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Abstract
Objectives: To generate complete and non-redundant detector set 
with optimal worst-case time complexity. Methods: In this study, a 
novel exact matching and string-based Negative Selection Algorithm 
utilizing r-chunk detectors is proposed. Improved algorithms are 
tested on some data sets; the experiments’ results are compared 
with recently published ones. Moreover, algorithms’ complexities 
are also proved mathematically.  Findings: For string-based Artificial 
Immune Systems, r-chunk detector is the most common detector 
type and their generation complexity is one of the important factors 
considered in the literature. We proposed optimal algorithms based 
on automata to present all detectors. Novelty/applications: The 
algorithm could generate the representation of complete and non-
redundant detector set with optimal worst-case time complexity. To 
the best of our knowledge, the algorithm is the first one to possess 
such worst-case training time complexity.

Keywords: Artificial Immune Systems, Negative Selection 
Algorithms, Positive Selection Algorithms, Detector Sets, Self, 
Non-self.

1. � Introduction
The biological immune system is a cooperative system that provides a comprehensive line 
of defense for human against pathogens. After million years of evolution, it has become a 
defensive system that is adaptive, inherently distributed, and incredibly robust. It possesses 
powerful capabilities such as pattern recognition, learning, and memory which helps to 
combat infections caused by pathogens (such as viruses), even though it needs no central 
control or coordination.
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The main player in the biological immune system is the T cells, which could recognize 
selves and contain an antigen receptor for locating and binding to infected pathogens 
(non-selves). For detecting non-selves, the biological immune system conducts its learning 
process in two steps, which does not require any negative example. First, a large number 
of T cells are randomly generated in the hope to detect large number of pathogens. Then, 
the selection process acts on the newborn T cells to ensure that they could only recognize 
non-self not self (to avoid autoimmune reactions). In the case a T cell detects a self (such as 
a protein), this cell is discarded; otherwise, it is retained [1]. Algorithms that are abstracted 
and inspired from this selection process are named Negative Selection Algorithms (NSAs).

NSA is mainly created for leveraging one-class learning tasks such as in the problem 
of anomaly detection. A NSA comprises of two phases: the detector generation phase that 
aims at generating a set D of detectors from a given set S of selves and the detection phase 
for detecting if a given cell (a new data sample) is self or non-self with the help of the 
generated detector set. 

NSA is the most well-known technique of Artificial Immune Systems (AISs), the class 
of computational methods inspired by the biological immune system. There have been 
an extensive number of studies on NSAs in the literature resulting various algorithm 
modifications and applications [2]. Since its introduction, NSAs have been applied 
in computer virus detection [3–4], intrusion detection [5], anomaly detection [6–8], 
monitoring UNIX processes, scheduling [9], fault detection and diagnosis [10], email 
spam detection [11], to name but a few.

Moreover, NSAs have also been applied in immunology, where they are used as models 
to provide insights into some important principles of immunity and infection [12], and to 
illustrate the immunological processes such as HIV infection [13–14].

A NSA typically proceeds in two phases: the detector generation (training) and 
detection phases [15]. Figure 1a gives the flowchart of the first phase, where the candidate 

FIGURE 1.  Flowcharts of a negative selection algorithm.
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detectors are first randomly generated by some processes. They are then censored by 
being matched against the self-sample data given by a set S, where S might represent the 
system components. Any candidate detector that matches (at least) one element of S is 
discarded and the ones that survive are retained and stored in a set called the detector 
set. The flowchart of the detection phase is given in Figure 1b. It is used to discriminate 
between selves (system components) and non-selves (anomalies, outliers) in that if a 
new data instance matches any detector in the detector set, it is regarded as non-self 
[16].

For string-based NSAs, the two most well-known matching rules for the construction of 
detector sets are r-contiguous and r-chunk. For both rules, a major problem with existing 
NSA implementations is that the first phase, detector generation, might have, in the worst 
case, exponential time complexity. The state-of-the-art algorithm for generating complete 
and non-redundant detector sets proposed by Elberfeld and Textor [17] possesses time 
complexities of O(|S|ℓ r|Σ|) and O(ℓ), for the detector generation (training) phase and 
detection phase, respectively. While the worst-time complexity for the detection phase is 
optimal (linear time), it is still open if the training time of the NSAs in could be improved 
further. In this article, we will show that at least in the case of r-chunk matching rule, 
improvement on training time complexity could be made by proposing a fast r-chunk 
based NSA for generating non-redundant detector sets, which requires only O(|S|ℓ|Σ|) 
while still maintains (worst case) time complexity of O(ℓ) for the detection phase. It is 
noted that the reduction of r in the training time complexity is substantial as in some 
applications such as intrusion detection, r could be approximately 50 [18]. Moreover, it 
can be easily shown that such (worst-case) training time complexity is optimal (i.e. it could 
not be further improved).

Table 1 summarizes the (worst-case) time complexity the previously published r-chunk 
detector-based algorithms and our proposed algorithm. In [17] the table and the rest of the 
article, it is assumed that binary alphabet is used (|Σ|) = 2). It is noted that the parameter 
|D| in Table 1 is only relevant for the algorithms that generate detectors in explicit form. 
Our algorithm and the algorithm in produce the results that obtain maximal number of 
generated detectors [19–20].

The organization of the rest of the paper is as follows. Some basic terminologies 
and definitions related to (string) languages, automata, and matching rules (r-chunk, 
r-contiguous) are given in the next section. Section 3 details our proposed r-chunk based 
negative selection algorithm. Experiments and discussions are given in Section 4. Finally, 
the paper is concluded with Section 4, where we will also highlight some possible future 
works.

TABLE 1.  Training and detection (worst-case) time complexities of string-based NSAs

Algorithms Training Classification

In [18] (2r+|S|)(ℓ−r+1) |D|ℓ
In [19] r2|S|(ℓ−r) |S|ℓ2r
In [16] |S|ℓr ℓ
Present paper |S|ℓ ℓ
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2. � Backgrounds
For being self-contained and consistent with in this section, some basic concepts are 
defined using similar notations as in Ref. [17].

2.1. � Strings, Substrings, Languages
Let Σ be a finite s (non-empty) set of symbols called an alphabet, we define Σ* as the set 
of all strings on Σ, that is any string s ∈ Σ* comprises of a sequence of symbols taken from 
Σ. For each string s, the number of symbols in s defines its length (denoted as |s|). When 
|s|=0, s is called the empty string.

∀ i, j ∈{1,...,|s|} and i ≤ j, s [i] represents the symbol at position i in s and s [i...j] denotes 
the substring of s with length j − i + 1 defined as the subsequence of symbols starting at 
position i running to position j in s. When the substring s′ is located at the beginning (end) 
of s, i = 1 (j = |s|), it is call the prefix (suffix) of s. s′ is proper if |s′| < |s|. Given s ∈ Σℓ, d 
∈ Σr, 1 ≤ r ≤ℓ, and i ∈ {1,...,ℓ − r + 1}, if s [i...i + r − 1] = d, then d is said to occur in s (at 
position i).

A language S over Σ is defined as a set of strings, i.e. S ⊆Σ*. Given i and j, we define S[i... 
j] = {s[i... j] | s ∈ S} as the set of all substrings (from position i to position j) in language S.

2.2. � Prefix Trees, Prefix Directed Graphs, Automata
A rooted and directed tree T with edge labels from Σ is called a prefix tree over alphabet Σ 
if for all c ∈ Σ and every node n in T, n has no more than one outgoing edge labeled with c. 
A tree T contains a string s (s ∈ T) if, there is a path p ∈ T from the root to a leaf of T such 
that the string concatenated along p equals s. 

For a given tree T, the language L(T) = {s|s has a nonempty prefix in T}. For instance, 
given T as in Figure 2a, we could assert that 10 ∈ T and 0 ∈ T, but 1 ∉ T. Therefore, 0 ∈ L(T) 
and 01∈ L(T) as 0∈ T, but 11∉ L(T) since T does not contain any prefix of 11.

Similar to prefix trees, a prefix DAG D could be defined as a directed acyclic graph, 
where its edges have labels as the symbols from an alphabet Σ. A string s ∈ D if there is a 
path p from a root to a leaf of D such that the string concatenated along p equals s.

For a node n in D, we define the language L(D, n) as the set of all strings s such that s 
has a (nonempty) prefix equaling the concatenated sequence of labels on the path from n 
to some leaves in D.

For example, for the DAG D in Figure 2b and its lower left node n, L(D, n) comprises of 
all strings that start with 11. We also define language L(D) = ∪misarootofDL(D,m).

A finite automaton is defined as a five-tuple M = (Q, q0, Qa,Σ,∆), where Q is a set of 
states with q0 ∈ Q is called the initial state, Qa ⊆ Q is the set of accepting states, Σ is the 
alphabet of M, and ∆ ⊆ Q xΣx Q is the transition map. The transition map is considered 
unambiguous in that for any q ∈ Q and c ∈ Σ, there is no more than one q′ ∈ Q with (q, 
c, q′) ∈ ∆. We could use a graph G = (V, E) to represent the transition relation Q of an 
automaton M by setting the node set V = Q and E = c-labeled edges, where a c-labeled 
edge is identified from q to q′ for any q, q′ ∈ Q if (q, c, q′) ∈ ∆.
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 An string s is accepted by a automaton M if in the transition graph of M there is a path 
from q0 to some q ∈ Qa such that its concatenated sequence of symbols equals s. The set of 
all strings accepted by an automaton M is its language L(M). 

2.3. � Detectors
Given an alphabet Σ, a string s (|s|=ℓ), a self-set S ⊆ Σℓ, and r ∈ {1,...,ℓ} (called matching 
parameter), We could define r-chunk detectors as follows [17].

Definition 1. A r-chunk detector is a tuple (d, i), where d ∈Σr is a string of length r and i 
is a position (i ∈{1,...,ℓ − r + 1}). An r-chunk detector d is said to match a string s if d occurs 
in s at (at least) one position i.

Given a set of strings S, the set of r-chunk detectors that do not match any string in S, 
denoted as CHUNK(S, r), is called the detector set for S. A string m ∈ Σℓ is called a non-
self w.r.t. S and its r-chunk detector set if m matches at least one detector from CHUNK(S, 
r); Otherwise, m is regarded as self. The set of non-self of S w.r.t its r-chunk detectors, is 
denoted as We denote CHUNK-NONSELF(S, r).

For every i ∈ {1,...,ℓ−r + 1}, we have CHUNK(S[i...i + r−1],r) ∪ S[i...i + r−1] =Σr, where 
S[i...i + r−1] is called the positive detector set. In the next section, we will use a compression 
of all positive detectors, S[i...i + r−1], i=1,..,ℓ−r + 1, as a temporary data structure before 
inverting it to the representation of CHUNK(S, r).

Another popular form of detectors for NSAs is r-contiguous, which is defined as follows 
[17].

Definition 2. An r-contiguous detector can be any string d ∈ Σℓ. d is said to match a 
string s ∈Σℓ if there is a position i ∈{1,..., ℓ − r + 1} such that d[i...i + r − 1] is a substring 
of s.

Similar to r-chunk detectors, we denote the set of all r-contiguous detectors not 
matching any string in S as CONT(S, r). A string m ∈Σℓ is non-self if it matches at least a 
r-contiguous detector in CONT(S, r). Otherwise, it is called self.

Since a r-contiguous detector can be decomposed into ℓ − r + 1 overlapping r-chunk 
detectors, r-chunk is considered as a simplification of the r contiguous n matching rule 
[21]. It has been showed in Ref. [22] that chunk-based detectors could help NSAs work well 
on problems where contiguous regions in the sequence of input data are not semantically 
correlated, e.g. when the input sequence are network data packets.

For the sake of comparison, we reuse the example from Ref. [17]. 

FIGURE 2.  Example of a prefix tree and a prefix DAG.
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Example 1. Let ℓ = 5, r = 3 and S = {s1 = 01111, s2 = 00111, s3 = 10000, s4 = 10001, s5 = 
10010, s6 = 10110, s7 = 11111}. We could obtain CHUNK(S, r) = {(000,1), (010,1), (110,1), 
(010,2), (100,2), (101,2), (110,2), (011,3), (100,3), (101,3)} and CONT(S, r) = {01011, 
11011}.

3. � Negative Selection Algorithm with Chunk 
Detectors

Suppose that each self-string of S has an associated index, I = {si, i = 1,.., |S|}, We 
introduce the following two important data structures:

•	 A two-dimensional array Q, where Q[s][c] is a pointer used for creating new nodes 
in the tree, s∈Σr−1, and c ∈Σ. This data structure is used for gradually expanding the 
partial DAG.

•	 An array P, where P[i] is a structure of two fields, a pointer P[i].end and a string P[i].
str ∈Σr−1, i = 1,..,|S|. Each P[i] is joined with si, where P[i].end is used to point to the 
end node in the path of si in the prefix DAG and P[i].str is a suffix of the path ended 
by P[i].end.

Two arrays Q and P are used to expand the prefix DAG step by step. The final automaton 
to decide the membership of strings in Σℓ is constructed in two stages. The first is to create a 
DAG G so that L(G)∪Σℓ= Σℓ\CHUNK-NONSELF(S,r) by algorithm (Algorithm 1) and this 
DAG is then turned into an automaton M such that L(M)∪Σℓ= CHUNK-NONSELF(S,r) 
in the second stage by algorithm (Algorithm 2). In algorithm 1, the notations NULL and 
new() are used with the usual semantics as in C programming language.

The key idea behind our construction is that instead of generating all ℓ−r+1 prefix trees 
T1,...,Tℓ−r+1 as in Ref. [16], we only create one tree T1 for S[1..r] explicitly and then enlarge 
it by adding nodes and edges level-by-level to attain a prefix DAG. After this process, the 
DAG encodes all positive detectors S[i...i+r−1], i = 1,...,ℓ−r+1. This is then inverted to 
construct a compression of CHUNK(S, r).

Algorithm 1 To generate positive r-chunk detectors set
1. Procedure Positive R-chunk Detector (S, ℓ, r, G)
2. G = ∅
3. For i = 1,...,|S|do
4. 	 insert si[1... r] into G and assign P[i].end to the leaf node in path s[1... r]
5. 	 P[i].str = s[2... r]
6. For i = r+1,...,ℓ do
7. 	 For j = 1,...,|S| do
8. 		  If Q[P[j].str][sj[i]] = NULL then
9. 		  Q[P[j].str][sj[i]] = new()
10. 	 For j = 1,...,|S| do
11. 		  p = P[j].end
12. 		  For c ∈Σ
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13. 			�   If(Q[P[j].str][c] ≠ NULL)and(edge starts from p with label c 
does exist) then

14. 			   create an edge starts from p with label c to Q[P[j].str][c] 
15. 			   P[j].end = end node of the edge starts from p with label sj[i]
16. 	 For j = 1,...,|S| do
17. 		  For c ∈Σ do
18. 			   Q[P[j].str][c]=NULL  
19. 		  P[j].str = P[j].str[2...r−1]+sj[i]

Algorithm 2 To generate negative r-chunk detectors set
1. Procedure Negative R-chunk Detector (S, ℓ, r, G)
2. Positive R-chunk Detector (S, ℓ, r, G)
3. create a special node n′
4. For every non-leaf node n ∈ G do
5. 	 For c ∈ Σ do
6. 		  If no edge with label c starts at n then
7. 		  create new edge (n,n′) labeled with c
8. For every node n ∈ G do
9. 	 If n is not reachable to n′ then
10. 	 delete n

Example 2. Let ℓ = 5, r = 3 and S is self-set from Example 1. The prefix DAG generated by 
Algorithm 1 is illustrated in Figure 3a. After adjusting by Algorithm 2, this DAG can be 
turned into an automaton as in Figure 3b.

Based on same self-set from Example 1, the automaton generated by the algorithm in 
Ref. [17] contains 23 nodes and 25 edges, while the automaton in Figure 3b has 14 nodes 
and 20 edges only. This supports in part a better memory complexity of our proposed 
algorithm. 

FIGURE 3.  A prefix DAG G in a. is generated by Algorithm 1 and an automaton M in b. is 
turned from the DAG generated by Algorithm 2. L(G)∩{0,1}5= {0,1}5 \CHUNK-NONSELF(S,3) 
and L(M)∪{0,1}5 = CHUNK-NONSELF(S,3), where S is self-set from example.
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Algorithm 3, CHUNK-NSA, summarizes the overall of the process of our NSA. In the 
algorithm, the parameters include a self-set S, an integer r (r ∈{1,...,ℓ − r + 1}), a self-string 
s to be detected, and a prefix DAG G. CHUNK-NSA will detect s as self or non-self.

Algorithm 3 A fast r-chunk detector-based NSA
1. Procedure Chunk-NSA(s, S, ℓ, r, G, M)
2. Negative R-chunk Detector(S, ℓ, r, G)
3. turn G into an automaton M
4. If s ∈ L(M) then
5. 	 output s is nonself
6. Else
7. 	 output s is self

Theorem 1. Given any S ⊆Σℓ and r ∈{1,...,ℓ}, algorithm CHUNK-NSA constructs an 
automaton M such that L(M) ∩Σℓ = CHUNK-NONSELF(S,r) in time O(|S|ℓ|Σ|) and 
checks if s ∈ L(M) in time O(ℓ).

Proof: We first construct a prefix DAG G as follows: starting with an empty prefix DAG, 
and also a prefix tree in this case, the algorithm inserts every s ∈S[1...r] into it. This was 
done by the first for loop in Algorithm 1 in time |S|.r.|Σ|.

Then for each s[i], s∈ S, and i = r + 1,..,ℓ, we add nodes and corresponding edges to G 
by using linking pointers of P and Q as in lines 6–19 in algorithm 1. The first inner for loop 
(line 7) is to create new pointer to expand G to next level. Note that, P[i] is joined with si 
as mentioned at the beginning of this section. The second inner for loop (line 10) is to add 
new nodes and corresponding edges to G. The for loop in line 16 to free the pointers in Q 
and to update string in P.

It needs only (ℓ−r) iterative steps to generate G that presents all positive r-chunk 
detectors. There are three inner for loops (lines 7, 10, 16), each with |S| steps. Therefore, 
the time complexity of Algorithm 1 is |S|+3|S|(ℓ−r+1)|Σ|.

Algorithm 2 inverts the DAG G as follows: Firstly, a special node n′ is created. Then for 
every node n that is not a leaf and every symbol c ∈ Σ for which there is no edge starting at 
n and labeled with c, we create a new edge (n,n′) with c as its label. Finally, we delete every 
node n which is not reachable to n′. There are no more than |S|ℓ|Σ| nodes in the DAG G, 
therefore, the time complexity of algorithm 1 is |S|ℓ|Σ|, or O(|S|ℓ).

The DAG G generated by Algorithm 1 is turned into a finite automaton M by making 
the leaf node n′ as an accepting state with self-loops for all c ∈ Σ and the root of G is set as 
the initial state of M. Now, we obtain automaton M that has the properties claimed by the 
theorem. Moreover, it is easy to see that it take O(ℓ) to check whether s ∈ L(M) or not. So 
we obtain the claimed runtimes. □

Obviously, any algorithm that generate a complete CHUNK(S, r) set if and only if it 
reads all training data at least one time. Consequently, we obtain the following corollary.

Corollary 1. The algorithm CHUNK-NSA has optimal worst-time complexity w.r.t. 
generating a representation of complete CHUNK(S,r) set.



A Novel Negative Selection Algorithm with Optimal Worst-case Training Time Complexity for 
R-chunk Detectors

1168 / 1171 Indian Journal of Science and Technology� Vol 13(10), DOI: 10.17485/ijst/2020/v13i10/149803, March 2020

4. � Experiments and Results
All experiments run on Windows 8 Pro 64-bit, Intel(R) Core(TM) i5-3210M CPU @ 
2.50GHz (4 CPUs), 4GB RAM.

In our experiments, we use a popular flow-based datasets NetFlow and a random dataset. 
The flow-based NetFlow is generated from packet-based DARPA dataset [23] is used for 
experiment 1. It was encoded as a set of 105,033 binary strings with their length of 57. A 
randomly created dataset containing 50,000 strings of length 100 is used for experiment 2. 
The parameter values and running times (in milliseconds) of the experiments are showed 
in Table 2.

In Table 2, the runtime of NSA in Ref. [16] for both experiments are in shown in columns 
a and c, respectively, while the runtime of our proposed NSA are given in columns b and 
d. The results in the table show that there is a positive correlation between threshold r and 
the ratio of the runtime of NSA in to the runtime of CHUNK-NSA (as in columns a/b and 
c/d).

Figure 4 shows that, for random strings in experiment 2, the ratio is closer to r when r 
increases (i.e. our proposed NSA almost r times faster than the NSA proposed in Ref. [24]. 
The ratio increases slower as r increases in experiment 2 (for real data) approaching r/3. 
Overall, the experimental results are consistent with our theoretical proof (Theorem 1).

5. � Conclusions
In this study, we have introduced a new NSA to generate complete and non-redundant 
r-chunk detector sets with optimal worst-time complexity. Our theoretical proof and 
empirical experiments show that the proposed r-chunk detector algorithm, CHUNK-
NSA, trains much faster the state-of-the-art one.

A limitation of CHUNK-NSA is that it is more memory consuming than the NSA 
as it utilizes two extra arrays Q and P with the memory complexities of |Σ|r and |S|r, 
respectively. In our opinion, this drawback is not serious as the modern computing 
systems could support huge internal memory storage, especially when |Σ| is small (e.g. 

TABLE 2.  Comparison of proposed chunk-NSA with NSA 

r
Experiment 1 Experiment 2

a b a/b c d c/d

10 1330 454 2.9 1490 482 3.1
11 1395 439 3.2 1633 472 3.5
12 1564 454 3.4 637 360 4.5
13 1767 435 4.1 2134 453 4.7
14 1771 418 4.2 2276 451 5.0
15 2092 486 4.3 2793 450 6.2
16 1985 437 4.5 3086 365 8.5
17 2071 391 5.3 4079 427 9.6
18 2249 410 5.5 4509 422 10.7
19 2345 375 6.3 5312 470 11.3
20 2859 359 7.0 6796 437 15.6
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binary) and r is not big (e.g. 50–60 in applications for network security).We anticipate that 
the approach can be further developed for r-contiguous detector-based NSAs. This will be 
our immediate future research direction.
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