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1.  Introduction 

The conception of Public Key Cryptography (PKC) first 
brought in public domain and introduced1. Since then 
various public key cryptographic protocols have been 
developed but could not take desired results. It is a one-
way functions show the significant roles in the conception 
of public key cryptographic protocols. On the apparent 
difficulty of specific predicaments specifically huge finite 
commutative rings, these days most prosperous public 
key cryptographic protocols are established. 

To outline public key cryptographic protocol using 
the undesirable word issue for groups and semi-groups is 
proposed2. The thought is really not in view of word issue, 
but rather on another, comparatively easier, introduce 
issue. For a new public key cryptographic protocol which 
depends on finitely gave assembles hard word problem3.

One of successful key establishment protocol came up 
with a compact algebraic structure4. The establishment 

of their strategy included in the difficulty of explaining 
conditions over arithmetical structure. Subsequently the 
first proposed new public key cryptographic protocol is 
used by braid groups5. The security foundation is that 
when the framework parameters, for example, braid 
index and the canonical length of the working braids, 
are chosen legitimately, the Conjugator Search Problem 
(CSP) is unmanageable. A new public key cryptographic 
protocol built on finite non-abelian groups was published6. 
Their strategy depends on the discrete logarithm problem 
in which the inner automorphism group is defined by 
means of the conjugate action. Later, their system was 
developed and improves to the so-called MOR systems7. 
In the interim, utilizing one-way functions and trapdoors 
in finite groups developed new approaches to design 
public key cryptographic protocol8.  

Homomorphic public key cryptographic protocol 
was developed for the first time for non-abelian groups9. 
Afterwards, the extended and expanded their process 
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to discretionary nonidentity finite groups in view of the 
difficulty of the participation issue for groups of integer 
matrices10. Edified thought the number-crunching key 
exchange4, proposed a new public key cryptographic 
protocol using polycyclic groups11.

Generic algebraic systems are especially a non-
commutative one which is creating its significances, 
making its marks and attracting many among the above 
public key cryptographic protocols. There are some 
difficulties of resolving CSP over certain non-abelian 
groups using non-commutative algebraic systems. In spite 
of the fact that there are algorithms for understanding a 
few variations of CSP in specific groups, such as braid 
groups with respect to the system parameters12–16, none 
of them can resolve CSP itself defined over general 
non-abelian group in polynomial time. However, non-
commutative acts favorably and unfavorably from one 
perspective, it makes CSP significant; then again, it brings 
some bother for planning public key cryptographic 
protocols. Rectifying the problem, making it favorable is 
the key concern for developing public key cryptographic 
protocol over non-commutative algebraic systems.

1.1 Organization 
In this article, we establish new ideas for scheming 
adaptively chosen cipher-text secure (IND-CCA2) secure 
public key cryptographic protocol using the concept 
of dihedral group. The main idea of our purpose is to 
define the technique in polynomials and take them as the 
fundamental work structure for a given dihedral group. 
By doing so, it is much easy to implement the effective 
IND-CCA2 secure public key cryptographic protocol in 
the random oracle model.

1.2 The Structure of the Article
This paper is sorted out as takes after. In Section 
2, preliminaries are presented; In Section 3, we 
demonstrated some extension over dihedral group; In 
Section 4, we proposed new IND-CCA2 secure public key 
cryptographic protocol using dihedral group. In Section 
5, we demonstrated supporting example for proposed 
new public key cryptographic protocol.  The security of 
proposed public key cryptographic protocol is discussed 
in Section 6. Finally, concluding remarks are made in 
Section 7.

2.  Preliminaries

In this segment, we demonstrated required basic 
definition of integer coefficient ring polynomials and its 
properties. 

2.1  Integral Coefficient Ring Polynomials 
(ICRP)

Assume (®,  is algebraic structure for ring ®  
with multiplicative operation  of non-commutative 
semi group and is algebraic structure with 
additive operation  of commutative group. Now we 
consider Integral Coefficient Polynomials (ICP) with ring 
assignment as follows:
For  and θ ∈ ®,

   (1)

When , we can define
    (2)

For  , it is normal to define ( )θ= 0.

Property1.

2.1.1 Proof
As indicated by the definition of the distributive 
of multiplication, scale multiplication concerning 
commutative of addition and addition, this statement is 
finished up instantly. 

Remark. In non-commutative ring ®, we get 
Presently, let us continue to define positive ICRP
(α)θ.(β)k≠(β)k.(α)θ  for  θ≠ k.

 = α0+ α1 u+ ... + αj uj ∈ ƻ>0 [ ]

We can allocate this polynomial by utilizing a 
component  in ® and finally get

(3)

This is a component in ®, obviously. Advance, in 
the event that we view  as a component in ®, then  
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(θ) can be observed as a polynomial about factor. The 
arrangement of these types of polynomials, assuming 
over all  ∈ ƻ>0 [⍬] can be observed the expansion 
of ƻ>0 with, indicated by ƻ>0 [θ]. For comfort, we call it the 
arrangement of 1-ary positive ICRP.

Assume that 
,  

then
 

      (4),
Also, as per Property 1 and additionally the 

distributive, we have

Where and then, 

we can finish up instantly the following hypothesis as 
per Property 1. 

Theorem 2.1
(⍬). (⍬)= (⍬)• (⍬),∀ (⍬), (⍬) ∈ ƻ>0 [⍬].

Remark 3.If ⍬ and  are two distinct components, then

2.2 Suzuki 2-Group
In the first place, we review some essential actualities 
about -groups, where  means a prime number. A 
limited gathering  of request a force of  is called a 

 -group, i.e.  for a specific positive number
. The smallest common multiple of the order of the 

component of  is known as the exponent of . 
An abelian  -group  of exponent  is said to be 
rudimentary abelian.

The set  is 
known as the center of . It is outstanding that 
is a normal subgroup of request at any rate  for any 

 -group . The subgroup created by every one of 
the components of the arrangement  with 

 is known as the commentator subgroup 
of . The alleged Frattini subgroup of , indicated 
by . At last, a component of order 2 in a 
gathering is called an involution.

Formally, a Suzuki 2-group17 is well characterized as 

a non-abelian 2-group with more than one involution 
having a cyclic group of automorphisms which permutes 
its involutions transitively. This class of 2-group was 
analyzed and described by17.

Specifically, in any Suzuki 2-group  we have 
where

and

 It is appeared in17 that 
the order of  is either . In this manner all 
the involution of  are in the center of , there 
and the factor group  are rudimentary abelian. 
Subsequently, all components not in  have order 4. 
It is realized that  has an automorphism  of order 

 consistently permuting the involution of .

2.3  Symmetrical Decomposition Problem 
(SDP) 

For given  and  find 
 such that 

2.4  Polynomial Diffie-Hellman (PDH) 
Problem over Suzuki 2-Group 

Suppose that  is a Suzuki 2-geoup. For any 
arbitrarily selected component , we define a set 

 by
τs  ≜{ᶂ( )∶ᶂ(u)∈ ƻ>0  ) [ ]}

At that point, let we consider the new forms of 
computational Diffie-Hellman problem over  
with respect to its subset , it is known as polynomial 
Diffie-Hellman (PDH) problem and define as: For given 

 and , we compute  (or ), where 

Accordingly, the cryptographic based on PDH 
supposition says that PDH, problem over   is 
intractable, i.e., there doesn’t exist PPT process which can 
resolve PDH, problem over  with non-negligible 
precision w. r. t. problem scale.

3.   Extension of Over Suzuki 
2-Group

The technique portrayed in the above subsection 2.1 is 
suite for general non-commutative rings. In similar way, 
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we can transfer these outcomes to general Suzuki 2-group.
Now, given a Suzuki 2-group 

Assume that there is a ring (®,  and a 
monomorphism  
Then, the inverse map  
is also a well-defined monomorphism and for 

, we can 
allot another component  as

,  (5)
and call  as the quasi_sum of  

and .  Correspondingly, for  and 
if , then we can allot 

another component  as
                                                                       (6)

and call  as the quasi_multiple of  
.
At that point, we can see that the monomorphism  

is linear in sense of that the accompanying equalities hold 

for  and 
Further, for  
and , if 

, 
then for new member  as

         

      (7) 
and call .as the quasi_polynomial of 

on .
Clearly, for arbitrary 

and  are not always well-defined. But, we can prove 
that the following theorem holds.

3.1 Theorem 
For some  and some , if 

 and  are well-defined, then

(i). 

(ii) 

3.1.1 Proof
(i) is straight forward from 
the definition of quasi_polynomial. 

(ii)

 ( is monomorphism )

4.   An IND-CCA2 Secure Public 
Key Cryptographic Protocol

In18 introduced a method to translate an IND-CPA 
encryption protocol into an IND-CCA2 scheme18. By 
using concept of Fujisaki and Okamoto18, we convert 
IND-CPA public key cryptographic technique based on 
Suzuki 2-group in IND-CCA2 public key cryptographic 
technique based on Suzuki 2-group.

The technique described as follows:
4.1 Setup
• We assume that SDP on   for a given Suzuki 

2-group .
• Select two random integers . 
• Select two component c and d from .
• Let and are two hash functions 

define (cryptographic) as ɧ1 ∶{0,1}ᵾ+ᵾ0 →ƻ[u] 
 and ɧ2 ∶  →{0,1}〗ᵾ+ᵾ0.

The public parameters of the technique is given by the 
tuple 

4.2 Key Generation
• Each entity selects an arbitrary polynomial 

 such that and 
then takes as his/her private key.

• Calculates and 
publishes his/her public key 
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4.3 Encryption
For given a M ∈ and Receiver’s key , the 
sender 
• Selects a random component 
• Selects extracts polynomial 

 such that
.

• Calculates

Finally outputs the cipher-text
C=(s,t) ∈    × {0,1}ᵾ+ᵾ0.

4.4 Decryption 
Upon getting a , the receiver utilizing his/her private 
key , calculates

Finally, extracts  and 
checks whether  holds. 
Assuming this is the case, yields the starting  bits of 

; generally, yields empty string, which implies that the 
given cipher-text is invalid.

5.  Concrete Examples

In this segment, we illustrate example for supporting our 
proposed new public key cryptographic technique based 
on Suzuki 2-group. 

Let us the class of Suzuki 2-group with order  
. Utilizing Higman’s documentation, a 

Suzuki 2-group of order  will be indicated by  
. Assume where belongs 

natural number such as  an extent that the field  has 
nontrivial automorphism  of non-even order. This 
infers  is not a force of 2. At that point the gatherings 

 do exist. 
Honestly, in case we describe , where 

is a -matrix over 
Give us a chance to delineate our technique by utilizing 

a Suzuki 2-group:  where  
while  and  are two extensive secure primes. 
We have strong motivation to trust that symmetrical 
decomposition problem over  is 
immovable, since it is infeasible to extract.

Form

without knowing the figuring of .
Next, let    for instance. Assume 

that the framework parameters are
 = 2,  = 3,

Hence private key will be

Then, the corresponding public key would be

Give us a chance to pick a message M arbitrarily, say
.Suppose the compound number we picked 

arbitrarily is  . At that point, we separate a 
polynomial as takes after:

Which gives?
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(Take note of that if  does not satisfy the 
condition of ,we ought to at first amend

 Where

Luckily, in this illustration. The above extracted 
 meets the necessity of )

At that point, then cipher-text combine is

and

ᵾ

Presently, let us check the decryption process:

6.   Security Analysis and 
Discussion

In 1999, 18acquainted a strategy with change over an 
IND-CPA cryptographic technique into an IND-CCA2 
cryptographic technique. For self-containing, we practice 
their principle thought as takes after: 

Assume that  is an IND-CPA secure 
public-key cryptographic technique with key generation 
procedure Ω(1ᵾ), encryption procedure  
and decryption procedure  where  and 

 are a private key and the conforming public key, 
M a message with ᵾ+ᵾ0  bits, ȿ a random string with ȴ  
bits and  a cipher-text. The transformed public-key 
cryptographic technique  is defined by
Ω̅(1ᵾ )↦ Ω(1ᵾ+ᵾ0),

ȿ

where :{0,1}ᵾ+ᵾ0→ {0,1}ȴ is a random function of, 
 is a message with ᵾ bits, 𝓌 an arbitrary string with 

ᵾ0 bits and || denotes concatenation.

6.1 Theorem 6.118

Assume that Λ↦ Ω(1ᵾ+ᵾ0) is the first IND-CPA secure 
cryptographic technique and  is changed over technique. 
In the event that a -adversary 𝓐 
for Λ̅(1ᵾ) in the sense of IND-CCA2 in the ROM,  
a - adversary  for Λ(1ᵾ+ᵾ0) and 
constant c, where

ȴᵾ

and

ᵾ

Here, - adversary 𝓐, casually, 
implies that 𝓐 stops inside t stages, prevails with 
probability in any event, makes at most  inquiries to 

, and most inquiries to decryption oracle 
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. The computational time of the encryption procedure
 is  and

ȴ
ᵾ+ᵾ0

ȴ

Proof. See Theorem 3 of 18.
As indicated in18, we can changeover our fundamental 

public key cryptographic technique into more secure 
new public key cryptographic technique, which comes to 
IND-CCA2 security, with sacrificing of ᵾ0  bits plaintext. 

6.2 Theorem 6.219 

Let  be a random oracle and 𝓐 be an IND-CPA foe 
that has advantage against the purpose fundamental 
technique inside ᵾ iterations. Assume that 𝓐 makes a 

 total of inquiries to . Then there is a procedure  
that resolves polynomial Diffie-Hellman problem over 

with advantage at least  within ᵾ'  iterations, where

ᵾ

Proof. See the Theorem 6 of19.

6.3 Theorem 6.3 
Assume that  and are two random oracles. Then the 
presented public key cryptographic technique is an IND-
CCA2acceptingpolynomial Diffie-Hellman problem over 
the Suzuki 2-group is hard. All that has been assumed 
is an IND-CCA2 foe 𝓐 that has advantage against the 
presented public key cryptographic technique inside 

 steps. Assume that adversary 𝓐 makes at most  
decryption inquiries, and at most , inquiries to 
the hash functions  and  respectively. Then there 
is a technique  which can solve polynomial Diffie-
Hellman problem with the probability at least inside  
steps, where

where  is a constant and Tē (ᵾ) represents the 
computational time of the encryption process  
in our purposed public key cryptographic technique, and 

6.4 Proof
We At first, from Theorem 6.1 and Theorem 6.2, it 
promptly presumes that our presented public key 
cryptographic technique comes to IND-CCA2 security 
in the ROM assuming that polynomial Diffie-Hellman 
problem is hard. Then, consolidating the consequences 
of both the IND-CPA hypothesis and Fujisaki-Okamoto 
hypothesis, we get the above limits.

6.5 Remark
It is critical the elaborations on completing a cryptographic 
hash that maps a binary string to a polynomial, for 
example, ɧ1 ∶ {0,1}ᵾ+ᵾ0 →ƻ[u]. Specifically, the ensuing 
polynomials should assist imperatives, for instance, the 
condition et cetera. We utilize the purported 
separate and-overcome system to deal with this issue: At 
first, we extricate a polynomial from 
a binary string in {0,1}ᵾ+ᵾ0; Then, we receive an interesting 
deterministic approach to correct  to with 
the end goal that  satisfies the sought condition . 
Toward the day’s end, we have to consider the going with 
issues in sketching out the needed hash.

6.6 Extracting
In exercise, we need to pick huge coefficients polynomials 
with low degrees. Allow us to acknowledge that the 
most vital degree is and the largest coefficient is  

, then ought to be sufficiently extensive 
resist brute force attack. Thusly, there is a trivial solution 
to implement :Assume that we starting at now have a 
cryptographic hash function 
. At that point, for any given image of , i.e., a vector 

 , we can outline to an 
objective polynomial by a characteristic way:

6.7 Rectifying
Assume we embrace an added substance rectifying 
strategy. At that point, for coming about polynomial

it can be rectified to  while

where  is the arrangement of polynomials 
in fulfilling the given condition C.
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6.8 Collision-Resisting 
The above correcting procedure is not to abuse the 
property of collision resistance. In fact, the collision 
resistance of is established in the one-wayness of .

7.  Conclusions

In this study, we demonstrated new approach for 
designing the public key cryptographic technique using 
the concept of general non-commutative algebraic system 
such as Suzuki 2-group. Also we discussed the new 
strategy with change over an IND-CPA cryptographic 
technique into an IND-CCA2 cryptographic technique. 
By using this new strategy we change our past IND-CPA 
public key cryptographic technique in to more secure 
IND-CCA2 public key cryptographic technique.  The 
principle thought in our suggestion lies that we consider 
polynomials on  given non-commutative arithmetical 
framework as the major work structure for creating 
cryptographic arrangements. Consequently, we can get 
some commutative sub-structures for the given non-
commutative scientific systems.
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