 
the processes are separated between all processor. Every 
process is mapping the processor in a round robin order 
by using quantum time. The allocation of process is not 
based on the allocations from remote processors. The 
processing time of task for various processes is not equal 
but the distributions of workload are same14.

As mentioned earliest, the users send the requests 
to the service provider, the service provider has to serve 
many users to provide the best results and take into 
account maximizing resources utilization. Distributing 
the tasks into the resources to avoid overloading where 
there are under loaded resources. The objectives of this 
work to achieve users’ satisfaction and provider satis-
faction by balancing the loads and increase resources 
utilization, by minimizing the average of both makespan 
time and response time using LBDA algorithm effective 
performance. 

The paper is divided into many Sections. In Section 
2, the proposed algorithm is discussed. The experimental 
result of proposed scheme in Section 3. The performance 
evaluation is shown in Section 4. The conclusion is pro-
vided in Section 5.

Some of studies have been carried for improving load 
balancing such as: 

In 15used Genetic Algorithm (GA) for ACO (Ant 
colony optimization) initialization. Second, ACO could 
arrive at local optimal point and the convergence speed is 

typically low. In this time, introduce the idea of Simulated 
Annealing (SA) to avoid a local optimal and accelerate 
the convergence. The experiments result enhanced ACO 
achieves good performance in load balancing. Proposed 
in 1enhanced weighted round robin algorithm taking into 
account the capabilities of each virtual machine and the 
length of each task, where each requested task assigns 
to the most suitable virtual machines. The experiment 
results and performance analysis of this algorithm proved 
that the improved weighted round robin algorithm is the 
most suitable one where heterogeneous/homogeneous 
tasks with heterogeneous resources (virtual machines) 
compared to the other round robin and weighted round 
robin algorithms.

Author in9proposed a new task scheduling strategy 
based on the total order of resource allocation to enhance 
the Min-Min algorithm. In term decreasing the total 
executing time maximizing resources utilization. The 
experimental results showed that the proposed heuristic 
algorithm achieves the best values of completion time 
compared to Sufferage and Min-Min algorithms.

Proposed16 model that is based on centralized load bal-
ancing strategy. In this strategy, the load balancer must bind 
the tasks to VMs to reduce the response time and turn-
around time. Before binding tasks to the virtual machine, 
first, the load balancer calculates the remaining capacities 
of all virtual machines and then send the task to the most 
powerful virtual machine. The experiment result is showed 
a better performance in terms of average response time and 
turnaround time compared with Round Robin.

Proposed honey bee behavior inspired load balanc-
ing17 (HBB-LB) to achieve a good balance load through 
VMs for maximizing the throughput. Along with balanc-
ing the priorities of tasks on the VMs in such a way that 
the amount of waiting time of the tasks in the queue is 
minimal. The author compared the proposed algorithm 
with existing load balancing and scheduling algorithms. 
The experimental results indicate that the proposed algo-
rithm is more efficient.

Author in18 proposed a new task scheduling algorithm 
to minimize the makespan and maximize the resources 
utilization taking into account independent tasks. The 
proposed algorithm calculates the total processing power 
of the available resources and the total requested process-
ing power of the users’ tasks. Then allocate a group of 
users’ tasks to each virtual machine based on the ratio of 
its needed power corresponding to the total processing 
power of all virtual machines. Evaluate the performance 



Atyaf Dhari and Khaldun I. Arif

Indian Journal of Science and Technology 3Vol 10 (11) | March 2017 | www.indjst.org

of the proposed algorithm, by comparing the proposed 
algorithm to the GA, and PSO algorithms. The experi-
mental results indicated that the proposed algorithm 
outperforms of other algorithms by minimizing make 
span and maximizing the resources utilization.

In presented19task scheduling strategy based on 
Quantum Particles Swarm algorithm (BLQPSO) to 
reduce the makespan of execution scientific application 
workload in cloud computing environments. 

Author in20proposed task scheduling algorithm to the 
independent tasks in the cloud computing. The proposed 
algorithm is a blend of the Cuckoo search (CS) algorithm 
and PSO algorithm, called PSOCS. To reduce the make 
span and maximize the utilization ratio.

2.  The Proposed Algorithm
In cloud computing environment there are many data 
centres that composed of heterogeneous resources which 
consist of servers and virtual machines (VMs). The serv-
ers and VMs may have different configurations such as 
memory sizes, bandwidth, storage and processing capaci-
ties.

2.1  Configurations
We have set of virtual machines as VM {VM1, VM2, 
VM3,…VMm}. Each VM has different parameters such as 
VM state and the speed in Million Instructions Per Second 
(MIPS). All VMs are no interrupted, non-preemptive and 
independent. The tasks are independent {T1, T2, T3,…
Tn}. Each task has different properties such as id, length, 
start time and finish time. The length refers to number of 
instruction per second.

2.2  Description of Algorithm
The tasks are sent to the broker, the broker determines the 
suitable VM based on a number of tasks that submitted as 
illustrated in Figure 1, and each VM state change among 
(Under loaded, Balance, High balance, Overloaded).

Scheduler: The user will send the Cloudlet_List, 
cloudlet independency list as input to the scheduler that 
enter the request to the balancing.

Balancing: It assigns the task to the suitable VM that 
is determined from that assigns tasks to VMs based on 
the information that is collected.

VMCheck: Check the VM state by comparing the 
capacity of VM with the VM load using three types of 

Figure 1.  The proposed LBDA.

thresholds: threshold upper, threshold fair, and threshold 
lower. 

The Capacity of VM (CVM) is calculated based on Eq.11.

	 CVM = Penum ∗ Pemips� (1)

where, Penumis defined as a number of processing element 
allocated in VM.

Pemips is the amount of million instructions per second.
VM load (VMload) that it will be calculated based on 

Eq.21.

	 1

n
jj

TL

n
==

Â
loadiVM � (2)

where, TL refers to task length. 
Three thresholds were selected based on the previous 

process, first Threshold upper limited TUL, it is =0.9, the 
second Threshold for Fair Limited (TFL), it is =0.8 and 
the third Threshold for Lower Limited (TLL), it is =0.2, as 
illustrated in Figure 2 compared to VM load with a capac-
ity of VM to update the VM state

Stage 1.VMloadi < = CVMi ∗ TLL then VM state labelled as 
Under loadedstate.

Stage 2. VMloadi > CVMi ∗ TLL and VMloadi < = CVMi ∗ TFL 
then VM state labelled as Balanced state.

Stage 3.VM loadi > C VMi ∗ TFL and VMloadi< = CVMi ∗ TUL 
then VM state labelled as High Balancestate.

Stage 4. VMloadi > CVMi ∗ TUL then VM state labelled as 
Overloaded state.

VM Decide: Selection of suitable VM will be decided 
and we take into account the benefit of user and provider, 
where increasing the resources utilization, load balancing 
and less completion time.



An Efficient Load Balancing Scheme for Cloud Computing

Indian Journal of Science and Technology4 Vol 10 (11) | March 2017 | www.indjst.org

As mention in LBDA scheduling task algorithm avoid-
ance the VM Overloaded state, so mapped the task with 
delay when the VM in a high balance state.

update VM load based on Eq.5.

	 VMloadi = VMloadi + TL� (5)

Finally, remove the task that is mapped from 
unmapped tasks list.

2.3  Algorithm Steps
Load Balancing Decision Algorithm (LBDA) 

Input: List of un mapping tasks and available resources.
Output: Complete tasks with less execution time.

1 � Initially set the characteristics of VMs and create the 
tasks with different length.

2  Calculate VM capacity based on Eq. 1.
For each task in tasks list:
	 1. Calculate VM load based on Eq. 2.
	 2. Check VM state:
2.1. �If VM Load <= CVM ∗ TLL→means the state of the 

VM is
Under loaded state.
2.2. �If VM Load > CVM ∗ TLL && VM Load < = CVM ∗ TFL 

→VM
3	 means the state of the VM is Balance state.

2.3. �If VM Load > CVM ∗ TFL && VM Load < = CVM ∗ TUL →
means the state of the VM is High Balance

1. If VM Load > CVM ∗ TUL → means the state of the VM is
Overloaded state.
2. If there are VMs’ Under loaded state, then calculates ECT 
based onEq.3 and mapping the task to VM that has less 
estimated completion time, if there are more than one VM 
has same ECT then selects VM with the largest capacity.
3. If all VMs’ Balance then mapping task to VM has less 
estimated time and with largest capacity, if there.
4. If virtual machines are in the state (Balance and High 
Balance):

a. � Calculate the less estimated completion time of VMs’ 
Balance state, if there are more than one VM has 
same ECT then selects VM with the largest capacity.

b. � Calculate the less estimated completion time of VMs’ 
High Balance state with the delay∗.

c. � Finally, select the lowest of ECT between the two 
types VMs’ state (Balance, High Balance)

∗ Delay:
The delay means is the amount of time for completed tasks

Figure 2.  Virtual machine state.

First, we calculate the Estimated Completion Time 
(ECT) of the task in all virtual machines which have state 
(Under loaded), ECT calculated based on Eq.321 and Eq.422.

	
VM

TL
C

ET = � (3)

	 ECT = ET + VMloadi� (4)

ET is the execution time of task. 
Then select VM that has less estimated completion 

time. 
Second, if there are more than one VM Under state 

that has same estimated completion time then select VM 
with the largest capacity. Selection the largest capacity 
improves the load balancing because it decreases the load 
on VM that has less capacity and minimizing Over state 
happening.

Third, when all VMs’ state is balanced and there are 
VMs becoming High Balance then Task Check must be 
taken into account to check the less estimated completion 
time of the task as follow:

a.	 We calculate the less ECT in all VMs’ Balance state.
b.	 Less ECT in all VMs’ High Balance state added with 

delay (ECT+ Delay).
c.	 If the less ECT in all VMs’ state (Balance) more than 

the less ECT for VMs’ state (High Balance) with delay 
then the task mapped to VM that has less ECT, but 
here the start execution time of task is equal to load 
of VM High Balance and the VM new state return to 
(Balance state).

Otherwise, send to the VM state (Balance) with less 
processing time and largest capacity, if there. 

http://


Atyaf Dhari and Khaldun I. Arif

Indian Journal of Science and Technology 5Vol 10 (11) | March 2017 | www.indjst.org

process
when VM in High Balance loaded state
5. Update load ofVM based on Eq.5.
End for

4 � Calculate Average Makespan, Mean of Average Response 
Time and Total Execution Time.

3.  Performance Metrics
A set of parameters are considering when building task 
scheduling algorithm. These parameters play an impor-
tant role to increase the overall cloud performance. Each 
parameter is explaining in this section.

Makespan: Is the total completion time of all tasks 
VM queue. A good scheduling algorithm always tries to 
reduce the makespan23, which is defined in Eq.717.

	 Makespan = max {CTi}� (7)

where, i∈ VMs
then, calculating the average of makespan which is 

defined in Eq.824.

	 1

m

k
Makespan

m
=Â

Av. Makespan = � (8)

Response Time (RT): indicates to the time of search 
process, which contains the time to execute the task in 
cloud computing system25. Response Time (RT) is defined 
as Eq.916.

	 RTj = FTj – SBj� (9)

where, FTj is finish time of task, SBj is submission time of 
taskthen calculate the Mean of Average Response Time of 
all VMs, defined as Eq.10.

	 1
.

m
kk

Av RT

m
=Â

M. Av. RT = � (10)

Av.RT is the average response time of VM denoted in 
Eq.11.

	 1

n
jj

RT

n
=Â

Av. RT = � (11)

Execution Time: Is defined as the time difference 
between the task finish time and the task starting time 
within the resource. It is defined as Eq.1225.

	 Execution Timej = FTj – STj� (12)

where, STj is start time of task.

4.  Experimental Results

4.1  Simulation Tool
The simulator is used because all the new algorithms or 
strategies require being checked before applying them 
in the real cloud computing environment. But building 
a real world for cloud computing environment to check 
the newly proposed algorithms and policies wastes a lot 
of time and it gets too costly in terms of money as well. 
Thereby the cloud environment and run the policies are 
simulated on the simulator. The simulator is effective of 
the algorithms that can be detected with a very little cost 
of money and time26.

We use a CloudSim 3.0.3, a CloudSim toolkit as a sim-
ulation platform that has been preferred, as it is a recent 
simulation framework embattled at cloud environments27. 
In CloudSim, the users are submitting the tasks or jobs. 
Classification of the user tasks are based on the param-
eters like memory, bandwidth, resources utilization and 
completion time etc. Then, the tasks are added to schedul-
ing policies. After scheduling, CloudSim utilizes to assign 
the user tasks with virtual machine by datacenter broker 
and execute the tasks with the help of a virtual machine. 
CloudSim is implemented with supplying java28.

4.2  Simulation Configuration 
In the experiments, the simulation parameters are 
described as follows.

•	 Set the virtual machines with RAM 512 MB, size 10 
GB, Bandwidth 1 GB and 300, 500 and 700 MIPS. 

•	 Set the tasks Lengths with different length, file size 300 
MB. 

•	 Set the configurations for a host with RAM 16384 MB, 
Storage 1000 GB, 

Bandwidth 10 GB and 10000 MIPS.
Time-shared provisioning is used in CloudSim 3.0.3 

toolkit for this implementation. The results for average 
makespan, Mean of Average Response Time and total all 
execution time that are shown in Table 1. 

5.  Performance Evaluation
Evaluated the results of the performance of the LBDA, 
Max-Min, SJF and Round Robin algorithms by using 
the CloudSim toolkit. The metrics have tested the 
Average of makespan (completion time of the last task 



An Efficient Load Balancing Scheme for Cloud Computing

Indian Journal of Science and Technology6 Vol 10 (11) | March 2017 | www.indjst.org

to be executed), the Mean of Average Response Time 
and Total of all Execution Time for all tasks in virtual 
machines. Five experiments 100, 150, 200,250 and 300 
tasks executed in a 6, 8, 10, 12 and 14 number of VMs 
respectively.

Table 2, shows the results are implemented. It is 
obvious that average makespan based approach LBDA 
produced better results than the others algorithms in all 
experiments. 

From Figure 3, it is visually obvious that minimizing 
average makespan in the proposed LBDA compared to 
others.

Table 3 and Figure 4 demonstrate the results of Mean of 
Average Response Time and the proposed LBDA had better 
results than Max-Min, SJF and Round Robin algorithms.

Also, Table 4 shown the proposed LBDA outperform 
results than Max-Min, SJF and Round Robin algorithms 
in Total Execution Time of all tasks. This mean that LBDA 
execute user tasks in less time when it used instead of 
existing algorithms. 

From Figures 3, 4 and 5 present the Average Make span, 
the Mean of Average Response Time and Total Execution 
Time are decreased as we increase the number of tasks and 
number of virtual machines in our proposed algorithm 
LBDA and Max-Min, SJF, Round Robin algorithms.

Table 1.  All experiments result of LBDA for Av. 
Makespan, M.Av.RT and Total Execution Time

Experiments Av.Makespan M.Av.RT
Total Execution 

Time
100 Tasks in 6 VMs 360 277 29246
150 Tasks in 8 VMs 427 300 48335

200 Tasks in 10 VMs 430 313 71644
250 Tasks in 12 VMs 433 326 91165
300 Tasks in 14 VMs 458 332 112303

Table 2.  Comparison of Av. Makespan among LBDA, 
Max-Min, SJF and RR

Experiments
Average Makespan

LBDA Max-Min SJF Round Robin
100 Tasks in 6 VMs 358 370 418 416
150 Tasks in 8 VMs 416 438 488 492

200 Tasks in 10 VMs 430 460 524 501
250 Tasks in 12 VMs 434 460 522 521
300 Tasks in 14 VMs 458 488 549 550

Figure 3.  Average of Makespan

Table 3.  Comparison of Mean of Average Response 
Time among LBDA, Max-Min, SJF and RR

Experiments
Mean of Average Response Time

LBDA Max-Min SJF Round Robin
100 Tasks in 6 VMs 277 300 340 349
150 Tasks in 8 VMs 308 356 397 414

200 Tasks in 10 VMs 320 374 426 500
250 Tasks in 12 VMs 336 375 424 436
300 Tasks in 14 VMs 338 462 447 396

Figure 4.  Mean of Average Response Time.

Table 4.  Comparison of Total Execution Time 
among LBDA, Max-Min, SJF and RR

Experiments
Total Execution Time

LBDA Max-Min SJF Round Robin
100 Tasks in 6 VMs 29456 30107 34224 35150
150 Tasks in 8 VMs 50683 53504 59609 62124

200 Tasks in 10 VMs 71676 75308 85304 100302
250 Tasks in 12 VMs 92008 94126 106418 109407
300 Tasks in 14 VMs 112956 119570 134135 138785



Atyaf Dhari and Khaldun I. Arif

Indian Journal of Science and Technology 7Vol 10 (11) | March 2017 | www.indjst.org

8.  References
  1.	 Chitra DD, Uthariaraj VR. Load balancing in cloud com-

puting environment using Improved Weighted Round 
Robin Algorithm for nonpreemptive dependent tasks. The 
Scientific World Journal. 2016; 2016.

  2.	 Solmaz A, Motamedi S, Sharifian S. Task scheduling using 
Modified PSO Algorithm in cloud computing environment. 
International Conference on Machine Learning, Electrical 
and Mechanical Engineering; 2014. p. 37–41.

  3.	 Imran MA, Pandey M, Rautaray SS. A proposal of resource 
allocation management for cloud computing. International 
Journal of Cloud Computing and Services Science. 2014; 
3(2):79–86.

  4.	 Jamuna RMR, Gouda KC, Nirmala N. Load balancing 
technique for climate data analysis in cloud computing 
environment. International Journal of Science, Engineering 
and Computer Technology. 2013; 3(5):183–85.

  5.	 Namrata G, Garala K, Maheta P. Cloud load balancing 
based on ant colony optimization algorithm. IOSR Journal 
of Computer Engineering (IOSR-JCE); 2015. p. 11–18.

  6.	 Danilo A. Quality-of-service in cloud computing: model-
ing techniques and their applications. Journal of Internet 
Services and Applications. 2014; 5(1):1–17.

  7.	 Jia Z. A Heuristic clustering-based task deployment 
approach for load balancing using Bayes Theorem in 
cloud environment. IEEE Transactions on Parallel and 
Distributed Systems. 2016; 27(2):305–16. Crossref

  8.	 Kunjal G, Goswami N, Maheta ND. A performance analysis 
of load Balancing algorithms in Cloud environment. 2015 
International Conference on Computer Communication 
and Informatics (ICCCI), IEEE; 2015. p. 4–9.

  9.	 Beghdad BK, Benhammadi F, Benaissa F. Balancing heu-
ristic for independent task scheduling in cloud computing. 
2015 12th International Symposium on Programming and 
Systems (ISPS), IEEE; 2015.

10.	 Aditi S, Sharma S. Credit based scheduling using dead-
line in cloud computing environment. International 
Conference on Resent Innovation in Science Engineering 
and Management; 2016. p. 208–16.

11.	 Sukhjinder GS, Vivek T. Implementation of a hybrid load 
balancing algorithm for cloud computing. International 
Conference on Science, Technology and Management; 
2016. p. 173–82.

12.	 Mohana PS, Subramani B. A new approach for load bal-
ancing in cloud computing. International Journal of 
Engineering and Computer Science. 2013.

13.	 Shreya S, Kaur A. Load balancing in cloud computing using 
Shortest Job First and Round Robin Approach. International 
Journal of Science and Research. 2015; 9(4):1577–80.

14.	 Divya C, Chhillar RS. A new load balancing technique 
for virtual machine cloud computing environment. 

All experiments illustrated that Load Balancing 
Decision Algorithm improves Average makespan, Mean of 
Average Response Time and Total Execution Time com-
pared to other existing algorithms. In addition, increasing 
the number of VMs shows slight improvement. With this, 
we can deduce that LBDA gives better and efficient results. 

6.  Summary and Conclusion 
In cloud computing environment, there are many challenges, 
one of them is load balancing. It has an important impact on 
the performance. The maximize resources utilization and 
users’ satisfaction can be improved by good load balancing. 
In this proposed algorithm, LBDA solving the tasks in load 
balancing problem by considering the VMs’ capacity and 
the estimated completion time for each task to map the tasks 
to the most appropriate VMs. We conducted five experi-
ments to evaluate the performance of proposed algorithm. 
The comparison of the proposed algorithm is done with 
Round Robin, Max-Min and SJF algorithms under same 
configuration environment. The simulation results show 
that the proposed algorithm has outperformed in all cases 
as compared to Max-Min, SJF and Round Robin algorithms 
by reducing average makespan, Mean of Average Response 
Time and Total Execution Time in all VMs. As a part of the 
future, the implementation can be done for improvements 
with more factors such as a deadline constraint.

7. Acknowledgement
We thank Dr. Mokhtar Abdulrahman Alworafi and Dr. 
Asma Alhashmi for excellent comments and suggestions.

Figure 5.  Total Execution Time.

https://doi.org/10.1109/TPDS.2015.2402655


An Efficient Load Balancing Scheme for Cloud Computing

Indian Journal of Science and Technology8 Vol 10 (11) | March 2017 | www.indjst.org

International Journal of Computer Applications. 2013; 
69(23):37–40. Crossref

15.	 Yang X, HongTao L. Load balancing of virtual machines in 
cloud computing environment using improved ant colony 
algorithm. International Journal of Grid and Distributed 
Computing. 2015; 8(6):19–30. Crossref

16.	 Abbas RH, Katti CP, Saxena CP. A load balancing strategy 
for Cloud Computing environment. 2014 International 
Conference on Signal Propagation and Computer 
Technology (ICSPCT), IEEE; 2014.

17.	 Babu DL, Venkata PK. Honey bee behavior inspired load 
balancing of tasks in cloud computing environments. 
Applied Soft Computing. 2013; 13(5):2292–303. Crossref

18.	 Elhossiny I, El-Bahnasawy N, Omara FA. Job schedul-
ing based on harmonization between the requested and 
available processing power in the cloud computing envi-
ronment. International Journal of Computer Applications. 
2015; 125(13):1–4.

19.	 Elrasheed I, Alamri F. Optimized load balancing based task 
scheduling in cloud environment. International Journal of 
Computer Applications; 2014.p. 35–8.

20.	 Ali A, Omara FA. Task scheduling using hybrid algo-
rithm in cloud computing environments. IOSR Journal of 
Computer Engineering. 2015; 17(3):96–106.

21.	 Sourav B. Development and analysis of a new cloudlet alloca-
tion strategy for QoS improvement in cloud. Arabian Journal 
for Science and Engineering. 2015; 40(5):1409–25.Crossref

22.	 Nizomiddin BK, Choe TY. Dynamic task scheduling algo-
rithm based on ant colony scheme. International Journal of 
Engineering and Technology (IJET). 2015; 7(4):1163–72.

23.	 Saleh A, Yussof S, Ezanee M, Almiani M. A review 
energy-efficient task scheduling algorithms in cloud com-
puting. Long Island Systems, Applications and Technology 
Conference (LISAT); 2016.

24.	 Vinay D, Shah J, Mehta R. Dynamic load balancing for 
cloud computing using heuristic data and load on server. 
IOSR Journal of Computer Engineering (IOSR-JCE). 2014; 
16(4):59–69. Crossref

25.	 Hussain MSH, Latiff MSA, Coulibaly Y. An appraisal of 
meta-heuristic resource allocation techniques for IaaS 
cloud. Indian Journal of Science and Technology. 2016; 
9(4):1–14.

26	 Kritika S, Maini R. Comparative analysis of host utilization 
thresholds in cloud datacenters. International Journal of 
Computer Applications. 2015; 120(2):9–13. Crossref

27.	 Lodhi V, Sarveshrai, Vishwakarma GK, Enhanced mini-
mum utilization VM selection mechanism for clouds. 
International Journal of Computer Science and Information 
Technologies. 2015; 6(3):2975–77.

28.	 Dinesh K, Poornima G, Kiruthika K. Efficient resources 
allocation for different jobs in cloud. International Journal 
of Computer Applications. 2012; 56(10):30–5. Crossref

https://doi.org/10.5120/12114-8498
https://doi.org/10.14257/ijgdc.2015.8.6.03
https://doi.org/10.1016/j.asoc.2013.01.025
https://doi.org/10.1007/s13369-015-1626-9
https://doi.org/10.9790/0661-16435969
https://doi.org/10.5120/21198-3864
https://doi.org/10.5120/8928-3005

