Tracing Groundwater Flow Systems with Hydrogeochemistry in Bengal Delta Aquifers, Bangladesh

Ratan Kumar Majumder^{1*} and Jun Shimada²

¹Institute of Nuclear Minerals, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh; ratankm@baec.gov.bd ²Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan; jshimada@sci.kumamoto-u.ac.jp

Abstract

Objective: In present study, hydrochemical data were used to characterize the hydrogeochemical processes and to identify groundwater flow systems in Bengal Delta aquifers, Bangladesh. **Methods:** Regarding this, 202 shallow, 26 intermediate and 100 deep groundwater samples were collected from the study area for major ion analyses. It is observed that the shallow and intermediate groundwater samples are dominantly Ca-Mg-HCO₃ type, and the deep groundwater is mainly of Na–Cl–HCO₃ and Na–Cl types. In deep groundwater, the loss of Ca²⁺ are ion exchanged for Na⁺ along the flow paths, which are initially enriched in Ca²⁺. The Na-HCO₃ type deep groundwater appear in the coastal confined aquifers, whereas Na-Cl type groundwater are found in wells depth ranging from 200-250m. With some local exceptions, electrical conductivity (EC), pH and Cl⁻ concentrations for both shallow and deep groundwater gradually increase generally from north-south direction in the study site. **Findings:** The observed results clearly indicate the presence of three groundwater systems: (i) the shallow groundwater characterized by low ionic concentration; (ii) intermediate groundwater with less evolved ionic chemistry; and (iii) the deep groundwater with higher ionic concentration. **Application:** This study enables to conceptualize three groundwater flow systems: namely shallow fast circulating fresh young water mixed and moderately mineralized groundwater representing a transition system between the overlying shallow and underlying deep aquifers and the highly mineralized deep groundwater.

Keywords: Bangladesh, Bengal Delta, Groundwater flow, Hydrogeochemistry

1. Introduction

Hydrogeochemical processes and reactions occurring within groundwater aquifer have a profound effect on groundwater quality. The geochemical properties of groundwater depend on the chemistry of water in the recharge area as well as on different geochemical processes taking place in the subsurface aquifer systems.

The quality of water along the course of its underground movement therefore depends on chemical and physical properties of surrounding rocks, quantitative and qualitative properties of through-flowing water bod-

*Author for correspondence

ies, and the products of human activity¹. During the last two decades, several research groups^{2,3}. Studied hydrogeochemistry and groundwater dynamics of the Bengal basin using a variety of techniques. Suggest that the water chemistry of the Ganges–Brahmaputra drainage system is controlled by the presence of carbonates, silicates and sulfides. They also suggest that weathering is dominated by H_2CO_3 derived from oxidation of Organic Matter (OM) in the soil and minor H_2SO_4 derived from the oxidation of sulfides. Furthermore, Galy and France-Lanord² advocate that Na⁺ and K⁺ are the dominant cations released by the weathering of the alkaline Himalayan silicates because of lower abundance of Ca-plagioclase in the Himalayas. Magnesium may be introduced from weathering of biotite to form hydrobiotite, vermiculite or smectite⁴. In ³ suggest that the Ganges-Brahmaputra floodplains have been dominated by carbonate weathering. However, other authors have argued that the development of the foreland basin in front of the Himalayas⁵ has resulted in deposition of silt-dominated sediments in the Ganges-Brahmaputra flood plain, favoring silicate weathering². Most of the recent studies of groundwater chemistry in the Bengal basin have strongly advocate that the redox-related processes in the aquifer are largely controlled by FeOOH reduction as catalyzed by microbially mediated oxidation of natural OM⁶⁻⁸. The OM may exist as dissolved organic carbon or peat layers². Carbonic acid produced by OM oxidation reacts with aquifer sediments to produce high concentrations of HCO3-. The groundwater has been found to be anoxic⁹, with frequent detections of sulfide and CH_4^7 and very little dissolved O_2 .

Groundwater chemistry so far has been used to infer the groundwater flow systems in the Bengal Delta aquifers. In present study, groundwater chemistry data has evaluated to infer the active hydrogeochemical processes in the Bengal Delta aquifers. Hence, a detailed investigation was carried out to identify the hydrogeochemical process and its relation to groundwater flow system in the Bengal Delta aquifers of Bangladesh.

2. Study area

2.1 Geology, Hydrogeology and Rainfall

Bangladesh occupies the greater part of the Bengal Delta, which forms largely of alluvial and deltaic sediments of the Ganges-Brahmaputra-Meghna (GBM) rivers system. Excluding the eastern Tertiary Hill Range (Figure 1), the present study covers about 85% land area of Bangladesh. It is convenient to consider the regional geology in terms of five major subdivisions – Tertiary deposits, Residual deposits, Alluvial fan deposits, Alluvial deposits and Deltaic deposits (Figure 1)^{10,11}. The residual deposits (the Pleistocene Madhupur and Barind Tracts) locally interrupt the flat topography of central Bangladesh rising by up to 20 m above the adjacent floodplains¹¹. A generalized geological cross-section (Figure 1) shows the structure of Bengal Basin (Figure 2).

Figure 1. Sample location and surface geological map of Bangladesh (modified after $^{10\cdot12}$).

Figure 2. Geological cross-section A'-B' (as shown in Figure 1) through the study area showing borehole locations and the structure of Bengal Basin (modified from 13.32).

The thick unconsolidated deposits of Pleistocene and Holocene alluvial sediments of the GBM delta system

form one of the most productive aquifer systems in the world¹². Silts and clays are predominate in the upper few meters of the GBM delta system, forming a surfacial aquitard, generally less than 10 m thick with typical specific yield values of 2-3%, and vertical permeability values in the range $3-8\times10^{-3}$ m/d. The aquifers are mostly mediumto-fine and medium-to-coarse sands, with permeability of 40-80 m/d. Short-term pumping tests on the Holocene aquifers indicate a leaky response, but for longer pumping periods the aquifer is best described as regionally unconfined. The principal mineralogical components of the Holocene sands are quartz, plagioclase feldspars, potassium feldspars, micas (muscovite, biotite and chlorite), and clays (smectite, kaolinite and illite). Deep clayey aquitards exist in coastal regions and the sands below the aquitards are commonly referred to as the deep aquifer. In present study, based on the sampled well depths, the studied aquifers are considered as shallow (<70 m), intermediate (70 – 180 m) and deep (>180 m) aguifers¹².

The average annual rainfall in Bangladesh varies from a maximum of 5690 mm in the northeast of the country to minimum of 1110 mm in the west. Up to 95% of the annual rainfall occurs during the May to September monsoon.

3. Methodology

3.1 Groundwater Sampling

A total of 202 shallow, 26 intermediate and 100 deep groundwater samples were collected during the sampling campaigns (January - February, 2006; November - December, 2006; September - October, 2007 and March 2008). Sampled wells were chosen arbitrarily (Figure 1) and prior to sampling each well were pumped for several minutes until it purged out approximately twice the well volume, or until steady state chemical conditions (pH, electrical conductivity and Temperature) were obtained. The geographical location of each well was determined with a GARMIN handheld global positioning system (Kansas, USA) and the approximate depth of wells were noted from the well owner's records. The physical parameters electrical conductivity, pH and temperature were measured with a portable EC/pH meter (TOA EC/pH METER, WM-22EP). Samples for major ion analysis were collected in 100 mL High Density Polyethylene (HDPE) bottle. All the samples were stored at a temperature of 4°C until analysis.

3.2 Laboratory Analyses

The major cations (Ca²⁺, Mg²⁺, K⁺ and Na⁺) and anions (Cl⁻, NO₃⁻ and SO₄²⁻) were analyzed with an ion chromatography (Metrohm 761 Compact IC). The instrument was linearly calibrated from 2.5 to 7.5 mg/L with standards (Wako Pure Chemicals Industries Ltd., Japan). All of the samples were diluted several times to adjust for the operating range. Alkalinity (as HCO₃⁻) was determined by field titration with 1.6 N H₂SO₄ to pH ~ 4.5 using HACH Digital multi Sampler Model 1690.

The potential for a chemical reaction can be determined by calculating the chemical equilibrium of the water with the mineral phase¹⁴. The equilibrium state of water with respect to a mineral phase can be determined by calculating a saturation index (SI). The saturation indices were calculated using PHREEQC¹⁵ with thermodynamic database of MINTEQA2¹⁶ and the calculated SI values for calcite (SI_{calcite}) and dolomite (SI_{dolomite}) are given in Table 1. The SI is defined as the logarithm of the ratio of ion activity product (IAP) to the mineral equilibrium constant at a given temperature and given as: SI = $log_{10}(IAP/K_{sp})$, where IAP = ion activity product and K_{sp} = solubility product at given temperature¹⁴.

4. Results

4.1 Physical Parameters

Physical parameters and major ion concentrations of analyzed water samples are given in Table 1. The shallow and intermediate depth groundwater show low mineralization with EC ranging from $282 - 920 \,\mu\text{S/cm}$ (average 637 μ S/cm) and 282 – 547 μ S/cm (average 531 μ S/cm) respectively, and the deep groundwater EC values varied from 117-4870 µS/cm (average 1288 µS/cm). The shallow groundwater temperature ranges from 23-30.2°C with an average value of 26°C, while the intermediate depth groundwater temperature varies from 22.4-28°C (average 25.9°C). However, the deep groundwater average temperature is 27.4°C varying from 24.8 – 29.5°C. The shallow groundwater pH values vary from 5.5 - 7.96 with an average value of 6.88. However, the intermediate depth groundwater average pH value is near neutral (7.07) and the deep groundwater average pH value (7.4) is higher than that of the shallow and intermediate well groundwater average pH values.

Table 1.	Well site area	, well de	oth, fie	ld physi	cal para	meters, r	najor ionic	concent	ration a	nd calculé	ated satu.	ration inde	ex (SI) for	Calcite ($SI_{calcite})$
and Dol	lomite (SI _{dolomite}														
ID.	Area	Well Depth (m)	μd	Temp. (°C)	EC (μS/ cm)	HCO ₃ - (mg/L)	Cl ⁻ (mg/L)	NO ₃ ⁻ (mg/L)	SO ₄ ²⁻ (mg/L)	Na⁺ (mg/L)	K ⁺ (mg/L)	Mg ²⁺ (mg/L)	Ca ²⁺ (mg/L)	SI _{calcite}	SI dolomite
Shallow	groundwater														
1	Fulchari	22	6.65	25	274	151	8.89	0.53	0.11	13.94	5.00	11.90	18.64	-2.63	-5.56
2	Nilphamari	8	6.37	24.3	190.7	62	3.43	2.09	8.80	8.00	4.32	3.56	15.30	-1.92	-4.13
3	Saidpur	12	6.52	25.6	1442	67	7.35	1.51	3.15	9.25	8.94	4.74	17.26	-1.77	-3.74
4	Parbatipur	24	6.63	24.2	188	67	14.51	0.40	3.73	19.35	2.46	3.20	6.63	-2.08	-4.14
5	Fulbari	13	6.64	25.5	215	66	13.24	0.45	1.01	19.21	1.78	5.69	14.42	-1.57	-3.18
6	Hakimpur	10	6.06	24.9	259	67	44.11	3.78	7.84	15.09	1.83	9.77	18.41	-2.24	-4.40
7	Joypurhat	20	7.02	25.2	379	162	40.42	0.60	5.49	25.33	2.43	11.72	30.75	-0.70	-1.46
8	Akkelpur	20	7	24.4	201	106	4.97	0.28	2.13	17.14	1.63	7.03	14.88	-1.18	-2.35
6	Adamdighi	16	6.54	26.3	726	245	107.93	1.15	17.63	50.36	5.07	23.34	28.65	-1.06	-1.84
10	Atrai	26	6.82	26.1	543	268	18.72	1.54	35.68	42.84	5.06	14.08	29.40	-0.72	-1.40
11	Natore	22	6.5	24.4	814	268	19.64	3.08	14.72	42.66	5.20	23.44	25.79	-1.12	-1.94
12	Baraigram	27	6.85	25.3	874	566	16.23	3.00	37.28	146.46	7.17	114.15	76.20	-0.10	0.34
13	Iswardi	26	7.2	26.3	789	455	18.51	4.85	0.24	21.21	5.57	23.88	39.79	0.00	0.14
14	Bheramara	21	6.99	26.6	823	517	7.28	4.80	0.24	25.36	11.57	24.31	16.04	-0.54	-0.53
15	Kushtia	38	6.60	26.20	852	565	3.86	4.99	0.62	23.56	6.89	23.58	25.10	-0.71	-0.18
16	Shailakupa	25	6.85	25.80	803	519	4.92	1.76	7.32	10.41	9.05	25.95	22.54	-0.55	-0.67
17	Jhenaidha	20	6.69	24.50	1075	543	78.25	1.89	29.29	52.76	10.39	24.23	34.12	-0.56	-0.92
18	Kaliganj	46	6.45	26.70	871	478	189.65	6.07	3.64	47.88	12.71	88.71	175.03	-0.19	-0.31
19	Jessore	45	7.20	25.00	562	360	4.00	2.64	0.34	6.92	4.83	15.02	45.39	-0.04	-0.20
20	Jessore	45	7.41	25.30	359	223	2.16	0.80	0.35	6.24	2.82	11.48	50.60	0.04	-0.21
21	Fultala	60	7.27	24.00	1006	619	41.51	1.60	0.94	73.47	9.24	36.50	26.78	-0.04	0.04
22	Khulna	34	6.94	26.20	4500	1186	1564.15	54.58	32.85	1027.35	35.13	116.68	70.50	0.12	0.84
23	Bagerhat	58	7.22	25.7	3000	522	827.19	19.79	42.92	412.08	21.09	34.01	132.03	0.42	0.62
24	Gopalganj	12	7.15	26.2	770	403	30.54	6.43	12.01	25.61	9.52	20.48	67.88	0.11	0.07
25	Kaliakoir	52	7.11	25.6	338	232	2.79	0.27	0.61	24.09	1.73	11.11	29.01	-0.47	-0.10
26	Mirzapur	20	6.61	26.0	850	188	109.64	75.12	67.32	52.34	7.55	17.26	51.31	-0.09	-1.92
27	Tangail	23	6.96	26.1	471	210	52.27	11.16	0.27	29.58	8.53	23.21	93.69	-0.21	-0.66
30	Madhupur	21	6.18	26.2	219	73	26.07	3.07	2.50	16.13	2.82	5.60	17.44	-2.07	-4.27

ID.	Area	Well Depth (m)	Hq	Temp. (°C)	EC (μS/ cm)	HCO ₃ (mg/L)	CI ⁻ (mg/L)	NO ₃ - (mg/L)	SO ₄ ²⁻ (mg/L)	Na ⁺ (mg/L)	K ⁺ (mg/L)	Mg ²⁺ (mg/L)	Ca ²⁺ (mg/L)	SI _{calcite}	${ m SI}_{ m dolomite}$
32	Jamalpur	40	6.8	25.8	274	173	2.73	0.76	0.07	11.84	3.53	12.50	23.38	-0.98	-1.87
34	Jamalpur	22	6.98	24.3	287	156	13.52	0.70	4.62	23.37	2.23	10.04	22.96	-0.88	-1.77
35	Sherpur	22	6.89	26.6	190	112	1.34	0.85	1.53	2.78	1.34	8.68	18.60	-1.14	-2.24
36	Sherpur	15	6.61	25.5	363	132	37.99	1.26	10.08	12.92	3.36	15.57	26.73	-1.25	-2.37
37	Jhenaigati	40	7.07	24.9	248	159	0.84	1.73	0.10	20.43	2.54	8.09	21.20	-0.80	-1.66
39	Nakla	15	6.76	25.7	620	139	128.74	2.34	18.64	34.79	6.73	23.07	42.81	-0.91	-1.74
40	Fulpur	45	7.24	25.4	339	212	2.80	1.21	0.06	33.19	2.70	10.59	24.03	-0.46	-0.92
43	Netrokona	27	6.9	25.3	381	142	29.25	15.33	0.18	16.05	4.38	12.63	25.88	-0.94	-1.84
44	Tarakanda	12	6.52	25.8	608	146	124.57	13.18	12.94	50.69	5.34	20.62	35.95	-1.21	-2.29
46	Mymensing	58	7.24	25.1	340	220	1.64	1.91	0.02	24.43	2.50	11.80	28.03	-0.39	-0.79
48	Trisal	54	7.08	24.8	352	229	1.43	1.15	0.52	26.38	2.90	12.84	30.20	-0.50	-1.03
51	Sreepur	36	6.36	25.4	156.4	95	2.39	3.94	0.03	12.88	2.38	5.05	13.31	-1.89	-3.85
52	Joydevpur	46	6.8	25.7	233	137	3.02	6.94	0.29	16.63	2.11	7.85	20.79	-1.12	-2.31
54	N-ganj	25	6.97	25.5	961	232	111.80	0.66	5.61	68.68	7.44	9.20	26.13	-0.69	-1.47
56	Munshiganj	16	6.92	25.7	665	330	38.51	4.56	13.09	15.81	6.23	27.78	75.79	-0.16	-0.40
58	Chandpur	52	7.05	26	1951	354	388.89	1.73	10.87	131.24	0.20	31.63	75.33	-0.06	-0.12
59	Matlab	50	6.72	26.4	1344	146	597.72	2.70	25.19	158.63	12.01	49.39	106.23	-0.64	-1.24
60	Raigonj	32	6.88	29.7	310	69	6.50	2.87	0.30	10.81	5.62	9.34	24.45	-1.20	-2.42
61	Sherpur	21	6.3	26.1	517	37	126.29	0.54	8.81	22.36	7.52	17.60	36.51	-1.98	-3.91
62	Bogra	21	6.62	26.9	285	37	33.23	6.03	6.51	21.96	4.16	8.80	18.93	-1.89	-3.74
63	Gobindagonj	8	6.54	26.3	328	74	14.91	2.77	4.32	17.86	7.41	14.44	24.36	-1.58	-3.02
64	Palashbari	34	6.55	28	460	74	54.19	0.22	11.78	33.60	20.76	7.17	22.98	-1.58	-3.28
65	Gaibandha	15	6.64	25.5	270	31	16.03	3.72	0.32	10.75	2.55	4.29	15.37	-2.03	-4.25
66	Mithapukur	21	6.75	28	214	49	7.58	0.08	0.99	16.65	2.47	8.59	13.42	-1.75	-3.30
67	Kurigram	12	6.26	24.3	242	43	4.59	12.09	4.09	8.68	4.30	5.28	19.09	-2.20	-4.61
68	Lalmoni	24	6.45	23.8	158	18	12.59	18.49	4.85	11.02	7.63	3.17	11.32	-2.60	-5.42
69	Hatibandha	8	6.41	26.1	62	12	2.36	2.23	0.41	2.67	4.74	0.88	3.90	-2.63	-5.56
70	Dimla	11	6.38	26.1	240	25	22.67	43.84	9.02	13.01	15.38	2.87	14.28	-2.44	-5.22
71	Debigonj	21	6.3	26.5	106	25	4.51	6.45	4.09	3.50	3.95	1.25	14.20	-2.47	-5.63
72	Debigonj	38	6.8	24.9	92.7	25	0.61	0.41	0.26	10.15	3.69	1.83	6.23	-2.33	-4.85
73	Thakurgaon	27	6.57	23.2	74	49	2.86	0.19	5.31	8.36	1.65	0.95	5.16	-2.38	-5.16

		Well		Temp	EC (IIS/	HCO -	C-	- ON	SO ²⁻	Na+	+	$M\sigma^{2+}$	Ca ²⁺		
	Area	Depth (m)	Hq	(C)	cm)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	SI	SI
-	Birgoj	23	6.12	24.9	70	18	2.94	1.52	1.44	4.79	4.12	1.32	5.51	-3.18	-6.64
<u> </u>	Dinajpur	12	6.3	25.2	95	25	5.79	4.01	3.28	7.50	4.26	2.70	5.42	-2.90	-5.57
i i	Naogaon	29	6.6	24.1	245	31	28.06	0.16	3.62	21.99	3.47	7.12	16.18	-2.80	-4.18
	Tarash	23	6.82	25.2	365	86	18.03	0.20	18.65	19.72	5.53	11.99	35.97	-1.10	-2.32
	Ullapara	21	6.71	26.3	352	74	9.38	1.82	11.94	13.10	7.09	15.58	26.69	-1.37	-2.62
	Sathia	30	6.68	26.8	505	129	2.42	5.92	0.33	14.85	7.25	20.52	46.03	-0.94	-1.87
	Pangsha	44	7.12	25.5	915	253	31.66	2.97	0.52	49.34	10.75	31.10	68.88	-0.11	-0.21
1	Modhukhali	49	6.95	26.1	923	271	11.81	3.60	0.61	23.06	12.95	29.62	66.76	-0.25	-1.53
	Magura	69	7	25.9	740	210	12.20	1.06	11.23	12.98	9.20	23.03	55.35	-0.37	-0.77
	Narail	37	7	25.5	660	185	1.31	10.59	0.74	10.21	9.29	25.21	78.66	-0.29	-0.72
	Joshore	55	7.2	25.6	1306	302	270.82	0.49	2.48	83.26	15.95	38.25	67.60	0.00	0.10
	Bagerhut	21	7.07	25.3	733	197	6.58	22.01	0.60	19.52	11.04	23.58	78.57	-0.20	-0.57
	Zianagar	14	7.12	24.5	2480	351	527.49	16.06	1.50	425.32	24.37	17.24	54.46	-0.18	-0.52
	Bhandaria	26	7.12	25.7	3030	370	642.43	36.48	1.80	478.96	33.30	47.20	40.82	-0.30	-0.17
	Jhalokathi	12	7.31	25.2	1375	290	175.24	4.94	5.61	75.06	18.28	63.96	77.94	0.13	0.53
_	Gouronadi	23	7.07	24.4	927	269	41.69	25.38	0.54	69.15	13.34	20.84	75.38	-0.12	-0.45
	Ghatail	18	6.8	26.1	298	68	10.61	1.70	4.17	16.24	4.17	11.16	21.53	-1.40	-2.73
	Dewangonj	23	6.56	24.3	312	62	15.93	0.86	4.98	11.92	5.15	10.69	20.90	-1.72	-3.39
	Bakshigonj	12	6.36	25.7	295	31	41.74	87.07	31.59	20.84	23.94	19.25	41.60	-1.98	-3.95
	Nalitabari	12	6.73	26.7	496	74	27.50	5.02	4.51	9.42	5.69	13.12	21.71	-1.43	-2.71
	Purbodhala	12	6.8	25	335	43	25.04	35.10	13.62	15.85	6.57	10.68	25.06	-1.57	-3.17
	Netrokona	27	6.85	23.2	428	100	10.23	24.08	0.81	11.29	2.51	13.46	40.06	-0.99	-2.12
	Nandail	37	7	24.5	430	111	24.07	0.16	0.23	42.10	6.23	11.94	20.28	-1.05	-1.99
	Pakundia	14	6.83	25.1	123	62	2.35	0.07	2.29	3.50	1.76	5.11	10.72	-1.69	-3.35
	Kuliar Char	26	6.7	25.9	626	153	55.95	7.42	2.10	34.63	29.04	18.41	34.04	-1.01	-1.92
	Chatok	64	6.93	23.7	612	136	17.79	7.37	8.29	54.53	6.82	12.39	25.20	-0.97	-1.92
	Baniachong	67	6.85	26.2	316	80	3.72	6.07	0.21	41.99	1.22	6.35	15.14	-1.43	-2.87
	Sayestagonj	65	6.8	25.2	260	78	0.94	3.00	0.10	36.33	1.26	5.53	10.95	-1.63	-3.21
	B. Baria	30	6.9	24.5	234	31	1.87	5.18	0.21	10.39	2.35	13.17	17.07	-1.75	-3.27
	Comilla	37	7.12	27	182	62	0.73	0.19	2.71	18.13	0.47	5.47	12.87	-1.31	-2.61
	Laksham	20	7.15	26.7	316	92	10.40	14.02	0.28	21.89	9.32	21.91	15.40	-1.08	-1.63

		Well		E	/3"/ Ja		ċ	- 01	CO 2-	+ 214	+/1	M ~2+	C 2 ⁺		
ID.	Area	Depth (m)	μd	(°C)	cm)	(mg/L)	U (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	ca (mg/L)	SI	SI _{dolomite}
108	Sonaimuri	17	7.08	25.5	7120	191	3420.27	92.25	51.66	2456.60	100.31	151.25	58.64	-0.63	-0.58
109	Lakhipur	46	7.02	25.5	1460	154	318.13	14.49	9.27	74.53	15.37	74.87	69.67	-0.48	-0.57
110	Chandpur	18	6.85	25.3	1380	314	134.19	35.99	0.62	130.58	10.15	43.09	102.31	-1.18	-0.38
111	Kochua	24	7.07	26.4	2061	197	542.12	28.63	0.92	330.32	16.21	45.44	31.03	-0.69	0.84
112	Daudkandi	20	6.95	26.4	940	247	51.52	33.89	0.54	88.21	10.69	42.47	43.88	-0.49	-0.63
113	Araihazar	55	6.93	25.8	510	142	6.50	5.21	1.22	19.48	3.09	35.26	38.90	-0.76	-1.20
114	Manikgonj	18	6.6	24.4	556	160	3.82	7.76	0.29	12.20	3.98	18.38	23.50	-1.24	-2.25
115	Goalondo	18	6.9	26.3	926	234	53.73	1.96	23.84	24.87	10.29	19.56	78.60	-0.30	-0.83
116	Faridpur	18	7.08	27	548	154	9.67	4.99	0.60	8.94	8.03	16.69	62.95	-0.34	-0.89
117	Bhanga	21	7.04	27.3	1873	234	29.02	14.98	1.81	26.81	24.10	50.08	188.84	0.17	0.15
118	Bhanga	32	7.03	26.5	1047	345	9.02	22.79	0.56	29.07	8.79	37.40	106.04	0.10	0.12
128	Kurigram	38	6.55	24.3	260	55	0.68	0.32	2.42	10.77	2.45	7.47	19.62	-1.78	-3.65
129	Aditmari	61	6.23	24.8	114	37	0.58	0.01	8.75	8.61	1.15	3.06	9.92	-2.55	-2.26
130	Hatibandha	52	5.5	24.5	102	31	0.03	0.03	18.90	6.49	1.03	2.25	8.89	-3.41	-7.07
131	Dimla	73	6.62	26.2	88	25	1.22	0.02	27.72	3.67	2.29	1.46	8.91	-2.37	-5.15
132	Thakurgaon	55	6.45	23	101	31	0.86	0.06	15.02	9.75	1.66	1.79	8.06	-2.52	-5.37
133	Birgonj	61	6.26	25.1	145	43	0.35	0.29	4.60	14.55	1.51	3.05	11.34	-2.39	-5.00
136	Hakimpur	37	6.53	26.6	142	25	7.94	0.17	1.71	15.15	0.43	2.56	6.88	-2.54	-5.15
137	Badalgachi	30	6.5	23.9	173	31	2.28	0.05	45.80	7.19	3.82	3.31	14.22	-2.25	-4.81
138	Manda	32	6.57	25.1	291	92	4.91	0.63	0.53	25.45	2.71	10.47	22.69	-4.49	-2.97
139	Manda	73	6.58	25.6	305	80	7.52	0.29	0.42	24.75	2.24	9.28	20.81	-1.57	-3.13
140	Mohanpur	34	6.81	25.6	853	277	1.44	0.07	6.28	49.83	0.96	31.44	66.24	-0.39	-0.75
141	Mohanpur	55	6.96	25.4	755	228	3.93	0.04	9.50	33.63	0.22	30.31	79.72	0.25	-0.56
142	Amchori	61	7.07	26.6	812	240	3.50	0.02	259.39	21.14	0.38	24.39	66.87	-0.27	-0.61
143	Baraigram	32	7.07	24.8	512	142	3.25	0.02	81.31	8.13	0.24	15.34	51.36	-0.53	-1.25
144	Tarash	43	7.15	25.1	497	123	7.58	0.01	276.69	28.66	0.95	14.40	51.69	-0.60	-1.41
145	Ullapara	55	7.01	26.9	453	86	8.62	0.06	321.80	10.77	1.99	16.94	37.24	-1.02	-2.03
146	Ataikula	55	7.03	26.3	661	166	12.39	0.02	30.43	34.24	0.55	20.54	51.57	-0.47	-0.98
147	Pabna	46	6.96	26.1	860	259	5.72	0.04	131.86	6.00	1.60	27.13	1.30	-1.99	-2.30
163	Pathrail	64	6.71	26.7	457	105	41.44	0.70	0.84	69.53	0.93	3.17	8.31	-1.71	-3.48
164	Ghatail	64	6.71	25.5	474	113	6.99	1.75	3.06	18.06	1.94	18.47	52.86	-0.93	-1.96

Ê		Well	I.	Temp.	EC (μS/	HCO	CI	NO	SO ₄ ²⁻	Na⁺	\mathbf{K}^{+}	${ m Mg}^{2+}$	Ca ²⁺	13	5
	AICa	(m)	пц	(°C)	cm)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	M calcite	M dolomite
165	Jamalpur	46	6.33	23.4	412	49	19.18	2.59	7.29	14.07	3.47	16.30	39.67	-1.80	-3.67
166	Bokshigonj	60	6.78	26.1	280	80	22.35	1.37	7.07	8.26	1.53	8.44	22.58	-1.33	-2.72
168	Phulpur	55	7.17	26.4	328	66	2.84	7.56	1.09	16.44	4.13	22.98	65.89	-0.44	-0.96
180	B. Baria	61	7.96	24.6	198	62	0.55	7.43	0.11	43.09	0.64	3.92	5.21	-0.90	-1.59
192	Goalondo	61	6.95	26.4	1006	277	26.55	3.27	16.58	16.40	5.03	32.34	106.78	-0.60	-0.27
196	Bhaluka	67	6.86	27.2	273	86	0.85	0.46	0.41	18.84	1.11	10.38	25.01	-1.16	-2.32
197	Bhaluka	70	6.76	26	173	43	2.43	0.87	0.52	14.42	0.87	5.53	16.25	-1.73	-3.57
200	Raygonj	32	6.9	26.5	184	62	3.81	1.80	4.69	13.72	2.59	8.27	19.75	-1.36	-2.74
201	Sherpur	23	6.95	27.7	181	49	23.76	6.74	5.70	20.61	0.84	6.74	13.90	-1.55	-3.03
202	Bogra	27	6.8	26.9	141	37	8.90	3.13	1.50	7.18	2.56	5.54	22.11	-1.62	-3.47
203	Shibganj	15	7.12	26.9	166	55	10.46	0.25	2.59	8.04	3.63	8.44	19.59	-1.18	-2.36
204	Gobindaganj	6	6.72	26.9	193	74	9.24	3.17	0.61	11.21	3.00	9.54	24.62	-1.37	-2.78
205	Pirganj	23	6.4	26.6	127	31	12.79	11.00	4.08	11.86	1.61	4.84	13.41	-2.32	-4.71
206	Mithapukur	21	6.7	27.7	131	62	6.30	0.02	1.00	17.17	0.97	8.21	13.57	-1.70	-3.24
207	Rangpur	32	7.09	26.5	87	37	2.62	0.17	2.39	8.38	2.10	2.84	10.98	-1.61	-3.45
208	Mithapukur	23	6.61	25.5	119	43	3.76	1.19	0.08	7.31	1.86	3.44	19.08	-1.81	-4.02
209	Badarganj	23	6.87	25.9	154	55	2.47	0.49	0.09	14.24	1.56	7.32	18.09	-1.47	-2.98
210	Phulbari	14	6.33	26.2	189	43	19.08	25.56	13.48	14.45	6.39	5.74	20.70	-2.09	-4.38
215	Dhamoirhat	34	6.7	26.4	70	25	3.14	5.10	0.64	10.64	1.74	1.72	4.41	-2.56	-5.17
216	Dhamoirhat	20	6.6	26.5	139	43	7.70	0.43	1.63	11.91	2.76	6.01	14.66	-1.93	-3.88
217	Patnitala	20	6.55	27.2	176	68	12.09	0.17	1.02	14.09	3.51	9.64	19.24	-1.67	-3.28
218	Mahadevpur	26	6.56	27	164	62	1.67	0.17	2.10	20.50	1.81	7.58	14.95	-1.81	-3.54
219	Mahadevpur	34	7.09	26.5	310	111	20.25	0.17	4.64	28.34	2.78	11.72	38.62	-0.67	-1.49
220	Naogaon	29	6.66	26.7	210	80	32.55	0.17	3.23	23.39	1.83	8.02	18.65	-1.52	-3.04
221	Joypurhat	15	6.85	26.5	310	66	17.26	0.17	7.44	31.04	2.53	14.34	34.86	-1.00	-2.03
222	Manda	32	7.07	27.2	390	166	28.26	0.25	1.11	34.05	3.83	25.29	22.15	-0.76	-1.09
223	Paba	30	7.28	27.4	350	166	5.45	0.22	0.65	26.56	3.58	21.78	51.00	-0.20	-0.38
224	Rajshahi	37	7.16	26.5	510	216	54.68	0.90	7.98	37.14	3.90	39.65	34.69	-0.41	-0.40
225	Puthiya	35	7.14	24.4	510	247	3.43	3.30	0.06	29.51	6.87	36.69	56.94	-0.19	-0.23
226	Mirpur	37	7.34	26.8	350	148	15.76	1.90	12.58	21.18	2.88	17.23	59.94	-0.13	-0.43
228	Gangni	18	7.32	26.9	360	197	42.80	2.73	10.73	15.19	6.38	23.51	83.13	0.90	0.00

E		Well	1	Temp.	EC (µS/	HC0 ⁻	CI-	- ON	SO, ²⁻	Na^+	\mathbf{K}^+	Mg^{2+}	Ca ²⁺	5	5
LI	AICA	(m)	ц	(°C)	cm)	(mg/Ľ)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	M calcite	M dolomite
229	Meherpur	12	7.3	27.3	530	216	27.01	5.87	0.36	28.83	12.21	24.81	48.04	-0.11	-0.12
230	Meherpur	38	7.22	26.8	530	240	2.05	6.23	0.27	21.97	10.01	27.82	34.65	-0.28	-0.28
232	Jibonnagar	6	7.33	26.9	370	142	32.25	58.12	11.41	20.92	4.58	19.04	73.49	-0.10	-0.42
233	Jibonnagar	55	7.09	26.9	520	173	48.38	0.87	4.11	16.14	3.59	29.59	62.68	-0.31	-0.57
236	Kalaroa	46	7.06	27.2	810	308	120.95	21.38	0.71	55.44	9.72	47.39	170.38	0.26	0.34
244	Jhalakathi	12	7.24	26.8	1110	832	194.08	5.33	5.50	84.24	17.26	78.28	136.35	0.71	1.55
253	Gopalganj	37	7.17	27.9	580	240	6.76	11.51	0.20	15.83	12.89	33.56	77.12	0.00	0.02
258	Madaripur	30	7.28	26.8	410	142	16.82	19.79	0.26	21.01	10.78	28.41	60.35	-0.22	-0.39
262	Burichong	58	7.48	27.6	310	136	10.78	14.23	0.07	21.75	12.83	37.49	25.05	-0.39	-0.23
263	C-gram	15	6.69	26.7	144	55	2.33	0.91	4.06	24.87	7.53	4.26	10.16	-1.89	-3.79
266	C-gram	35	6.92	26.7	147	62	1.56	0.53	0.78	13.13	5.52	6.14	14.73	-1.45	-2.92
268	D-bhuyan	18	7.43	26.9	910	154	239.30	52.85	1.60	90.61	20.47	57.86	46.74	-0.21	0.04
273	Suborna	8	7.46	27	870	327	58.16	3.34	16.58	70.73	22.42	65.17	57.23	0.23	0.00
277	Suborna	7	7.75	26.9	1090	296	167.74	3.45	45.11	223.15	24.37	39.98	37.49	0.27	0.95
279	Suborna	12	7.59	27	910	222	155.88	8.09	73.13	86.19	25.00	61.73	72.35	0.27	0.85
281	Suborna	7	7.88	27	2330	388	743.15	8.40	76.38	614.29	45.24	43.15	26.60	0.27	1.14
284	Maijdi	8	7.61	26.5	4100	357	1463.04	7.78	149.88	939.68	66.10	91.76	53.36	0.19	0.99
288	Ramgati	6	7.61	27.6	3100	462	1126.56	17.22	133.02	921.86	41.60	76.76	32.84	0.12	0.99
291	Ramgati	6	7.6	26.6	710	166	175.72	2.16	1.38	161.08	8.40	19.32	30.96	-0.15	-0.13
292	Kaliakoir	52	7.28	26.8	270	105	5.24	2.88	2.29	22.95	2.39	11.61	41.16	0.47	-1.12
293	Mirzapur	21	6.7	26.2	430	66	54.20	3.94	41.28	19.28	18.01	24.90	57.24	-0.99	-1.99
294	Basail	18	7.07	27.1	360	142	5.61	1.79	8.56	15.10	4.57	19.48	53.79	-0.45	-0.97
296	Kalihati	18	6.82	25.9	250	66	8.68	6.02	0.74	12.86	3.45	13.18	41.75	-0.96	-2.06
298	Bhuapur	37	7	26.7	310	123	2.18	5.91	0.35	19.45	5.26	19.47	42.98	-0.67	-1.32
299	Gopalpur	20	6.97	26.3	220	74	13.29	7.35	0.35	16.04	3.36	11.36	27.03	-1.00	-2.21
301	Madhupur	21	7.27	26.7	180	68	2.15	0.83	1.55	18.61	2.34	7.15	24.78	-0.86	-1.88
302	Muktagacha	27	7	26.6	270	105	5.03	0.45	6.10	19.83	1.90	12.66	40.84	-0.75	-1.65
304	Fulbaria	59	7.67	26.4	310	123	1.16	0.48	0.49	32.77	2.36	13.03	42.44	-0.01	-0.17
308	Joydevpur	46	6.8	26	199	68	1.35	1.45	0.01	14.34	4.71	13.79	22.58	-1.38	-2.61
309	Sreepur	36	6.4	26.5	114	25	7.40	1.97	0.12	7.19	5.55	4.00	11.92	-2.45	-5.00
310	Valuka	58	7.11	26.1	236	86	0.73	0.18	0.46	19.06	3.44	16.94	24.55	-0.94	-1.68

IJ.	Area	Well Depth (m)	Hq	Temp. (°C)	EC (μS/ cm)	HCO ₃ (mg/L)	Cl ⁻ (mg/L)	NO ₃ - (mg/L)	SO ₄ ²⁻ (mg/L)	Na+ (mg/L)	K ⁺ (mg/L)	Mg ²⁺ (mg/L)	Ca ²⁺ (mg/L)	SI	SI _{dolomite}
313	Ghatail	26	6.11	27	50	12	2.18	10.36	0.10	4.87	3.60	0.02	3.64	-3.52	-8.88
314	Shakhipur	27	6.6	26.2	76	18	1.58	12.00	0.30	7.29	3.29	1.43	8.10	-2.54	-5.46
320	Bhaluka	70	6.74	26.1	141	49	3.12	0.63	0.72	13.11	2.71	4.80	14.55	-1.74	-3.59
321	Gobindaganj	59	7.1	26.5	164	62	0.46	3.33	0.07	1.57	0.39	1.07	2.47	-2.01	-4.02
322	Dinajpur	12	6.07	25.4	40	25	0.57	1.07	0.17	1.20	0.78	0.66	1.86	-3.55	-7.21
324	Obhaynagar	55	7.1	27.1	610	271	12.27	1.76	0.53	65.00	7.24	19.43	65.17	-0.09	-0.34
326	Khulna	61	7.07	28.2	3810	271	1574.15	6.06	12.03	953.59	43.78	53.33	99.16	-0.15	-0.17
328	Patuakhali	14	6.96	26.3	1810	247	558.30	2.87	1.65	363.31	36.39	43.23	37.95	-0.62	-0.82
334	Kuakata	6	7.86	30.2	455	136	25.99	0.77	16.29	25.00	9.81	21.30	21.18	-0.04	0.32
343	Ramganj	14	7.04	27.6	755	173	98.52	2.12	0.08	120.08	13.33	35.72	24.08	-0.78	-1.00
347	Noakhali	15	7.2	24.8	2390	296	621.48	8.50	68.13	393.29	32.99	68.44	11.39	-0.88	-0.63
348	Suborna	8	7.53	27.3	1170	357	71.82	2.80	19.20	73.66	22.18	77.59	60.12	0.35	1.19
351	Kachua	24	7.06	26.5	1667	617	237.32	4.18	24.47	157.00	10.58	48.90	36.80	-0.13	0.24
352	Singair	12	7.14	27.50	444	255	7.12	1.11	11.92	6.97	6.85	20.57	56.88	-0.12	-0.30
353	Singair	12	6.98	25.3	432	271.16	7.78	0.31	7.11	6.63	5.01	17.02	35.98	-0.46	-0.90
354	Singair	14	7.08	26.00	553	238	24.73	1.22	36.36	12.77	5.79	21.46	59.92	-0.22	-0.53
355	Singair	14	6.9	26.1	456	184.88	9.43	0.72	12.82	15.70	5.48	20.64	48.92	-0.57	-1.15
363	Shahjadpur	62	6.91	27.8	470	235	11.49	159.49	0.51	311.00	20.60	85.50	61.40	-0.44	-0.36
365	Sarisabari	26	6.38	26	365	204	14.36	58.29	2.65	22.00	2.53	26.30	84.60	-0.83	-1.81
Intern	nediate ground	water													
42	Netrokona	80	7.21	24.5	397	198	33.49	0.55	0.01	38.93	2.31	12.52	26.91	-0.38	0.14
53	Sonagaon	80	7.09	26.6	980	283	127.57	40.58	5.18	93.65	56.55	31.14	34.00	-4.35	-4.21
55	N-ganj	85	7.05	27	933	227	88.07	0.66	2.99	63.73	3.54	5.83	16.49	-0.46	-0.90
57	Munshiganj	90	6.98	26.2	720	273	101.43	1.43	0.16	70.70	5.78	16.63	37.13	-0.19	-0.52
83	Narail	91	7.12	25	625	185	2.78	12.14	0.74	12.30	9.62	24.25	77.05	-0.29	-0.48
86	Fakirhati	78	7.05	27.6	293	197	491.30	25.20	0.90	268.42	27.73	40.88	78.96	-0.19	-0.03
120	Jessore	132	7.27	25.70	629	394	12.30	0.85	0.39	24.97	6.02	23.90	24.68	-1.43	-2.86
127	Gaibandha	76	6.54	25.4	313	86	1.64	0.08	1.77	4.27	2.58	13.22	29.71	-1.46	-3.04
135	Phulbari	107	6.78	26.3	282	55	0.81	0.35	7.18	21.51	1.14	7.64	23.70	0.08	-0.05
148	Kustia	88	7.22	25.6	777	240	2.28	0.12	4.66	12.88	1.35	23.80	87.36	-0.38	0.14

		Well		Temp	EC (nS/	HCO -		- ON	SO 2-	+ Z	K+	$M\sigma^{2+}$	Ca^{2+}		
Ĥ	Area	Depth (m)	Hd	(D°)	cm)	3 (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	e (mg/L)	(mg/L)	SI calcite	${ m SI}_{ m dolomite}$
149	Pangsha	128	7.06	25.8	920	277	14.00	0.05	8.74	47.95	2.51	32.82	1.35	-1.80	-1.85
152	Jhinaidah	134	7.11	26.6	740	243	1.64	0.05	2.58	10.47	1.30	27.44	60.65	-0.16	-0.29
153	Joshore	98	7.15	26.4	915	259	9.86	0.06	3.98	21.37	3.09	23.72	17.91	-0.60	-0.70
169	Purbodhola	85	7.05	25	330	92	1.23	7.55	1.05	80.00	3.63	11.32	23.97	-1.01	-2.00
171	Nandail	91	6.98	24	323	105	2.95	3.70	0.44	37.99	0.89	9.27	22.19	-1.06	-2.16
172	Tarail	107	7.22	25.8	1180	230	2.75	9.77	0.82	191.88	4.08	13.11	35.92	-0.32	-0.72
173	Pakundia	85	7.06	25.7	264	74	15.35	0.13	0.05	15.76	1.82	5.34	13.16	-1.30	-2.64
175	Sunamgonj	168	6.82	22.4	361	127	3.01	0.35	1.30	20.66	2.79	22.62	52.59	-0.82	-1.64
176	Madanpur	122	6.95	23.3	409	123	0.95	8.90	0.23	40.66	2.45	8.33	20.23	-1.07	-2.20
177	Chatok	149	7.11	23.6	500	142	3.39	10.81	0.10	36.47	1.70	11.67	25.48	-0.76	-1.53
178	Balagonj	152	7.1	26.4	474	154	13.53	2.79	0.14	67.51	1.65	6.53	15.88	-0.89	-1.81
191	Manikgonj	152	6.7	25.3	630	197	6.80	3.43	19.89	23.78	4.21	25.44	76.02	-0.59	-1.30
199	Tongi	137	6.98	27.6	317	68	17.28	0.94	1.87	26.40	1.39	9.02	25.56	-1.13	-2.33
212	Phulbari	107	7.05	27	230	89	1.51	0.52	0.48	23.39	3.21	8.18	24.39	-0.96	-2.03
227	Gangni	73	7.25	27.2	310	179	2.52	2.64	0.12	13.18	5.17	20.27	74.24	-0.05	-0.28
231	Chuadanga	107	7.51	27.2	460	210	10.90	2.56	3.73	14.42	4.77	21.26	70.39	0.25	0.36
234	Chowgacha	107	7.5	28	360	173	2.09	10.04	0.10	3.96	3.64	6.90	24.72	-0.23	-0.62
267	Feni	91	7.07	27.5	182	86	1.70	0.56	2.50	18.63	6.69	8.78	22.48	-0.99	-2.00
Deep grou	ındwater														
121	Fultala	280	7.63	27.00	1643	406	371.18	4.88	11.23	139.50	13.70	49.40	56.42	-0.38	0.14
122	Khulna	270	8.88	28.8	847	449	38.12	3.40	0.70	159.90	7.98	9.59	17.37	-2.80	-6.38
124	Sonagaon	300	6.92	25.5	520	210	74.92	0.41	1.26	44.67	5.32	16.20	34.79	-0.33	-0.75
125	Sonagaon	220	7.20	26	972	234	213.69	1.78	4.40	137.86	3.57	13.22	37.54	-1.15	-2.27
126	Matlab	210	6.52	25.9	1931	71	597.72	2.70	25.19	158.63	12.01	49.39	106.23	-0.19	-0.23
150	Madhukhali	213	7	26.3	1071	302	15.52	0.17	21.20	31.95	2.22	39.06	63.04	0.08	0.09
151	Magura	250	7.4	26.1	684	207	5.47	0.01	16.16	8.70	1.61	23.43	64.03	0.00	0.10
154	Narail	238	6.98	25	3335	247	271.62	0.06	18.40	270.41	7.42	96.45	170.08	0.06	0.13
155	Joshore	244	7.3	26	1342	207	263.79	0.69	2.33	73.49	3.64	39.61	89.51	0.08	0.36
156	Khulna	310	7.62	27.3	1553	173	326.23	6.52	3.47	192.20	6.25	34.86	52.24	0.29	0.59
157	Bagerhut	305	7.48	27	2890	185	450.62	5.23	1.74	99.26	18.61	51.37	120.28	-0.38	0.14

(L) SI _{cakite} SI _{dolomite}	47 0.81 1.82	3 0.58 1.35	1 -0.24 -0.46	5 0.25 -0.48	9 -1.12 -2.32	-1.72 -3.76	4 -1.33 -2.63	9 -1.00 -1.95		7 -0.73 -1.58	7 -0.73 -1.58 8 -1.22 -2.14	7 -0.73 -1.58 8 -1.22 -2.14 09 -0.93 -1.82	7 -0.73 -1.58 8 -1.22 -2.14 09 -0.93 -1.82 6 -0.51 -0.94	7 -0.73 -1.58 8 -1.22 -2.14 09 -0.93 -1.82 6 -0.51 -0.94 2 -0.72 -1.33	7 - 0.73 -1.58 8 -1.22 -2.14 09 -0.93 -1.82 6 -0.51 -0.94 2 -0.72 -1.33 0 -1.08 -2.23	7 - 0.73 -1.58 8 -1.22 -2.14 09 -0.93 -1.82 6 -0.51 -0.94 2 -0.72 -1.33 0 -1.08 -2.23 9 -0.64 -0.97	7 -0.73 -1.58 8 -1.22 -2.14 09 -0.93 -1.82 6 -0.51 -0.94 2 -0.72 -1.33 0 -1.08 -2.23 9 -0.64 -0.97 7 -0.65 -1.28	7 -0.73 -1.58 8 -1.22 -2.14 09 -0.93 -1.82 6 -0.51 -0.94 2 -0.72 -1.33 0 -1.08 -2.23 9 -0.64 -0.97 7 -0.65 -1.28 4 -1.16 -2.25	7 -0.73 -1.58 8 -1.22 -2.14 09 -0.93 -1.82 6 -0.51 -0.94 2 -0.51 -0.94 0 -1.08 -2.23 9 -0.64 -0.97 7 -0.65 -1.28 7 -0.65 -1.28 7 -0.40 -0.57	7 -0.73 -1.58 8 -1.22 -2.14 09 -0.93 -1.82 6 -0.51 -0.94 2 -0.72 -1.33 0 -1.08 -2.23 9 -0.64 -0.97 7 -0.64 -0.97 7 -0.65 -1.28 82 0.08 0.07	7 -0.73 -1.58 8 -1.22 -2.14 09 -0.93 -1.82 6 -0.51 -0.94 2 -0.72 -1.33 0 -1.08 -2.23 9 -0.64 -0.97 7 -0.65 -1.28 4 -1.16 -2.25 7 -0.65 -1.28 82 0.08 0.07 82 0.03 -0.23	7 -0.73 -1.58 8 -1.22 -2.14 09 -0.93 -1.82 6 -0.51 -0.94 2 -0.51 -0.94 0 -1.08 -1.33 0 -1.08 -2.23 0 -1.08 -2.23 9 -0.64 -0.97 7 -0.65 -1.28 7 -0.65 -1.28 82 0.063 -0.53 82 0.08 0.07 0 -0.13 -0.24 6 0.47 1.01	7 -0.73 -1.58 8 -1.22 -2.14 09 -0.93 -1.82 6 -0.51 -0.94 2 -0.51 -0.94 0 -1.08 -2.23 9 -1.08 -2.23 9 -1.08 -2.23 9 -1.064 -0.97 7 -0.65 -1.28 4 -1.16 -2.25 7 -0.65 -1.28 82 0.08 0.07 0 -0.13 -0.25 6 0.13 -0.24 0.13 -0.25 -0.53 82 0.08 0.07 0 -0.13 -0.24 6 0.47 1.01 2 0.20 0.62	$\begin{array}{llllllllllllllllllllllllllllllllllll$	7 -0.73 -1.58 8 -1.22 -2.14 09 -0.93 -1.82 6 -0.51 -0.94 2 -0.72 -1.33 0 -1.08 -2.23 9 -0.64 -0.97 7 -0.64 -0.97 7 -0.65 -1.28 7 -0.65 -1.28 7 -0.65 -1.28 7 -0.64 -0.97 7 -0.65 -1.28 6 -0.13 -0.53 82 0.08 0.07 0 -0.13 -0.24 6 0.47 1.01 2 0.20 0.62 4 0.48 1.18 9 0.37 1.31	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
) Ca ²⁺ (mg/L	154.47	84.63	11.31	21.75	17.89	8.16	15.14	39.79	45.17		15.08	15.08	15.08 140.05 74.26	15.08 140.05 74.26 27.12	15.08 140.05 74.26 27.12 50.90	15.08 140.05 74.26 27.12 50.90 41.39	15.08 140.05 74.26 27.12 50.90 41.39 55.97	15.08 140.05 74.26 27.12 50.90 41.39 55.97 30.44	15.08 140.09 74.26 27.12 50.90 41.39 55.97 30.44 50.47	15.08 140.09 74.26 27.12 50.90 41.39 55.97 30.44 50.47 115.82	15.08 140.09 74.26 27.12 50.90 41.39 55.97 30.44 50.47 115.82 55.60	15.08 140.09 74.26 27.12 50.90 41.39 55.97 30.44 50.47 115.82 55.60 69.56	15.08 140.09 74.26 27.12 50.90 41.39 55.97 30.44 50.47 115.82 56.560 69.560 16.52	15.08 140.09 74.26 27.12 50.90 41.39 55.97 30.44 50.47 115.82 55.60 69.56 16.22 65.24	15.08 140.09 74.26 27.12 50.90 41.39 55.97 50.44 30.44 50.47 115.82 55.60 69.56 65.24 46.39	15.08 140.09 74.26 27.12 27.12 50.90 50.91 55.97 30.44 115.82 55.60 69.56 65.24 16.22 65.24 16.22 65.24 86.39	15.08 140.09 74.26 27.12 50.90 50.91 30.44 50.47 115.82 55.60 69.56 65.24 16.22 65.24 16.39 36.86 36.86 36.86	15.08 140.09 74.26 27.12 27.12 50.90 50.47 115.82 50.47 115.82 55.97 55.47 115.82 55.60 69.56 65.24 16.22 55.335 36.86 23.35 5.95	15.08 140.09 74.26 27.12 27.12 50.90 50.44 115.82 55.97 55.60 69.56 65.24 16.22 65.24 16.22 53.35 5.95 5.95 95.66 65.24 16.22 53.35 5.95 5.95 5.95 5.95 5.95	15.08 140.09 74.26 27.12 27.12 50.90 50.44 115.82 55.97 55.60 69.56 65.24 15.82 15.82 55.97 55.60 69.56 65.24 65.24 65.25 55.95 55.95 57.95 57.95 57.95 57.95 57.95 57.95 57.95 57.95 57.95 57.95 57.95 57.95 57.95 57.95 57.95 9.75 31.43	15.08 140.09 74.26 27.12 27.12 50.90 60.47 115.82 55.97 30.44 15.82 55.97 30.44 115.82 55.60 69.56 65.24 16.22 65.24 16.22 55.95 95.66 9.75 9.75 9.75 9.75 9.75 115.99
Mg ²⁺ (mg/L	102.05	56.23	4.94	9.90	6.47	1.63	7.15	19.68	14.71		12.79	12.79 67.34	12.79 67.34 39.89	12.79 67.34 39.89 15.52	12.79 67.34 39.89 15.52 18.68	12.79 67.34 67.34 15.52 15.52 18.68 37.20	12.79 67.34 67.34 15.52 15.52 18.68 37.20 24.18	12.79 67.34 67.34 39.89 39.89 15.52 37.20 37.20 24.18 15.65	12.79 67.34 67.34 39.89 39.89 15.52 18.68 37.20 24.18 15.65 39.84	12.79 67.34 67.34 39.89 39.89 15.52 37.20	12.79 67.34 67.34 39.89 37.20 37.20 24.18 39.84 39.17 39.17 24.57	12.79 67.34 67.34 39.89 39.89 15.52 15.52 237.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 24.18 15.65 39.84 39.17 24.57 33.29	12.79 67.34 67.34 39.89 39.89 15.52 15.52 24.18 37.20 39.84 37.20 37.20 24.18 37.20 37.20 24.18 39.84 39.17 24.57 33.29 33.29 11.05	12.79 67.34 67.34 39.89 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 39.84 39.17 24.18 33.29 33.29 11.05 44.48	12.79 67.34 67.34 39.89 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 39.44 39.17 24.57 33.29 33.29 11.05 44.48 68.65	12.79 67.34 67.34 39.89 39.89 15.52 15.52 24.18 15.65 39.84 39.84 39.17 24.18 39.17 24.18 33.29 39.17 24.48 39.17 33.29 33.29 33.29 11.05 44.48 68.65 68.65 18.41	12.79 67.34 67.34 39.89 37.20 37.20 37.20 37.20 37.20 24.18 33.29 11.05 11.05 33.29 11.05 11.05 11.3.40 11.3.40 11.3.40 11.3.40	12.79 67.34 67.34 39.89 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 39.17 24.18 39.17 39.17 39.17 39.17 39.17 39.17 39.17 39.17 39.17 39.17 31.09 31.105 11.05 11.05 11.05 113.40 13.40 5.79	12.79 12.79 67.34 39.89 39.89 15.52 15.52 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 39.84 39.17 39.17 39.17 39.17 39.17 39.17 39.17 39.17 33.29 33.29 33.29 33.29 33.29 11.05 44.48 68.65 68.65 5.79 5.79	12.79 12.79 67.34 39.89 39.89 15.52 15.52 24.18 37.20 37.20 37.20 37.20 37.20 37.20 37.20 37.20 39.84 39.17 24.18 39.17 24.18 39.17 39.17 39.17 39.17 39.17 39.17 39.17 33.29 33.29 33.29 33.29 33.29 33.29 11.05 44.48 13.40 5.79 5.57 13.00	12.79 12.79 67.34 39.89 39.89 15.52 15.52 24.18 37.20 24.18 39.84 37.20 24.18 37.20 37.20 24.18 39.84 39.17 24.57 39.17 24.55 33.29 11.05 11.05 11.05 11.05 11.05 11.448 68.65 68.65 68.65 55.79 5.57 9.35 9.35
K ⁺ (mg/L)	20.25	10.62	6.11	4.34	0.71	1.08	1.37	2.77	3.67		3.87	<i>3.87</i> 6.06	3.87 6.06 5.04	3.87 6.06 5.04 3.77	5.87 6.06 5.04 3.77 3.37	5.87 6.06 5.04 3.77 3.37 8.83	3.8/ 5.04 5.04 3.77 3.37 8.83 8.83 7.14	3.8/ 5.04 5.04 3.77 3.77 8.83 8.83 7.14 7.34	3.8/ 5.04 5.04 3.77 3.77 3.77 8.83 8.83 7.14 7.34 5.73	3.8/ 5.06 6.06 5.04 3.77 3.77 3.37 8.83 8.83 7.14 7.34 7.34 5.73 26.80	3.8/ 5.04 5.04 3.77 3.77 3.77 8.83 8.83 8.83 7.14 7.14 7.14 7.34 5.73 5.73 3.48 3.48	3.8/ 5.04 5.04 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 5.04 5.73 5.73 26.80 3.48 10.58	3.8/ 5.04 5.04 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.73 2.14 7.14 7.34 5.73 26.80 3.48 10.58 10.58	3.8/ 5.04 5.04 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.74 7.14 7.34 7.34 5.73 5.73 3.48 10.58 10.58 27.48	3.8/ 5.04 5.04 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.74 7.14 10.58 2.148 2.148 2.148 2.148	3.8/ 5.04 5.04 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.74 7.14 7.14 7.14 7.14 7.34 5.73 26.80 3.48 10.58 10.58 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48	3.8/ 5.04 5.04 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.48 7.34 5.73 26.80 3.48 10.58 24.11 27.93 27.48 10.58 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.93 27.93 27.93 7.93	3.8/ 5.04 5.04 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.37 8.83 7.14 7.14 7.34 5.73 5.73 5.73 5.73 5.73 2.748 10.58 10.58 23.63 23.63 23.48 10.58 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48	3.8/ 5.04 5.04 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.74 7.14 7.14 7.14 7.14 7.14 7.14 7.14 7.14 7.14 7.14 7.14 7.14 7.14 10.58 2.411 2.748 11.97 11.97	3.8/ 5.04 5.04 3.77 5.04 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.74 7.14 7.14 7.14 7.14 7.14 7.14 7.14 7.14 7.14 7.14 7.14 7.14 7.14 7.14 10.58 10.58 21.48 21.48 21.48 21.48 22.41 23.63 24.11 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48 27.48	3.8/ 5.04 5.04 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.37 3.48 7.34 5.73 26.80 3.48 10.58 26.80 27.44 27.48
Na ⁺ (mg/L)	569.75	357.25	340.09	524.03	12.66	96.47	31.59	54.85	27.29	117 27	444.34	219.17	219.17 83.35	219.17 219.17 83.35 34.68	219.17 219.17 83.35 34.68 61.89	219.17 219.17 83.35 34.68 61.89 336.99	219.17 219.17 83.35 34.68 61.89 336.99 44.44	219.17 219.17 83.35 34.68 61.89 336.99 44.44 44.44 23.90	219.17 219.17 83.35 83.35 34.68 61.89 336.99 44.44 233.90 233.90 223.90	219.17 219.17 83.35 83.35 34.68 61.89 61.89 336.99 44.44 23.90 23.615 364.45	21222 219.17 83.35 34.68 61.89 336.99 336.99 44.44 23.90 23.90 23.6.15 364.45 83.11	219.17 219.17 83.35 83.35 34.68 61.89 336.99 44.44 235.90 233.90 233.90 233.90 233.90 233.90 233.91 236.45 83.11 83.11	21222 219.17 83.35 34.68 61.89 336.99 44.44 23.90 23.90 23.90 23.90 23.445 83.11 117.47 491.49	219.17 219.17 83.35 83.35 34.68 61.89 336.99 44.44 23.90 226.15 364.45 83.11 117.47 117.47 491.49 654.32	219.17 219.17 83.35 83.35 83.468 61.89 334.69 44.44 23.90 226.15 364.45 83.11 117.47 491.49 654.32 654.32	21222 219.17 83.35 83.468 61.89 336.99 336.99 336.91 2336.99 336.91 233.00 233.01 336.445 83.11 117.47 491.49 654.32 324.01 324.01 74.09	219.17 219.17 83.35 34.68 61.89 336.99 44.44 23.90 223.90 223.90 223.90 223.11 117.47 491.49 83.11 117.47 491.49 654.32 324.01 74.09 431.03	210.17 219.17 83.35 83.35 34.68 61.89 336.99 44.44 23.90 23.90 336.14 44.45 23.90 23.90 23.90 23.90 23.90 23.90 23.90 23.91 23.90 23.91 364.45 83.11 117.47 491.49 491.49 324.01 74.09 313.94	212	212	212
SO ₄ ²⁻ (mg/L)	1.76	1.00	0.41	0.75	4.77	1.16	60.0	0.02	0.17	31.63))),)))	27.30	27.30 4.56	27.30 4.56 0.29	27.30 4.56 0.29 0.01	27.30 4.56 0.29 0.01 1.16	27.30 27.30 4.56 0.29 0.01 1.16 4.06	27.30 27.30 4.56 0.29 0.01 1.16 4.06 1.02	27.30 27.30 4.56 0.29 0.01 1.16 4.06 1.02 1.52	27.30 27.30 4.56 0.29 0.01 1.16 1.16 1.02 1.02 1.52 2.01	27.30 27.30 4.56 0.01 0.01 1.16 4.06 1.02 1.52 1.52 2.01 3.30	27.30 27.30 4.56 0.29 0.01 1.16 1.16 1.02 1.02 1.52 2.01 3.30 0.41	27.30 27.30 4.56 0.29 0.01 1.16 1.16 1.02 1.02 1.52 2.01 3.30 0.41 1.24	27.30 27.30 4.56 0.01 1.16 1.02 1.02 1.52 1.52 1.52 2.01 3.30 0.41 1.24 1.24 1.68	27.30 27.30 4.56 0.01 1.16 1.02 1.52 1.52 1.52 2.01 0.41 1.24 1.24 1.28 1.98	27.30 27.30 4.56 0.29 0.29 0.116 1.16 1.02 1.52 2.01 3.30 0.41 1.54 1.58 3.30 0.41 1.58 3.30 3.30 3.31	27.30 27.30 4.56 0.29 0.01 1.16 1.02 1.02 1.02 1.52 2.01 3.30 0.41 1.52 1.24 1.68 1.98 3.92 3.92	27.30 27.30 4.56 0.01 1.16 1.02 1.02 1.02 1.52 2.01 1.52 2.01 1.52 3.30 0.41 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1	27.30 27.30 4.56 0.01 0.116 1.16 1.02 1.02 1.16 1.52 2.01 3.30 0.41 1.52 1.52 3.30 0.41 1.52 1.52 1.54 1.98 3.30 0.41 1.58 1.55 0.54 0.54 1.08 0.54	27.30 27.30 27.30 0.29 0.29 0.01 1.16 1.02 1.152 2.01 3.30 0.41 1.52 2.01 3.30 0.41 1.52 1.52 1.53 3.30 0.41 1.58 1.58 1.98 1.98 1.98 0.54 0.54 0.79	27.30 27.30 27.30 1.16 0.01 1.16 1.02 1.16 1.16 1.52 2.01 3.30 0.41 1.52 1.52 1.52 1.52 1.52 1.52 1.54 1.58 3.92 1.56 0.54 1.08 0.54 1.08 0.54 1.08 0.54 1.08 0.79 2.86
NO ³ (mg/L)	12.80	3.06	3.90	6.38	1.19	0.22	5.98	2.93	0.26	1.57		17.03	17.03 0.81	17.03 0.81 2.05	17.03 0.81 2.05 1.19	17.03 0.81 2.05 1.19 15.50	17.03 0.81 2.05 1.19 15.50 1.37	17.03 0.81 0.81 2.05 1.19 1.19 15.50 1.37 1.53	17.03 0.81 0.81 2.05 1.19 15.50 1.37 1.37 1.53 4.01	17.03 0.81 0.81 2.05 1.19 1.19 15.50 1.37 1.37 1.53 2.29	17.03 0.81 0.81 2.05 1.19 15.50 15.50 1.37 1.37 1.53 2.02 2.29 2.29 1.60	17.03 0.81 0.81 2.05 1.19 1.137 1.550 1.550 2.05 2.05 2.05 1.37 1.37 1.550 1.550 2.29 2.29 1.60 2.29 3.45	17.03 0.81 0.81 2.05 1.19 1.19 1.53 1.53 1.53 2.02 1.53 1.53 1.53 1.53 1.53 2.29 3.45 2.19	17.03 0.81 0.81 2.05 1.19 1.19 1.50 1.53 1.53 2.09 2.05 1.53 1.53 1.53 1.53 3.45 2.19 14.27	17.03 0.81 2.05 1.19 1.19 1.50 1.53 1.53 1.53 2.05 2.05 1.53 1.53 1.53 2.19 2.19 14.27 14.27	17.03 17.03 0.81 2.05 1.19 15.50 15.50 1.37 1.37 1.37 1.37 1.550 1.550 1.550 1.550 1.53 2.29 1.60 2.29 1.60 1.60 1.60 1.40 1.45 14.67 14.62 14.63	17.03 0.81 0.81 2.05 1.19 1.19 1.153 1.50 1.53 2.05 1.16 1.37 1.37 1.53 1.53 1.53 2.19 1.60 3.45 2.19 1.4.01 1.60 1.4.01 1.4.02 3.45 2.19 1.4.62 1.4.62 8.76	17.03 0.81 0.81 2.05 1.19 1.19 1.50 15.50 15.50 15.50 15.50 1.53 2.05 1.60 3.45 2.19 14.60 3.45 2.19 14.69 8.76 8.76 0.67	17.03 0.81 2.05 1.19 1.19 1.50 1.550 15.50 15.50 15.50 1.53 2.05 1.53 1.53 1.55 1.53 2.29 1.60 2.29 2.19 1.60 2.19 1.4.60 8.76 0.67 0.67 5.66	17.03 0.81 2.05 2.05 1.19 1.50 1.550 1.550 1.550 1.550 1.550 1.550 1.550 1.550 1.550 1.550 1.550 2.29 1.60 2.29 1.60 1.60 1.401 2.29 1.469 8.76 0.67 5.666 8.666	17.03 0.81 0.81 2.05 1.19 1.19 1.50 1.51 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.60 1.60 1.4.01 1.4.01 1.4.02 2.19 1.4.69 8.76 0.67 5.666 8.666 1.41
Cl ⁻ (mg/L)	1078.50	615.50	458.55	526.53	17.30	34.81	5.39	4.50	4.99	354.76		712.97	712.97 284.83	712.97 284.83 17.22	712.97 284.83 17.22 185.02	712.97 284.83 17.22 185.02 599.55	712.97 284.83 17.22 185.02 599.55 138.05	712.97 284.83 17.22 185.02 599.55 138.05 63.04	712.97 284.83 17.22 185.02 599.55 138.05 63.04 482.83	712.97 284.83 17.22 17.22 185.02 599.55 138.05 63.04 482.83 660.72	712.97 284.83 284.83 17.22 17.22 185.02 599.55 138.05 63.04 482.83 660.72 53.26	712.97 284.83 284.83 17.22 17.22 138.05 599.55 138.05 63.04 482.83 660.72 53.26 149.22	712.97 284.83 17.22 17.22 185.02 599.55 138.05 63.04 482.83 660.72 53.26 149.22 578.00	712.97 712.97 284.83 17.22 185.02 599.55 138.05 63.04 482.83 660.72 53.26 149.22 578.00 578.00	712.97 284.83 284.83 17.22 185.02 599.55 138.05 63.04 482.83 660.72 53.26 149.22 578.00 883.38 595.52	712.97 712.97 284.83 17.22 17.22 185.02 599.55 138.05 63.04 482.83 660.72 53.26 149.22 578.00 883.38 595.52	712.97 712.97 284.83 17.22 185.02 599.55 138.05 63.04 482.83 660.72 53.26 149.22 53.38 53.38 53.26 149.22 53.38 53.55 18.88 18.88 477.31	712.97 284.83 17.22 185.02 599.55 138.05 63.04 482.83 660.72 53.26 149.22 578.00 883.38 595.52 18.88 477.31 245.13	712.97 712.97 284.83 17.22 185.02 599.55 138.05 63.04 482.83 660.72 53.26 149.22 578.00 883.38 595.52 18.88 2545.13 2545.13	712.97 712.97 284.83 17.22 185.02 599.55 138.05 63.04 482.83 660.72 53.26 149.22 578.00 883.38 595.52 188.338 595.52 18.88 18.88 477.31 245.13 254.29 254.29	712.97 712.97 284.83 17.22 185.02 599.55 138.05 63.04 482.83 660.72 53.26 149.22 53.26 149.22 53.26 1883.38 555.52 18.88 18.88 18.88 18.88 18.88 18.88 18.88 18.88 18.13 255.52 18.333 2545.13 2554.29 603.35
HCO ₃ (mg/L)	234	216	222	197	74	49	92	68	123	68		43	43 105	43 105 111	43 105 111 68	43 105 111 68 170	43 105 111 68 170 105	43 105 111 68 170 105 68 68 170 105 68	43 105 111 111 68 170 105 68 68 216	43 43 105 111 111 68 170 105 68 216 216 256	43 105 111 111 111 68 170 105 216 256 256 203	43 105 111 111 111 68 68 68 216 226 2316 203 216	43 105 111 111 111 105 68 105 105 216 216 203 203 216 203	43 105 111 111 117 68 170 105 216 216 203 203 203 203 277 302	43 105 111 111 117 68 170 105 216 256 256 216 216 216 256 216 2303 203 203 203 203 203 203 203 203 302 160	43 105 111 117 68 170 170 216 256 216 216 216 216 216 216 216 203 216 203 203 203 203 203 203 203 203 203 203 203 203 204 160	43 105 111 111 1170 68 68 170 170 26 216 216 216 203 203 203 203 203 203 216 216 203 203 203 203 203 203 216 160 160 166 166 166	43 105 111 111 117 68 68 68 170 170 216 256 216 203 203 203 203 203 203 204 160 160 166 247 277	43 105 111 111 117 68 170 170 216 256 216 216 216 216 216 216 256 216 256 216 256 203 203 203 203 203 204 205 203 203 203 203 203 203 203 203 203 204 160 160 247 277 277 277 277 277 277 277 277 277 277 277 277 274	43 105 111 115 111 68 68 170 170 256 216 256 216 256 216 256 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 204 160 160 166 167 247 247 247 247 247 247 247 247 247 247 247 247 247 247 247<	43 105 111 1105 68 68 170 170 26 216 216 216 216 203 203 203 203 203 204 205 277 207 277 277 277 277 277 234 185 185
EC (μS/ cm)	4870	2996	1436	1630	283	332	297	355	488	1382		2510	2510 1219	2510 1219 417	2510 1219 417 746	2510 1219 417 746 2420	2510 1219 417 746 2420 750	2510 1219 417 746 2420 750 432	2510 1219 1219 746 746 2420 750 432 432 2185	2510 1219 417 746 2420 2420 750 432 2185 2185 2850	2510 1219 417 746 2420 750 750 750 750 2185 2185 2185 2850 804	2510 1219 417 746 2420 750 432 2185 2185 2185 2185 804 804	2510 1219 1219 746 746 2420 2420 432 2450 804 804 804 1860	2510 1219 1219 746 776 2420 2420 2432 2185 2185 2185 2185 2185 2185 2185 218	2510 1219 1219 746 776 2420 750 750 750 2432 2185 2850 804 600 1860 1860 1630	2510 2510 1219 417 746 2420 750 750 2420 22850 804 804 600 1860 2500 1630 1630	2510 1219 1219 746 776 2420 2420 2430 2432 2185 2185 2185 2185 2185 2185 2185 218	2510 1219 1219 746 776 2420 2420 2420 2185 2185 2185 2185 2185 2185 2185 2185	2510 1219 1219 746 746 2420 750 2420 2185 2850 804 600 1860 1860 2500 1630 1630 1630 1630 1630 1630 1630 16	2510 1219 1219 746 776 750 750 750 2420 2420 2185 2850 804 600 600 1860 2500 1630 1630 1630 1630 1630 1630 1630 16	2510 1219 1219 746 2420 2420 2420 2430 2185 2185 2185 2185 2185 2185 2185 2185
Temp. (°C)	26.1	26.1	27.3	25.1	26.8	27.1	25.1	25.4	26.4	27.1	:	25.9	25.9 25.2	25.9 25.2 26	25.9 25.2 26 25.6	25.9 25.2 26 25.6 25.6 25.2	25.9 25.2 26 25.6 25.2 25.2 27.4	25.9 25.2 26 25.6 25.2 25.2 27.4 26	25.9 25.2 26 25.2 25.2 25.2 27.4 26 26	25.9 25.2 26 25.6 25.6 25.6 25.4 26 27.4 26 27.6 28.1	25.9 25.2 26 26 25.6 25.6 25.6 27.4 26 27.6 28.1 27.6 28.1	25.2 25.2 26 25.2 25.2 25.2 27.4 26 27.6 28.1 27.3 27.3	25.9 25.2 26 25.6 25.6 25.6 25.2 26 26 26 26 27.4 26 27.4 26 27.5 27.5 27.3 27.3 27.3	25.2 25.2 26 25.6 25.6 25.6 25.6 27.4 26 27.4 26 27.6 27.5 27.3 27.3 27.5 27.5 27.5 27.5	25.9 25.2 26 26 25.6 25.6 25.6 27.4 26 27.6 28.1 27.5 27.5 27.5 27.5 28.1 28.1	25.9 25.2 25.2 25.2 25.2 25.2 25.2 25.2	25.2 25.2 26 25.6 25.6 25.6 25.6 25.2 27.4 26 27.4 26 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5	25.9 25.2 26 25.6 25.6 25.6 25.6 27.4 26 27.6 27.6 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5	25.9 25.2 26 25.6 25.6 25.6 27.4 27.6 27.6 28.1 27.5 27.3 27.5 27.3 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5	25.9 25.6 25.6 25.6 25.6 25.6 25.4 25.4 26 27.6 28.1 27.3 27.3 27.3 27.3 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5	25.2 25.2 25.2 25.6 25.6 25.6 25.6 27.4 26 27.6 27.3 27.3 27.3 27.3 27.3 27.3 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5
ЬН	7.93	7.91	7.86	7.68	7.1	7.03	6.9	6.98	6.92	7 24	11	6.87	6.87 7.1	6.87 7.1 7.19	6.87 7.1 7.19 6.83	6.87 7.1 7.19 6.83 7.07	6.87 7.1 7.19 6.83 6.83 7.07 7.07 7.01	5.87 6.87 7.1 7.1 7.19 7.19 7.19 6.83 6.83 6.83 7.07 7.01 7.01 6.92	6.87 6.87 7.1 7.1 7.19 7.19 6.83 6.83 7.07 7.01 7.01 6.92 6.92 7.07	6.87 7.1 7.1 7.19 6.83 6.83 7.07 7.07 7.01 6.92 7.07 7.07 7.01 7.07 7.07 7.01 7.07 7.07 7.07	5.87 6.87 7.1 7.19 6.83 6.83 6.83 6.83 6.83 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.16 7.26	6.87 6.87 7.1 7.1 7.19 7.19 6.83 6.83 6.83 6.83 6.92 7.01 7.07 7.01 6.92 7.07 7.07 7.07 7.16 7.26 7.78 7.78	5.87 6.87 7.1 7.19 7.19 6.83 6.83 6.83 6.92 7.07 7.07 7.01 6.92 6.92 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.16 7.26 7.78 8.1	7.1 7.1 7.19 6.83 6.83 6.83 6.83 6.83 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.06 8.1 7.8	7.17 7.1 7.19 6.83 6.83 6.83 6.83 6.83 6.83 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.06 8.1 8.06	7.1 7.1 7.19 7.19 6.83 6.83 6.83 6.92 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.06 8.1 8.06 8.06	7.1 7.1 7.1 7.19 6.83 6.83 6.83 6.83 6.92 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.08 8.1 8.06 8.06 8.06	7.1 7.1 7.19 6.83 6.83 6.83 6.83 6.83 7.07 7.08 8.06 8.06 8.06 8.01 8.21	7.17 7.19 7.19 6.83 6.83 6.83 6.83 6.83 6.83 6.83 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.06 8.1 8.21 8.17	7.1 7.1 7.19 6.83 6.83 6.83 6.83 6.83 6.83 6.83 6.83 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.01 6.92 7.07 7.07 7.06 8.1 8.21 8.17 8.11 8.11	7.1 7.1 7.1 7.19 6.83 6.83 6.83 6.83 6.83 6.83 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.08 8.06 8.06 8.06 8.06 8.07 8.17 8.11 8.11 8.21
Well Depth (m)	300	292	300	300	213	244	210	244	183	713	C17	244	244 244 244	244 244 244 259	244 244 259 229	244 244 259 229 227	244 244 259 259 229 227 213	21.5 244 259 259 229 229 213 213	244 244 259 259 229 229 213 213 274 206	244 244 259 259 259 229 229 213 213 213 213 213 213 213 214 214	244 244 259 259 229 229 213 213 213 213 206 206 234 234	244 244 259 259 229 227 213 213 213 213 213 213 213 213 213 213	244 244 259 259 229 229 229 213 213 213 213 213 213 213 213 213 213	244 244 259 259 229 229 229 213 213 206 213 213 238 238	244 244 244 259 259 229 229 213 206 213 206 213 213 234 234 234 234 234 238 198 183	244 244 259 259 229 229 227 206 213 213 213 213 213 213 213 213 213 213	244 244 259 259 259 229 227 274 274 274 234 234 234 234 238 238 198 238 238 198 238 238 238 238 238 238 238 238 238 23	244 244 259 259 259 206 274 206 213 206 234 238 198 198 238 198 238 238 183 305 259 238 250 238 250 238 250 238 250 255 274 274 277 277 277 277 277 277 277 277	244 244 244 259 259 229 229 206 213 206 213 234 234 234 234 234 234 234 238 198 238 238 238 238 238 238 259 259 259 259 259 259 259 259 259 229 22	244 244 259 259 229 229 227 206 213 227 234 234 234 234 234 234 234 234 234 234	244 244 244 259 259 229 229 206 213 274 274 238 238 238 238 238 238 238 238 238 250 238 238 250 238 250 250 250 274 250 255 274 257 274 277 277 277 277 277 277 277 277 27
Area	Zia Nagor	Bhandaria	Jhalokathi	Gouronodi	Nalitabari	Kuliar Chor	Baniachong	B. Baria	Kosba	I alrentin	Lansuill	Begumgonj	Begumgonj Lakkhipur	Lacourt Begumgonj Lakkhipur Raipur	Laksun Begumgonj Lakkhipur Raipur Chandpur	Lakkhipur Begumgonj Lakkhipur Raipur Chandpur Kochua	Lakkhipur Begungonj Lakkhipur Raipur Chandpur Kochua Daudkandi	Lakkhipur Begumgonj Lakkhipur Raipur Chandpur Kochua Daudkandi Araihazar	Lakkhipur Begumgonj Lakkhipur Raipur Chandpur Kochua Daudkandi Araihazar Faridpur	Lakkhipur Begumgonj Lakkhipur Raipur Chandpur Kochua Daudkandi Araihazar Faridpur Bhanga	Lakkhipur Begumgonj Lakkhipur Raipur Chandpur Kochua Daudkandi Araihazar Faridpur Bhanga Bhanga	Lakkhipur Begumgonj Lakkhipur Raipur Chandpur Kochua Daudkandi Araihazar Faridpur Bhanga Bhanga Nvaron	Lakkhipur Begumgonj Lakkhipur Raipur Chandpur Kochua Daudkandi Araihazar Faridpur Bhanga Bhanga Nvaron Sathkhira	Lakkhipur Begumgonj Lakkhipur Raipur Chandpur Kochua Daudkandi Araihazar Faridpur Bhanga Bhanga Nvaron Sathkhira Sathkhira	Lakkhipur Begumgonj Lakkhipur Raipur Chandpur Kochua Daudkandi Araihazar Faridpur Bhanga Bhanga Bhanga Sathkhira Sathkhira Tala	Lakkhipur Begumgonj Lakkhipur Raipur Chandpur Kochua Daudkandi Araihazar Faridpur Bhanga Bhanga Nvaron Sathkhira Sathkhira Tala	Lakkhipur Begumgonj Lakkhipur Raipur Chandpur Kochua Daudkandi Araihazar Faridpur Bhanga Bhanga Bhanga Nvaron Sathkhira Tala Dumuria Kaukhali	Lakkhipur Begumgonj Lakkhipur Raipur Chandpur Kochua Daudkandi Araihazar Faridpur Bhanga Bhanga Bhanga Sathkhira Sathkhira Tala Dumuria Kaukhali Kaukhali	Lakkhipur Begumgonj Lakkhipur Raipur Chandpur Kochua Daudkandi Araihazar Faridpur Bhanga Bhanga Bhanga Sathkhira Sathkhira Tala Dumuria Kaukhali Rajapur Jhalakathi	Lakkhipur Begumgonj Lakkhipur Raipur Chandpur Kochua Daudkandi Araihazar Faridpur Bhanga Bhanga Bhanga Bhanga Nvaron Sathkhira Tala Dumuria Kaukhali Rajapur Jhalakathi Nalchiti	Lakkhipur Begumgonj Lakkhipur Raipur Chandpur Kochua Daudkandi Araihazar Faridpur Bhanga Bhanga Bhanga Nvaron Sathkhira Sathkhira Tala Dumuria Kaukhali Rajapur Jhalakathi Nalchiti Nalchiti
ID.	158	159	160	161	167	174	179	181	182	183	T U U	184	184 185	184 185 186	184 184 185 186 187	103 184 185 186 187 188	103 184 185 186 187 187 189 189	184 185 185 186 187 187 189 190	184 185 185 186 187 187 188 188 189 190	184 185 185 186 187 188 188 188 188 190 190 194	184 185 185 186 187 188 189 190 191 193 194	184 185 185 186 187 188 189 190 193 193 193 195 235	184 185 186 187 187 188 189 190 194 194 195 235 235	184 185 186 187 187 188 189 190 190 194 194 195 235 237 237 238	184 185 186 187 187 188 189 190 190 194 194 195 235 235 235 235 238	184 185 186 187 188 189 199 194 194 195 237 237 237 237 237 239 239 239	$\begin{array}{c} 1.00 \\ 1.85 \\ 1.85 \\ 1.86 \\ 1.87 \\ 1.88 \\ 1.89 \\ 1.90 \\ 1.91 \\ 1.92 \\ 2.35 \\ 2.$	184 185 186 187 187 188 189 190 194 194 194 195 235 235 235 235 239 239 239 239 239 237 238 237 237 237 237 237 237 237 237 237 237	184 185 186 187 187 188 189 190 194 194 195 235 235 235 235 238 238 238 238 238 237 240 241 241 241 243 233 233 233 233 233 233 233 233 233	185 186 186 187 187 188 189 194 194 194 195 235 235 235 235 235 235 235 235 235 23	$\begin{array}{c} 1.00\\ 1.85\\ 1.86\\ 1.87\\ 1.87\\ 1.87\\ 1.89\\ 1.89\\ 1.90\\ 1.91\\ 1.93\\ 1.93\\ 1.93\\ 1.93\\ 1.93\\ 2.35\\$

SI	0.39	0.20	0.58	-0.58	0.73	1.18	0.54	0.17	0.25	-0.70	0.04	0.03	-3.02	-4.42	-1.05	-1.41	-1.44	-0.25	-0.41	-0.28	-0.55	-0.18	-0.48	-1.15	-1.22	-0.89	-0.70	-0.94	-0.52	-0.31	-1.95
SI _{calcite}	0.09	-0.01	0.27	-0.29	0.33	0.54	0.07	0.05	0.09	-0.55	-0.05	-0.10	-1.49	-2.24	-0.63	-0.82	-0.86	-0.24	-0.33	-0.32	-0.44	-0.18	-0.33	-0.66	-0.70	-0.45	-0.41	-0.51	-0.35	-0.24	-0.94
Ca ²⁺ (mg/L)	4.61	3.33	10.49	13.78	117.93	79.91	25.77	88.30	79.08	37.49	51.52	69.35	13.31	10.56	119.26	35.50	44.89	50.28	118.67	34.26	24.68	199.10	167.45	49.64	26.68	28.92	56.36	105.50	62.55	35.08	13.68
Mg ²⁺ (mg/L)	3.07	1.99	4.62	5.84	58.92	42.46	27.07	43.16	38.17	39.98	29.31	46.51	5.24	5.10	80.12	25.46	36.29	34.86	87.03	32.70	21.86	124.39	105.55	31.18	16.80	12.66	31.79	52.84	40.10	21.97	4.83
K ⁺ (mg/L)	6.19	5.43	8.78	10.58	46.78	28.54	20.85	24.61	17.97	24.37	11.22	13.52	6.23	5.74	20.97	9.75	28.73	21.73	33.87	17.34	10.15	26.21	26.99	13.30	7.16	5.86	12.20	11.38	11.97	14.56	1.93
Na ⁺ (mg/L)	199.85	182.07	226.22	251.06	563.75	557.78	358.51	484.50	207.08	223.15	74.53	102.22	14.74	10.84	132.50	55.32	450.49	53.42	82.44	50.09	45.59	71.49	124.05	101.62	36.24	27.27	62.03	141.35	103.37	257.64	5.18
SO ₄ ²⁻ (mg/L)	0.84	0.92	0.24	0.40	0.70	11.42	0.80	1.60	0.60	45.11	14.00	1.04	0.90	1.94	39.45	3.10	36.77	1.05	2.46	1.36	0.84	5.50	10.82	4.88	1.05	0.72	1.05	2.15	1.73	2.06	0.08
NO ³ (mg/L)	2.78	2.99	7.11	4.36	21.91	7.52	18.93	3.93	1.12	3.45	1.04	3.26	0.79	0.68	2.75	1.91	1.92	11.06	4.08	8.80	4.53	6.19	7.69	0.85	0.63	1.04	0.77	2.62	2.85	2.60	1.28
CI ⁻ (mg/L)	14.87	9.28	6.20	144.66	748.14	579.78	92.70	686.59	353.51	167.74	80.78	221.73	1.59	2.48	548.09	135.05	731.30	175.69	549.42	108.84	23.92	665.02	655.91	271.08	62.36	5.91	196.16	460.57	282.49	378.76	14.37
HCO ₃ (mg/L)	259	240	253	191	339	370	394	166	160	370	166	129	68	37	68	66	66	117	66	129	129	66	92	111	62	105	105	80	136	160	173
EC (μS/ cm)	580	560	610	750	2200	1790	1050	1810	1030	790	550	770	143	117	1430	510	1890	670	1500	550	410	1770	1740	770	350	270	650	1190	860	1110	935
Temp. (°C)	27.4	34	28.3	27.1	27	27.1	26.4	26.9	26.7	26.2	27	30.6	25.8	27.6	27	27	25.9	27.6	28.8	27	27.4	27.2	27.2	26.7	28.2	27.5	27.4	27.9	27.2	27.2	27.7
Hq	8.47	8.45	8.29	7.74	7.34	7.66	7.59	7.46	7.51	6.84	7.47	7.38	6.9	6.47	7.02	7.06	7.07	7.44	7.12	7.47	7.45	7.12	7.06	7.07	7.45	7.43	7.26	7.07	7.2	7.5	7.03
Well Depth (m)	305	299	305	259	198	183	213	213	229	227	259	305	198	259	213	226	279	277	256	244	256	287	310	259	290	293	274	310	262	305	229
Area	Dumki	Patuakhali	Patuakhali	Babuganj	Gopalganj	Gopalganj	Moksedpur	Rajoir	Madaripur	Madaripur	Bhanga	Lohajanj	C-gram	C-gram	D-bhuyan	Begumganj	Noakhali	Suborna	Suborna	Suborna	Suborna	Suborna	Suborna	Maijdi	Maijdi	Ramgati	Ramgati	Ramgati	Ramgati	Ramgati	Obhaynagar
D.	248	249	250	251	252	254	255	256	257	259	260	261	264	265	269	270	271	272	274	275	276	278	280	282	283	285	286	287	289	290	323

Ū.	Area	Well Depth (m)	Ηd	Temp. (°C)	EC (μS/ cm)	HCO ₃ (mg/L)	CI ⁻ (mg/L)	NO ₃ - (mg/L)	SO ₄ ²⁻ (mg/L)	Na ⁺ (mg/L)	K ⁺ (mg/L)	Mg ²⁺ (mg/L)	Ca ²⁺ (mg/L)	SI	SI _{dolomite}
325	Khulna	290	7.44	29.5	1416	123	503.39	15.11	25.79	283.54	26.68	41.86	68.49	-0.14	-0.09
327	Patuakhali	244	7.89	27.8	804	259	2.17	1.39	0.63	12.36	8.14	0.90	3.62	-0.49	-1.41
329	Amtali	317	7.88	29.2	856	283	24.67	1.47	0.56	253.68	10.82	4.19	8.78	-0.15	-0.21
330	Amtali	305	7.86	26.9	920	296	21.22	2.45	0.08	280.88	9.87	4.38	8.47	-0.20	-0.31
331	Amtali	311	7.6	28.5	1030	333	34.91	3.06	0.11	316.01	15.75	7.84	12.23	-0.24	-0.28
332	Kalapara	274	7.7	32.6	1146	345	88.05	1.91	0.13	345.88	8.93	10.08	16.87	0.05	0.31
333	Kalapara	300	7.45	29.1	2140	308	661.22	3.21	0.19	580.65	29.17	21.14	25.42	-0.19	-0.07
335	Kuakata	310	7.66	28.8	2005	394	27.57	3.55	1.67	29.37	9.48	10.68	240.85	1.12	1.29
337	Patuakhali	312	8.01	32.2	737	234	11.66	1.15	0.91	213.88	6.42	2.44	15.16	0.19	0.01
338	Barisal	244	7.9	28.1	862	234	184.90	2.09	0.59	239.30	8.93	4.23	10.59	-0.15	-0.32
339	Uzirpur	259	7.7	27.5	1116	160	312.22	1.61	1.04	339.30	12.14	5.66	4.62	-0.90	-1.34
340	Gournadi	259	7.12	29.5	1405	173	497.89	2.32	0.93	185.93	17.57	46.87	96.22	-0.16	-0.22
341	Rajoir	213	7.3	28.4	2410	160	942.07	3.86	0.32	501.41	25.03	42.82	92.15	-0.10	-0.14
342	Haziganj	244	7.4	29.1	535	74	89.80	0.96	0.10	45.89	7.34	17.49	42.95	-0.48	-0.95
344	Ramganj	244	7.21	27.1	312	123	7.68	1.28	0.11	30.27	7.49	16.00	28.28	-0.63	-1.13
345	Noakhali	244	7.09	24.8	4230	173	1670.84	6.72	36.75	1035.41	77.93	39.75	32.84	-0.84	-1.24
346	Noakhali	311	7.48	26.2	4460	160	1757.58	7.02	61.67	1063.30	54.91	434.50	41.98	-0.47	0.46
349	Subornachar	287	7.6	29.8	1852	86	660.80	9.38	0.21	93.62	38.50	95.97	109.79	0.05	0.45
356	Laksham	251	6.04	25.5	3790	51	1120.00	0.21	89.20	309.00	6.57	95.00	220.00	-1.56	-3.13
357	Shib Char	213	6.72	26.8	1425	292	292.09	0.05	3.30	67.00	5.77	47.20	87.20	-0.38	-0.66
358	Kachua	191	6.7	28.4	722	154	122.72	0.26	2.12	59.60	2.15	8.11	15.40	-1.30	-2.49
359	Shib Char	213	6.78	26.5	1327	321	262.68	0.22	22.02	79.80	4.93	37.30	70.60	-0.37	-0.65
360	Kuliarchar	284	7.02	29.1	334	156	5.75	0.08	1.71	266.00	3.28	18.20	15.70	-1.00	-1.54
361	Singair	247	6.61	27.20	827	275	26.05	2.18	7.11	21.56	16.56	28.64	90.20	-0.45	-1.02
362	Singair	218	6.79	28.00	536	243	7.21	1.59	0.01	25.93	5.65	13.20	45.29	-0.56	-1.27
364	Rampal	260	8.22	33.1	2675	444	491.28	1.51	0.26	5.87	2.37	4.88	13.40	0.56	1.14
366	Ghior	210	6.94	28.8	810	385	114.92	41.71	0.85	48.80	1.01	33.10	43.10	-0.28	-0.28

	Collected water samples	Na ⁺ (mg/L)	Ca ²⁺ (mg/L)	Mg ²⁺ (mg/L)	K+ (mg/L)	HCO ₃ ⁻ (mg/L)	Cl ⁻ (mg/L)	SO ₄ ²⁻ (mg/L)	NO ₃ - (mg/L)
				Shallow g	roundwater	•	• •		
Min.		1.20	1.30	0.02	0.00	12.00	0.04	0.01	0.00
Max.	202	2456.60	188.84	151.25	100.31	1186.00	3420.27	321.80	159.49
Avg.		75.50	38.80	21.89	8.21	172.32	100.18	14.49	8.08
			In	termediate de	epth groundw	vater			
Min.		3.95	1.34	5.24	0.88	55	0.80	0	0
Max.	26	268.42	87.36	40.88	56.55	394	491	19.89	40.58
Avg.		46.69	35.07	16.31	6.16	173.39	34.71	2.49	5.15
				Deep gro	oundwater				
Min.		5.18	3.32	0.9	0.71	37	1.59	0.01	0.01
Max.	100	1063.3	240.85	434.5	54.91	449	1757.58	180.04	41.71
Avg.]	212.33	56.22	38.43	12.65	198.17	322.45	8.52	4.28

Table 2. Summery statistics of major ion chemistry

Table 3. Average ionic composition of major hydrochemical species

Groundwater group	Water type	Cl- (mg/L)	HCO3- (mg/L)	Na+ (Mg/L)	Ca2+ (mg/L)
Shallow groundwater					
Group-1	Ca-Mg-HCO ₃	9.9	215.0	13.8	51.7
Group-2	Na-Ca-Mg-HCO ₃	12.5	132.9	42.5	21.8
Group-3	Na-Cl	910.5	304.0	632.0	43.5
Group-4	Ca-Mg-Na-HCO ₃ -Cl	73.0	148.0	24.0	42.0
Intermediate depth groundwater					
Group-1	Ca-Mg-HCO ₃	5.6	203	18.2	45.5
Group-2	Na-Ca-Mg-HCO ₃	3.7	133.0	67.5	23.7
Group-3	Na-Cl	491.0	197.0	268.0	78.9
Group-4	Ca-Mg-Na-HCO ₃ -Cl	54.0	173.0	47.5	25.3
Deep groundwater					
Group-1	Ca-Mg-HCO ₃	12.08	178.0	29.0	35.3
Group-3	Na-Cl	460.05	145.5	370.0	41.0
Group-4	Ca-Mg-Na-HCO ₃ -Cl	160.0	210.5	71.0	49.0
Group-5	Na-Ca-Mg-Cl	485.0	173.0	241.0	84.0
Group-6	Na-HCO ₃	32.0	296.0	228.0	11.0

4.2 Major Ion Chemistry

Summery statistics of groundwater major ion chemistry are given in Table 2. The average concentrations of Na⁺, Ca²⁺ and Cl⁻ in deep groundwater display a clear difference with shallow and intermediate depth groundwater (Table 2). The trend of major cation concentrations in shallow and deep groundwaters are Na⁺>Ca²⁺>Mg²⁺>K⁺ and for intermediate depth groundwater is Ca²⁺>Na⁺>Mg²⁺>K⁺. The anionic trend of shallow and intermediate depth groundwaters is $HCO_3^{->}$ Cl⁻>SO₄²⁻>NO₃⁻ and deep groundwater is Cl⁻>HCO₃⁻>SO₄²⁻>NO₃⁻.

4.3 Hydrochemical Grouping

Piper plots (Figure 3) for shallow, intermediate and deep groundwater are classified into six major groups, namely Group-1: Ca-Mg-HCO₃, Group-2: Na-Ca-Mg-HCO₃, Group-3: Na-Cl, Group-4: Ca-Mg-Na-HCO₃-Cl, Group-5: Na-Ca-Mg-Cl and Group-6: Na-HCO₃. The spatial distribution of groundwater hydrochemical species at different depths are show in Figure 3. The relevant chemical parameters for the shallow, intermediate and deep groundwater groups are depicted in Table 3. Figure 3a illustrates that the shallow groundwater is dominantly of Ca-Mg-HCO, type low mineralized water characterizing the chemical composition of rainfall and major river water in Bangladesh, which indicates the initial source of water recharging into the aquifer systems. This type of water (Group-1) is distributed in most sites of the study area (Figure 4a) indicating preferential recharge area. Group-2 shallow groundwater is observed in the northern-eastern site of the study area (Figure. 3a), which shows slightly increase of Na⁺ concentration with respect to Ca²⁺ and Mg²⁺. The increase in Na⁺ exchange for Ca²⁺ and Mg²⁺ suggest softening process, which may indicate rapid recharge and/or much more water-rock interactions along the flow paths. Group-3 water shown in the central and north-western site (Figure 4a) are characterized by $SO_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!}}^{^{2-}}$ and $NO_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!}}^{^-}$ rich mixed water, which may be from anthropogenic sources. In contrast, the Na-Cl type water from the coastal area is characterized by high concentrations of chloride, which is possibly due to mixing with seawater¹⁷.

The intermediate depth groundwater is also dominated in Ca-Mg-HCO₂ type water (Figure 3b) and surprisingly in spatial distribution (Figure 4b) the intermediate depth groundwater aquifer with water types Ca-Mg-HCO₂, Na-Ca-Mg-HCO₂ and Na-Cl respectively are underlain by the similar type water in shallow groundwater aquifers (Figure 4a). This phenomenon indicates possible connectivity between shallow and intermediate depth aquifers as well as rapid recharge to the intermediate aquifers without changing the chemical characteristics of recharging water. The intermediate depth groundwaters are also affected by softening process giving rise to Na-Ca-Mg-HCO₂ type water adding more Na⁺ in groundwater exchanged for Ca²⁺ and Mg²⁺. In the coastal region, the intermediate depth groundwaters are characterized by Na-Cl chloride type saline water with an average Cl⁻ concentration of 491 mg/l (nearly 3% salinity). Similar to shallow groundwater,

the intermediate groundwater is also affected by sea spry or mixed with seawater¹⁷.

Figure 3. Piper plots showing the major ions composition of groundwater: (a) shallow well (<70 m), (b) intermediate well (70–180 m) and (c) deep well (>180 m). Based on this diagram, groundwaters are classified into six different groups, which are: Group-1 (Ca-Mg-HCO₃), Group-2 (Na-Ca-Mg-HCO₃), Group-3 (Na-Cl), Group-4 (Ca-Mg-Na-HCO₃-Cl), Group-5 (Na-Ca-Mg-HCO₃-Cl) and Group-6 (Na-HCO₃).

The Piper plot for deep groundwater (Figure 3c) shows distinct groundwater types both in compositions and in spatial distributions (Figure 4c). Ca-Mg-HCO₃ type water is observed in deep wells lying in the northern site of the study area. The Na-Cl and Na-Ca-Mg-Cl type deep groundwaters are restricted in the coastal region (Figure 4c) having ~0.9 to 6% salinity. This brackish high chloride content water probably represents relic seawater trapped in sediments during deposition under marine regressive conditions that have later undergone certain modifications (e.g., cation exchange, diluting by mixing with fresh meteoric water) during its period of confinement. Similar type of deep saline groundwater was also observed by¹⁸ in West Bengal, India. The Ca-Mg-Na-HCO₃-Cl (Group-4) type deep groundwater shows increase in chloride and bicarbonate concentrations. The gradual increase in deep groundwater Cl⁻ and Na⁺ concentrations thus suggest groundwater flow from the area of Group-1 type water towards the mixed type Group-4 area (Figure 4c).

The Na-HCO₃ type low chloride content (average 32 mg/L) groundwaters are observed in the coastal deep

aquifers. It indicates that the Ca-HCO₃ groundwaters progressively evolve into the Na-HCO₃ type water at greater depth and the concentrations of chemical constituents in the water increase with prolonged water-rock interactions¹⁹. The presence of Na-HCO₃ type water in deep aquifers usually represents the end member of the groundwater flow system²⁰. The Na-HCO₃ type deep groundwater observed in the coastal aquifers of Bangladesh are of stagnant water, which probably reflects the effect of incomplete flushing in a buried estuary aligned on an old course of the Ganges and/or Brahmaputra rivers when they flow directly south from their present confluence²¹.

Figure 4. Plots showing the spatial distribution of groundwater hydrochemical species at different depths (a) shallow well (<70 m), (b) intermediate well (70–180 m) and (c) deep well (>180 m).

4.4 Stiff Diagram

Stiff diagrams are widely used to infer the trend of groundwater mineralization along the groundwater flow paths in spatial distribution. The spatial distribution of shallow groundwater chemical types represented in the Stiff diagrams (Figure 5a) denotes the generalized progressive increase of shallow groundwater mineralization from north to south. The increase in sodium and chloride concentration is prominent in the coastal region, which is affected by mixing with seawater. Stiff diagrams (Figure 5b) for intermediate depth groundwater show low mineralized water, which indicates rapid recharge into the aquifers without any significant chemical change in the initial recharging water (Group-1 type) as well as indicates low residence times for water-rock interactions or relatively short flow paths. The spatial distribution of deep groundwater Stiff diagrams (Figure 5c) shows notably high-mineralized water than those of shallow and intermediate groundwater. The chemical pattern of deep groundwater progressively increases from north to south. Following this direction, a gradual decrease in calcium and increase in sodium is noticeable. The chloride concentration increases in accordance with the pattern, which can be specified as flow directions.

Figure 5. Stiff diagram showing (a) shallow, (b) intermediate and (c) deep groundwater hydrochemical types distributed over the study area.

4.5 Carbonates Dissolution

Bicarbonate in Bengal Delta groundwaters may derive mainly from the soil zone CO₂ and weathering of parent

minerals. The soil zone in the subsurface contains elevated CO_2 pressure (produced by decay of organic matter and root respiration), which in turn combines with rainwater to form bicarbonate²² following the reactions given below:

 $\begin{array}{l} \text{CO}_2 + \text{H}_2\text{O} \Rightarrow \text{H}_2\text{CO}_3 & -----(i) \\ \text{H}_2\text{CO}_3 \Rightarrow \text{H}^+ + \text{HCO}_3^- & -----(ii) \end{array}$

Bicarbonate may also be derived from the dissolution of carbonates minerals (calcite and dolomite) by the carbonic acid according to:

(calcite)

 $CaMg(CO_3)_2 + 2H_2CO_3 \rightarrow Ca^{2+} + Mg^{2+} + 4HCO_3^{-}$ ------(iv)

(dolomite)

If Ca^{2+} and Mg^{2+} in groundwater may come from the dissolution of calcite and dolomite according to the equations (iii) and (iv) respectively, there would be straight positive correlation between Ca^{2+} and HCO_3^{-} and, Mg^{2+} and HCO_3^{-} . A bi-variant plot (Figure 6a) of Ca^{2+} versus HCO_3^{-} shows poor correlation ($r^2 = 0.30$) for shallow, intermediate ($r^2 = 0.03$, regression line not shown in Figure 6a) and deep groundwater ($r^2 = 0.009$, regression line not shown in Figure 6a). It is evident that Ca^{2+} in all observed groundwaters may not come from calcite dissolution. Besides²³ observed poor amount of calcite (average 0.8 wt%) in Bengal Delta sediments may not be responsible releasing higher concentrations for Ca^{2+} in Bengal Delta groundwater.

Figure 6. Bivariate plots showing the correlation between (a) HCO₃⁻ versus Ca²⁺, (b) Saturation Index for calcite versus dolomite, (c) Ca/Na versus Mg/Na and (d) Ca/Na versus HCO₃/Na.

Assuming pure water equilibrated with sedimentary calcite and assuming $10^{-3.5}$ atm soil CO₂ gas in an open system at 25°C, the geochemical properties mainly saturation index for calcite and dolomite have been simulated, as given in Table 1. The plot of saturation indices of calcite (SI_{calcite}) versus dolomite (SI_{dolomite}) demonstrates that most of the groundwaters are under-saturated with respect to dolomite and calcite (Figure 6b). According to Figure 6b, about 86% of the analyzed groundwater samples are under-saturated with calcite and dolomite. It represents that the water comes from an environment where calcite and dolomite are impoverished. It also indicates that in the Bengal Delta groundwater, Ca²⁺ and Mg²⁺ partially come from carbonate dissolution.

Surprisingly, only 25% deep groundwaters (out of 100 nos.) are saturated with calcite and it indicates precipitation of calcium as calcite and/or dolomite.

4.6 Silicate Weathering

Weathering reactions of Ca and Mg-silicates are also responsible releasing Ca²⁺ and Mg²⁺ transforming CO₂ from the atmosphere to HCO₃⁻ in groundwater as: 2NaAlSi₃O₈ +2H₂CO₃ + 9H₂O \Rightarrow Al₂Si₂O₅ (OH)₄ + 2Na⁺ + 4H₄SiO₄ +2HCO₃⁻ ---- (v) (Na-silicate) Mg₂SiO₄ + 4CO₂ + 4H₂O \Rightarrow 2Mg²⁺ + 4HCO₃⁻ + H₄SiO₄ -----------(vi) (Mg-silicate)

Therefore, the Na-normalized²⁴ ratios for Ca²⁺ and Mg²⁺ might have relationship to each other. Accordingly, in the plot of molar ratios of Ca/Na versus Mg/Na are shown in a log-log space in Figure 6c, both shallow and deep groundwater show moderate correlation with regressions $r^2 = 0.54$ and $r^2 = 0.55$ respectively, whereas intermediate depth groundwater shows higher correlation ($r^2 = 0.85$). Recharging waters flowing through carbonates rich aquifer show high Ca/Na and Mg/Na rations (Figure 6c). The end member having lower Na-normalized ratios is that of water draining silicates. The molar Ca/Na ratio of average crustal continental rocks is close to 0.6^{25} , and due to the higher solubility of Na relative to Ca, lower Ca/Na molar ratio are expected in groundwater, which are related to weathering of silicates. In Figure 6c, the observed shallow groundwater with high Ca/Na molar ratios are being influenced by carbonate dissolution, whereas the intermediate and deep groundwaters are influenced by

silicate weathering rather than carbonate dissolution. Similarly, the plot (Figure 6d) for HCO_3/Na and Ca/Na molar rations, high molar rations for half of the shallow and intermediate depth groundwaters are an indication of carbonate dissolution, meanwhile low molar ratios of HCO_3/Na and Ca/Na for the deep groundwaters are the indication of silicate weathering.

If groundwater mainly recharged by the recent atmospheric precipitation, its circulation remains active²⁶. This being so, the most likely mechanism that can increase concentrations of Na⁺ and HCO₃⁻ in groundwater is the alteration of silicates (like albite) as per the following reaction:

$$\begin{split} &\text{NaAlSi}_{3}\text{O}_{8} + \text{CO}_{2}(\text{aq}) + 11/2\text{H}_{2}\text{O} \rightarrow \text{Na}^{+} + 1/2\text{Al}_{2}\text{Si}_{2}\text{O}_{5} \\ &\text{(OH)}_{4} + 2\text{H}_{4}\text{SiO}_{4} + \text{HCO}_{3}^{-} - - - (\text{vii}) \end{split}$$

This reaction leads to increase in Na⁺ and HCO₃⁻ concentrations consuming CO₂(aq), and thus decreases the partial pressure of carbon dioxide (pCO₂) and increases pH. The high average Na⁺ (212.33 mg/L) content in observed deep groundwater with high pH (>7.5) values comply with the above-mentioned argument.

Figure 7. Depth dependence plots showing variations between (a) Ca^{2+} versus depth and (b) Na^{+} versus depth.

4.7 Cation Exchange

Cation exchange reaction is also responsible for Na⁺ enrichment in groundwater as²⁷:

 $1/2Ca^{2+} + Na - X \rightarrow 1/2Ca - X_2 + Na^+$ (viii)

where, X denotes cation-exchange sites. This reaction explains the increase in Na⁺ concentration without an associated increase in Cl⁻ concentration along the flow path and the clay particles of aquifer exchange calcium against sodium to elevate sodium concentrations²⁶. It represents a process whereby a brackish aquifer is flushed with fresh water. Considering the depth dependence of Na⁺ and Ca²⁺ (Figure 7a, 7b), it is found that both Ca²⁺ and Na⁺ has shown low concentrations up to the base of the intermediate depth aquifer. Only few shallow groundwater samples show slightly high Na⁺ concentrations. Meanwhile, in deep groundwater Ca²⁺ concentrations remain nearly unchanged, whereas Na⁺ concentrations become high. In Bengal delta, the Na⁺ concentration increases in deep groundwater aquifers in response to cation exchange for Ca²⁺.

4.8 Mixing of Groundwater

In general, chloride is a conservative component, and evaporation and mixing are considered as the main factors controlling its concentration in groundwater. Solubility of Na⁺ compounds is high, so Na⁺ remains dissolved in water in a very wide range of concentration²⁸. In Na⁺ versus Cl⁻ plot, most of the shallow and intermediate depth groundwater lie along the 1:1 evolution line (Figure 8a and Figure 8b) and it indicates that these water have mainly originated from rainfall and/or flood water maintaining the evolutionary ratio between Na⁺ and Cl⁻ (1:1). Nevertheless, the deep groundwater scattered in three groups as samples along the Na-axis, above the seawater line (slope 0.86) and below the seawater line (Figure 8c). Those water scattered close to Na-axis (Y-axis in Figure 8c) are of Na-HCO₃ groundwater observed in coastal deep aquifers and these are of stagnant water having low concentration of chloride (<48 mg/L). Whereas, the deep groundwaters scattered above the seawater line show Na⁺ excess and Na⁺ excess suggest the presence of deep groundwater flow which gives rise to excess Na⁺ along the flow paths due to cation exchange of Na⁺ for Ca²⁺ as per the equation (viii). The deep groundwater lies below the seawater line (Figure 8c) are mainly of Na-Cl and Na-Ca-Mg-Cl type water with residence time of about 8500 year BP. If it is considered that the deep groundwater scattered below the seawater line is influenced by present seawater, then the process will have followed the equation²⁷ given below:

$$Na^+ + 1/2Ca - X_2 \rightarrow Na - X + Ca^{2+}$$
 (ix)

Where, X indicates the soil exchanger.

This reaction will lead to increase in Ca^{2+} in coastal aquifers having $Ca-Cl_2$ type water. Surprisingly observed deep groundwater do not show any $Ca-Cl_2$ type water. Besides, the deep groundwater falls along the seawater line show long residence time (~ 6000 to 25000 year BP)¹², and these are also Na-Cl and Na-Ca-Mg-Cl type

water. This water may partially mix with remnant seawater maintaining maxing ratios²⁹. Thus, it may conclude that the Na-Cl and Na-Ca-Mg-Cl type deep groundwater are not influenced by the present seawater intrusion in the coastal aquifers of Bangladesh. The Na-Cl salinity may come from leaching of marine sediments, which are often dominated in coastal aquifers²⁹. Alternatively, this brackish deep groundwater is probably of remnant seawater trapped within lower-permeability sediments²⁹. Furthermore¹⁸ observed similar type brackish connate water pockets in the western site of Bengal Delta, West Bengal, India.

Figure 8. Bivariate plots showing relationship between (a) shallow groundwater Na^+ versus Cl^- , (b) intermediate groundwater Na^+ versus Cl^- and (c) deep groundwater Na^+ versus Cl^- .

5. Discussions

Ca-Mg-HCO₃ type shallow groundwater (Figure 4a) is widely distributed in most of the study area, which indicates infiltration of modern meteoric water as rain or flood in to the shallow groundwater aquifers. The Ca-Mg-HCO₃ type groundwater is also available in the intermediate depth aquifers up to the depth 180 m in the west-central and north-eastern region (Figure 4b) of Bangladesh. It is a clear indication of active recharge to the intermediate aquifers, which may ultimately feed

the deeper aquifers. In the west-central and eastern sites of the study area, low mineralized Ca-Mg-HCO₃ type groundwater is observed at deep aquifers underlying the shallow and intermediate aquifers with similar water type (Ca-Mg-HCO₃) (Figure 4c). This implies active recharge to the deep aquifers from the west-central and eastern mountainous regions of the study area.

In shallow or local flow systems, the flow path is relatively short and thus shallow groundwater does not show distinct hydrochemical changes, i.e., change in water type. The presence of Na-Ca-Mg-HCO₃ water in intermediate aquifers (Figure 5b) is mainly evolved from Ca-Mg-HCO₃ water. It may indicate vertical groundwater and/or local groundwater flow within both the shallow and intermediate depth groundwaters with low water-rock interaction, i.e., short residence time. Along the flow path, significant change in concentration of major cations takes place²⁸. The Ca-Mg-HCO₃ type deep groundwater observed in the west-central, middle and eastern (recharging area) part of the study area corresponds to the beginning of the flow path of the deep flow system (Figure 5c). As deep groundwater flows, the initial Ca-Mg-HCO, water evolves into Na-Cl type water mixing with connate paleoseawater with low concentrations of Ca²⁺ and Mg²⁺, and the high Na⁺ concentrations in the central and southern coastal region of Bangladesh.

As per Figure 5a and Figure 5c, in the study area groundwater flows from the Ca-Mg-HCO₃ rich unconfined to Na-Cl rich confined (deep) aquifer and results in the evolution of Ca-Mg-HCO₃ groundwater to Na-Cl type water. Hydrochemical data plot (Figure 8c) suggests that the excess Na⁺ is due to cation exchange of Na⁺ for Ca²⁺. Besides, the excess Na⁺ in the deep flow system at the end of the flow path indicates an additional Na⁺ source, which is attributed to silicate weathering (Figure 6c, 6d). Meanwhile, additional Na⁺ in the deep groundwater may come from clay deposited from the marine episodes which acts as a long-term source of Na⁺ and Cl⁻ to the underlying aquifer³⁰.

Considering the depth dependence of Na⁺ and Ca²⁺, it is found that the average Ca²⁺ concentration is low (38.14 mg/L) in shallow groundwater, while Na⁺ concentrations are more than two times higher (74.75 mg/L) than that of Ca²⁺ concentrations (Figure 7a, 7b). In Figure 7b, the relatively high Na⁺ concentrations are observed in the coastal shallow wells, which is due to mix with seawater (Figure 8a). In intermediate depth aquifers, the composition of Ca²⁺ and Na⁺ become homogeneous and the concentrations of dissolved Ca²⁺ (37.25 mg/L) and Na⁺ (46.66 mg/L) are low (Figure 7a, b). Going downward, it is found that Ca²⁺ concentrations remain unchanged (Figure 7a), while Na⁺ concentrations become high in deep aquifers (Figure 7b). It implies that the Na⁺ concentration in groundwater increases in the deep aquifers in response to ion exchange of Na⁺ for Ca²⁺ and this phenomenon is also supported by the presence of clay minerals in the deep aquifer materials³⁰. Appelo and Postma^{2Z} explain that mineral dissolution and precipitation is a well-known category of chemical reactions that can have an important impact on solute concentrations.

Figure 9. Distribution of chemical species in groundwater at different depths along cross-section lines (a) A-B, (b) C-D and (c) E-F shown in Figure 1.

In present study area, according to the hydrochemical cross-sections (Figure 9), the observed groundwater samples show significant change in major cation (Ca^{2+} and Na^+) concentrations. The shallow wells with Ca-Mg-HCO₃ type groundwater situated in the northern, west-central and eastern site of the study area correspond to the beginning of the shallow flow system and thus ultimately feeds both the intermediate and deep groundwater systems (Figure 9a, b, c). Meanwhile, deep groundwater recharges in the northern (Figure 9a, b), central (Figure 9a, b) and eastern (Figure 9c) sites of the study area with Ca-Mg-HCO₃ water.

Above-mentioned arguments comply with the statement of Kinniburgh and Smedley¹² and they state that there has been incision of the main Brahmaputra valley along with basal fan-delta sediments, which are deposited between uplifted Pleistocene Residual deposits (Figure 1). These coarse-grained sediments thin and pinch out south (Figure 2) of the Continental Slope (Hinge Zone) (Figure 2) and pass laterally into sandy deltaic deposits within the subsiding Faridpur Trough (Bengal Foredeep) (Figure 2). This coarse-grained layer would be the possible source of recharge through which low mineralized Ca-Mg-HCO₃ type water enters in to the deep aquifer system. Furthermore, deep groundwater moves towards south (Figure 9a, b) or south-west (Figure 9c) and mixes with Na-Cl type connate water with excess Na⁺. The deep Na-HCO, type water along the coastal belt (Figure 9a, b) probably reflects an incomplete flushing in a buried estuary²¹.

In the recharge area, the Ca²⁺ concentration is decreasing from the shallow to the deep layers along the flow paths (Figure 9a, b, c). In infiltrating water, the source of Ca²⁺ is the dissolution of carbonate minerals, which is controlled by local partial pressure of CO₂ and the CO₂ originates from the transformation of organics. In shallow groundwater, differences in concentrations of Ca²⁺ reflect different local partial pressures of CO₂. As groundwater moving downward, CO, partial pressure becomes homogeneous. In the discharge areas, changing of Na⁺ is the mirror image of Ca²⁺ due to ion exchange. The excess Na⁺ in the deep flow system at the end of the flow path indicates an additional Na⁺ source, which is attributed to weathering of Na⁺ feldspars. As per the hydrochemical sections (Figure 9a, b, c), the possible geochemical processes involved within Bengal Delta aquifers are silicate weathering with partial carbonate dissolution in the shallow aquifers giving rise to Ca-Mg-HCO, and Na-Ca-Mg-HCO₃ type waters; Na⁺ for Ca²⁺ ion exchange and finally mixing with deep Na-Cl type connate water possibly originated from the diffusion of marine clay³⁰. The Na-Cl rich deep saline waters are probably trapped within lower-permeability sediments reflecting incomplete mixing and flushing³¹. Furthermore, DPHE³² states that the shallow aquifer in the west-central region (Figure

1) is very thick where there is no deep aquifer up to about 250m depth. Kinniburgh and Smedley¹³ also affirm that the south-central region (Figure 1) of Bangladesh is underlain by stacked sequences of coarse sands and gravels between 50–240m below the ground surface. These coarse sediments appear to have been deposited in the former main channel of the Ganges River. It is evident that the coarse grained thick aquifers in the west-central region of Bangladesh facilitate recharge in to the deep aquifers having similar groundwater type (Ca-Mg-HCO₃) both in shallow and deep groundwater recharge in the west-central region of Bangladesh.

Fining-upward sequences of gravels and coarse to medium sands with basal conglomerate occur within the Residual deposits (Figure 1) of the Brahmaputra main channel beneath the central region of Bangladesh (Figure 9b), which pinch out south of the Continental Slope (Hinge Zone) (Figure 2) and pass laterally (Figure 2) into the sandy deltaic deposits¹³. In the central region of Bangladesh (Figure 1), recharge to the deep aquifers (Figure 9b) is due to the presence of aforementioned coarse grained sequence with Ca-Mg-HCO₃ type low mineralized water. Meanwhile, the deep aquifers may recharge from the overlying shallow aquifers through stratigraphic short-cut¹⁸.

5.1 Conceptual Groundwater Flow Model

In present study, a conceptual groundwater flow model has been constructed for the Bengal Delta aquifers, Bangladesh considering all observed observations. The source and recharge processes of different types of groundwater with their chemical compositions are used to delineate the groundwater flow dynamics to represent a conceptual groundwater flow model for the Bengal Delta aquifers (Figure 10). The model takes into account the following observations: (a) basement structure and boundary condition, (b) lithology as revealed through a generalized hydrogeological cross-section, (c) surface geologic variations, and (d) change in groundwater chemical types. Rainfall or floodwater infiltrating in to the Bengal Delta shallow aquifer through the ground, it dissolves carbon dioxide and the acidic solution (H₂CO₂) formed reacts with carbonates in the sediments giving solutions of Ca²⁺, Mg²⁺ and HCO₂⁻. Silicate weathering also gives rise to Ca²⁺ and Mg²⁺ ions in solution. These hydrogeochemical reactions are responsible for the formation of Ca-Mg-HCO₃ type water. The initial Ca-Mg-HCO₃ type water tends to change in to Na-Ca-Mg-HCO₃ type water due to preferentially silicate weathering, which helps to add Na⁺ within the solution in increase with the length of the flow path. At great depths, where the residence time is long due to extremely slow flow, groundwater tends to be Na-Cl type diluted water due to cation exchange of Na⁺ for Ca²⁺. The excess Na⁺ comes from silicate weathering giving rise to high pH.

Figure 10. Conceptual groundwater flow model for Bengal delta aquifers (modified after¹²).

As per conceptual flow model (Figure 10), rainfall and/or floodwater infiltrating in the ground recharge the shallow groundwater. The shallow groundwater recharges the intermediate depth aquifers to some extend without changing its chemical facies (Figure 9b). It indicates short residence time within the intermediate depth aquifers. Thus, low water-rock interaction, which may not give rise to diluted water chemistry. Deep aquifers are recharged from the peripheral part of the study area and the recharge is possibly influenced by basement structure, surface geology and subsurface hydrogeological systems. The deep groundwater becomes chemically diluted along the flow paths to form Na-Cl type water due to cation exchange and/or diffusion from marine clay lying within the aquifer systems. The deep groundwater aquifers of Bengal Delta are characterized by layered zones¹². In Bengal Delta aquifers, as the thickness of the confining clay layers increasing down gradient (Figure 10), the deep groundwater may be squeezed out of compacting clay and the pressure of the confined water it contain increases. As a result deep groundwater discharges from confined aquifers by slow upward seepage through the overlying clays. Finally, deep groundwater discharges in to the Bay of Bengal as submarine groundwater discharge and this argument is supported by enriched δ^{18} O values and long residence time¹² as well as the upward heat flow in the coastal aquifers³³.

6. Conclusions

Present study has clearly demonstrated the wide spatial and depth dependence variations of the hydrochemical composition of groundwater in the Bengal Delta aquifers, Bangladesh illustrating different flow systems and aquifers. Groundwater chemistry data constrain a complex flow generally from north to south following the basement structure, topographic gradient as well the boundary conditions. By Converging all evidences based on groundwater depth of circulation, generalized hydrogeological section and hydrochemistry, three groundwater flow systems can be conceptualized with depth.

- [a] A shallow flow system is observed in the west-central and southern coastal regions of the study area, where shallow groundwater shows Ca-Mg-HCO₃ type low mineralized water.
- [b] Intermediate flow system is less dominant, which acts as a transition zone between the shallow and deep aquifers and gets vertical recharge from the shallow flow system. In this system, groundwater is of less diluted due to low water-rock interactions because of short residence time.
- [c] The deep groundwater flow system is enriched in chemically diluted Na-Cl type water along the flow paths due to cation exchange and/or diffusion from marine clay lying within the aquifer systems. It possibly emerges in to the Bay of Bengal in the form of Submarine Groundwater Discharge (SGD). But the stagnant deep fresh groundwater (Na-HCO₃ type) along the coastal region is completely different from the above mentioned three groundwater flow systems and it seems to be remnant of paleo-groundwater flow system persisted during past regression era.

7. Acknowledgement

The first author would like to acknowledge the Ministry of Education, Culture, Sports Science and Technology (MEXT), Japan for providing postgraduate scholarship during 2005-2008.

8. References

- 1. Matthess G. The properties of groundwater. department of environmental science. John Wiley and Sons Indian Nursing Council; 1982. p. 1–406.
- Galy A, France-Lanord C. Weathering processes in the Ganges–Brahmaputra basin and the riverine alkalinity budget. Chemical Geology. 1999; 159(1–4):31–60. https:// doi.org/10.1016/S0009-2541(99)00033-9
- 3. Dowling CB, Poreda RJ, Basu AR. The groundwater geochemistry of the Bengal Basin: Weathering, chemsorption, and trace metal flux to the oceans. Geochimica et Cosmochimi Acta. 2003; 67(12):2117–36. https://doi. org/10.1016/S0016-7037(02)01306-6
- Baumler R, Zech W. Soils of the high mountain region of Eastern Nepal: Classification, distribution and soil forming processes. Catena. 1994; 22(52):85–103. https://doi. org/10.1016/0341-8162(94)90019-1
- Burbank DW. Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin. Nature. 1992; 357:680–3. https://doi.org/10.1038/357680a0
- Bhattacharya P, Chatteriee D, Jacks G. Occurrence of arsenic contaminated groundwater in alluvial aquifers from the Delta Plains, Eastern India: Options for safe drinking water supply. International Journal of Water Resources Development. 1997; 13(1):79–92. https://doi. org/10.1080/07900629749944
- McArthur JM, Banerjee DM, Hudson-Edwards KA, Mishra R, Purohit R, Ravenscroft P, Cronin A, Howarth RJ, Chatterjee A, Talukder T, Lowry D, Houghton S, Chadha DK. Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: The example of West Bengal and its worldwide implications. Applied Geochemistry. 2004; 19(8):1255–93. https://doi.org/10.1016/j.apgeochem.2004.02.001
- Stollenwerk KG, Breit GN, Welch AH, Yount JC, Whitney JW, Foster AL, Uddin MN, Majumder RK, Ahmed N. Arsenic attenuation by oxidized aquifer sediments in Bangladesh. Science of the Total Environment. 2007; 379(2– 3):133–50. https://doi.org/10.1016/j.scitotenv.2006.11.029. PMid:17250876
- Harvey CF, Swartz CH, Badruzzaman ABM, Keon-Blute N, Yu W, Ali MA, et al. Arsenic mobility and groundwater extraction in Bangladesh. Science. 2002; 298:1602–6. https://doi.org/10.1126/science.1076978. PMid:12446905
- Geological Map of Bangladesh [Internet]. [cited 1990]. Available from:
- Majumder RK, Hasnat MA, Hossain Shahadat, Ikeuec K, Machida M. An exploration of nitrate concentrations in groundwater aquifers of central-west region of Bangladesh. Journal of Hazardous Materials. 2008; 159(2–

3):536-43. https://doi.org/10.1016/j.jhazmat.2008.02.110. PMid:18406518

- Majumder RK, Halim MA, Saha BB, Ikawa R, Nakamura T, Kagabu M, Shimada J. Groundwater flow system in Bengal Delta, Bangladesh revealed by environmental isotopes. Environmental Earth Sciences. 2011; 64(5):1343–52. https://doi.org/10.1007/s12665-011-0959-2
- Kinniburgh DG, Smedley PL. Arsenic contamination of groundwater in Bangladesh. BGS Technical Report. 2001; 1:1–21.
- 14. Singh AK, Mondal GC, Kumar S, Singh TB, Tewary BK, Sinha A. Major ion chemistry, weathering processes and water quality assessment in upper catchment of Damodar River basin, Environmental Geology. 2008; 54(4):745–58. https://doi.org/10.1007/s00254-007-0860-1
- Parkhurst DL, Appelo CAJ. Users guide to PHREEQC (version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical modeling. US Geol Survey Water Resources Investigations Report. 1999, pp. 1-312.
- Allison JD, Brown DS, Novo-Gradac KJ. MINTEQA2/ PRODEFA2A geochemical assessment model for environmental systems version 3.0 user's manual. Environmental Modeling Community of Practice; 1990. p. 1–115.
- Rahman MATMT, Majumder RK, Rahman SH, Halim MA. Sources of deep groundwater salinity in the southwestern zone of Bangladesh. Environmental Earth Sciences. 2011; 63(2):363–73. https://doi.org/10.1007/s12665-010-0707-z
- Sikdar PK, Sarkar SS, Palchoudhury S. Geochemical evolution of groundwater in the Quaternary aquifer of Calcutta and Howrah, India. Journal Asian Earth Science. 2001; 19(5):579–94. https://doi.org/10.1016/S1367-9120(00)00056-0
- Venturelli G, Boschetti T, Duchi V. Na-carbonate waters of extreme composition: Possible origin and evolution. Geochemistry Journal. 2003; 37(3):351–66. https://doi. org/10.2343/geochemj.37.351
- 20. Chae GT, Yun ST, Kim K, Mayer B. Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: Water-rock interaction and hydrologic mixing. Journal of Hydrology. 2006; 321(1– 4):326–43. https://doi.org/10.1016/j.jhydrol.2005.08.006
- Ravenscroft P, McArthur JM. Mechanism of regional enrichment of groundwater by boron: The examples of Bangladesh and Michigan, USA. Applied Geochemistry. 2004; 19(9):1413–30. https://doi.org/10.1016/j.apgeochem.2003.10.014

- 22. Drever JI. The geochemistry of natural waters. Prentice Hall, Englewood Cliffs; 1988. p. 1–5.
- 23. Breit GN, Yount JC, Uddin MN, Muneem AA, Lowers HA, Berry CJ, Whitney JW. Compositional data for Bengal Delta sediment collected from a borehole at Rajoir, Bangladesh. United States Geological Survey; 2007. p. 1–46.
- 24. Gaillardet J, Dupre B, Louvat P, Allegre CJ. Chemical Geology. 1999; 159(1-4):3-30. https://doi.org/10.1016/ S0009-2541(99)00031-5
- 25. Taylor SR, McLennan SM. The continental crust: Its composition and evolution. Geological Journal. 1986; 21(1):85–6.
- Li X, Zhang L, Hou X. Use of hydrogeochemistry and environmental isotopes for evaluation of groundwater in Qingshuihe Basin, Northwestern China. Hydrogeology Journal. 2008; 16(2):335–48. https://doi.org/10.1007/ s10040-007-0269-7
- Appelo CAJ, Postma D. Geochemistry, groundwater and pollution. Balkema, Rotterdam, The Netherlands; 1993. p. 1–647.
- Carrillo-Rivera JJ, Varsányi I, Kovács LÓ, Cardona A. Tracing groundwater flow systems with hydrogeochemistry in contrasting geological environments. Water Air and Soil Pollution. 2007; 184(1):77–103. https://doi.org/10.1007/ s11270-007-9400-6
- 29. Clark ID, Fritz P. Environmental isotopes in hydrogeology. CRC Press; 1997. p. 1–352.
- Cloutier V, Lefebvre R, Savard MM, Bourque E, Therrien R. Hydrogeochemistry and groundwater origin of the Basses-Laurentides sedimentary rock aquifer system, St. Lawrence Lowlands, Quebec, Canada. Hydrogeology Journal. 2006; 14(4):573–90. https://doi.org/10.1007/s10040-005-0002-3
- Mukherjee A, Fryar AE. Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal basin, West Bengal, India. Applied Geochemistry. 2008; 23(4):863–94. https://doi.org/10.1016/j.apgeochem.2007.07.011
- 32. DPHE (Department of Public Health Organization) (2006) Final report on development of deep aquifer database and preliminary deep aquifer map (First Phase), Department of Public Health Engineering, Local Government Division, Ministry of LGRD and Co-operatives, Government of the People's Republic of Bangladesh
- 33. Majumder RK, Shimada J, Taniguchi M. Groundwater flow systems in the Bengal Delta, Bangladesh, inferred from subsurface temperature readings. Songklanakarin Journal of Science and Technology. 2013; 35(1):99–106.