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Abstract
Objectives: This work investigates the mechanical behaviour of lead cable used in cardiac pacemaker and comparing with 
theoretical values of equilibrium equations. Methods/Analysis: A pacemaker is a medical device which uses electrical impulses 
to regulate the heartbeat. The lead inside the pacemaker cable fails due to various reasons. One such reason is lead fracture which 
occurs long after the implantation procedure. The pacemaker is considered as a multi-layered assembly with 1+6+12 helical wires 
and a straight cylindrical core has been chosen for analysing the mechanical properties which plays an important role in the failure 
of the lead cable. Any lead cable which is considered as rope has general equations of equilibrium. The mechanical property involves 
tr and force, strand twisting moment, strand axial strain and contact stress. The same mechanical properties are found by writing 
programs in MATLAB. Findings: The study of mechanical properties of lead cable used in cardiac pacemaker is as same as possible 
with that of the values checked with the equations of equilibrium and the variations are also less than 2 percentage. Novelty/
Improvements: With the change in orientation of helix angle which is always assumed to be constant, is made as 82.53˚/-75.62˚, 
73.29˚/62.36˚ and 62.24˚/-71.02˚. This change in orientation has made the better comparison of the mechanical properties of the 
lead cable used in cardiac pacemaker.
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1.  Introduction

The implantable cardiac pacemaker ensures patients with 
disorders in heart beat to improve the quality of life by 
stimulating electrically the heart beat at a suitable rate for 
the day-to-date activities. For preventing the life threaten-
ing situation, the Implantable Cardio-verter Defibrillator 
(ICD) are accommodated to deliver required levels of 
electrical impulses to the heart muscle to stop the abnor-
malities in the heart rhythms and restore the function of 
the heart. An ICD is a battery operated device placed under 
the skin in the shoulder that keeps track of heart beat rate.

Leads conduct electric signals for sensing, pacing and 
defibrillation. Leads are very thin, soft and insulated wires. 
These leads carry the electrical impulse from the pacemaker 
to the heart. The construction of lead involves extruded 
tubes of polymer insulation with one or more wires for con-
duction purpose. Two or more conductors may be included 
in a signal lead. The outer diameter of a lead is around 2-3 
mm. Cables consisting of tiny individual wire filament of 
about 0.004 cm in diameter are grouped into strands that are 
in turn grouped to form the cable. There are three desirable 
properties for conductors in ICD leads: resistance to fatigue 
with repetitive stress, corrosion resistance and low electrical  
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resistivity. MP35N is the primary metal in most cables and 
coils, a Multiphase (MP) alloy constitute nickel, cobalt, 
chromium and molybdenum. It was developed for marine 
application because of its flexion and corrosion resistance 
but it has relatively high electrical resistivity. In high voltage 
conduction, to minimize energy loss, MP35N is filled with an 
efficient such as silver. A tribological studies of material used 
in the construction of cardiac leads1,2, the clinical importance 
of lead wear has been widely studied.

The insulation prevents current from escaping from the 
conductor into tissue. Silicone elastomer comprises the bulk of 
all lead bodies. It is a polymer with a siloxane (silicon – oxygen, 
Si-O-Si) backbone and organic side chains, which is inert, bio-
stable, bio-compatible and flexible. It has a high co-efficient of 
friction and is soft making it prone to implant damage and cold 
flow (“creep”), increasing deformation under a compressive 
load, resulting in abrasion failure. There include both external 
(“Outside-in”) abrasions from constant compressive loads and 
internal (“Inside-out”) abrasions from cyclical compression.

The mechanical behaviour of cables has been studied 
by many researchers since two decades. This cable con-
struction involves a central core and a set of wires in two 
or three layers wound over the core, which is resulting in 
an axial pull or tension and the axial twisting moment as 
the major loads. To extend the cable with greater flexibil-
ity, many cables are made of strands to form a cable. 

The wire force found in the direction of normal3 and 
the contact force along the lateral direction calculated, 
after evaluating the helix angle in the state of deformation 
through the equilibrate non-linear equations. Formulation 
of an exact theory for twisted wire cables4,5 has some pre-
diction of their effective torsion modulus and estimation of 
their stiffness. The change in normal and bi-normal cur-
vatures and twist of a helical wire6 to include the effects of 
wire stretch based on the generalized strain theories. 

The unique formulations with relevant numerical 
examples7, which has become a reckoner for the cable and 
wire rope mechanics. The various analytical slender rod 
models available for predicting the mechanical behaviour 
of cables, conductors, wire ropes and helical wire strands 
and presented with their limitations8.

In a stranded cable, the types of contacts were explained in 
detail and a new mathematical model to represent the effect of 
tangential and normal distributed forces in a combined contact. 
An analytical model to explain the importance of the interfacial 
loads and their effects in combined contact and identified the 
maximum limit at which the contact mode changes from a cou-
pled arrangement of core –wire radial contact. More of Poisson’s 

effects on the wire and the core, the redial contraction of the 
core due to the contact forces was accounted9. 

2.  Materials and Methods

2.1  Equilibrium Equations
A cardiac lead cable consist of a central cylindrical wire used 
as a core, surrounded by two layer of wires wound in opposite 
direction. The outer layer of the cable may be made of same or 
different materials. Depending on the number, the helix angle 
and the diameter of the wires in any layer and the helix radius 
of the centre of the wires in that layer, the wires can exhibit a 
combined contact mode or a radial contact mode.

�
Figure 1.  Cardiac lead cable assembly.   Figure 2. Helically 
wrapped cable.

Cardiac lead cable assemblies consist of a straight cen-
tre core wire surrounded by one or more layers of wires 
helically wound over it, to form an assembled unit gener-
ally called as stranded cables and are used for pacemaker 
lead. Figure 1 indicates the assembly of a cardiac lead 
strand. Figure 2 indicates a cable under axial loading and 
Figure 3 indicates the forces and moments produced on a 
helical wire, in the normal, bi-normal and axial directions.

 

Figure 3.  Indicate the forces and moments produced on a 
helical wire.
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The components of the resultant force acting on the 
cross section of the wire in these directions are indi-
cated by N, N’ and T, and the components of the moment 
resultant are indicated by G, G′ and H.X, Y and Z are the 
components of the distributed force developed per unit 
length of the wire in the above directions and K, K’ and Θ 
are the components of the distributed moment developed 
per unit length of the wire.

The forces and moments constitute to the equations 
of equilibrium of the helical wire as derived by Love3 and 
are presented as

� (1)

�
(2)

	
�  (3)

� (4)

� (5)

�
(6)

where 0κ is the normal curvature, 0'κ  is the bi-nor-
mal curvature and 0τ  is the twist of the helical wire in 
the un-deformed state and are respectively expressed in 
terms of  the helix angle α0 and the helix radius r0 in the 
un-deformed state, as under. 
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In a cardiac lead cable assembly, the wires in any layer 
can maintain combined contact with the wires in the same 
and adjacent layers, or a pure radial contact in the adja-
cent layers above4. The forces in the above stated contact 
modes can occur along lines, among wires situated in the 
same layer and along points or at discrete locations or 

among wires in the adjoining layers, as the adjacent layers 
are usually laid with opposite helix pattern arrangement. 
Such discrete locations are called as trellis contact locations 
and the contact forces at these locations, though are in the 
radial direction and are evaluated in similar lines of discus-
sion10, the derivative terms mentioned in the equilibrium 
Equations (1) to (6) have been considered in the paper, 
though many researchers have not accounted them.

2.2 � Wire Strains, Curvature Change and 
Twist

The equations of equilibrium of a helical wire, wire 
axial strain, wire curvature along the bi-normal 
direction and the wire twist are defined for a single 
layer cable assembly11. Similar expressions are 
extended for the cardiac lead cable assembly, with 
the notation ‘i’ denoting the wire in the ith layer of 
the cable.

The change in the helix angle of any wire in the ith 
layer is arrived from geometry of the strand and is given 
as under  
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Whereα0i is the helix angle of ith layer helical wire of 
the cardiac lead cable, εwi is the axial strain of the ith layer 
helical wire. 

The helix radius for wires in the ith layer before defor-
mation is given by
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The corresponding helix radius in the deformed state 
is given by the equation
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The strand radial strain can be expressed by

� (13)

Combining Equations (11), (12) and (13), the radial 
strain for wires in the ith layer is given as under  
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	 Similarly, the axial strain of the wire in the ith 
layer of a cardiac lead cable is obtained as under 
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The change in the bi-normal curvature of any wire in the 
ith layer is obtained from Equation (8) and is given as under 
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The change in twist of any wire in the ith layer is 
obtained from Equation (9) and is given as under
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2.3   �Global Cardiac Cable Force And 
Twisting Moment

Adding the forces and moments of the core, the net strand 
axial force and the strand axial moment can be expressed 
as under

c wF=F +F �  (18)

WC MMM += �  (19)

The axial behaviour of above structure shows the 
coupling between tension and torsion due to the helical 
design of the wires. Thus, the overall elastic behaviour can 
be expressed in the form  





















=









0h
d

MM
FF

M
F χ

ε

χε

χε � (20)

Where εF ,
χF , εM  and 

χM   are the stiffness coeffi-
cients of the strand.

Depending on the end conditions of the strand, the 
above strand force and the twisting moment can be 
appropriately expressed. In the case of fixed ends, i.e., the 
angle of twist per unit length of the strand is zero, and in 
the case of free ends, net twisting moment is zero. 

2.4  Modelling Approach
MATLAB is a high level language used for computation of 
numerical, visualization of image and programming. It can 
be data analyser, algorithms developer, and models creator 
and applications. The language and math functions enable 
to find multiple approaches and reach a solution faster than 
with spreadsheets or traditional programming languages, 
such as C/C++ or java. The main feature of the MATLAB 
software is the interactive environment for exploration of 
iteration, design and solving the problem.

clc
%%Input data 
        format long g
       % strand_force= [0 0.010 0.020 0.030 0.040 0.050 
0.060 0.070 0.080 0.090 0.100 0.110 0.120 0.130 0.140 
0.150]; %in N
        strand_force= [0 0.020 0.040 0.060 0.080 0.100 0.120 
0.140 0.150]; %in N
        SF=horzcat (strand_force’)
        length=60; %in mm
        total layers=3;
        layer number= [1; 2; 3];
        wiredia= [0.16; 0.16; 0.16];
        lay ratio= [0; 3.98; 7.3];
        lay dir= [1; 1; -1;];
        number of wires= [1; 6; 12];
        youngs modulus= [343000; 343000; 343000];
        poisons ratio= [0.025; 0.025; 0.025];
        cof= [0.05; 0.05; 0.05; 0.05];
        f print f (‘\n inner strand geomentry’);        LNo_NoW_
WD_LR_PR_fc_=horzcat (layernumber’, numberofwires’, 
wiredia’, layratio’, poissonsratio’, cof ’)

Figure 4.  Sample source code to implement the equations 
using MatLab software.

FPO
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Table 1. Strand twisting moment and strand force
Strand Force

(N)

Strand Twisting 
Moment - Mat lab 

(N-mm)

Strand Twisting 
Moment -

Costello Model
 (N-mm)

Strand Twisting 
Moment - Mat lab 

(N-mm)

Strand Twisting 
Moment -

Costello Model
 (N-mm)

Strand Twisting 
Moment -

Mat lab 
(N-mm)

Strand Twisting 

Moment -

Costello Model 

 (N-mm)

Helix Angle (82.53° /-75.62°) Helix Angle (73.29°/-62.36°) Helix Angle (62.24°/-71.02°)

0.0011 4.26E-07 4.24E-07 4.64E-07 4.63E-07 5.56E-07 5E-07
0.0023 8.53E-07 8.47E-07 9.28E-07 9.26E-07 1.11E-06 1E-06
0.0035 1.28E-06 1.27E-06 1.39E-06 1.39E-06 1.67E-06 1.5E-06
0.0046 1.71E-06 1.69E-06 1.86E-06 1.85E-06 2.22E-06 2E-06
0.0058 2.13E-06 2.12E-06 2.32E-06 2.32E-06 2.78E-06 2.5E-06
0.0070 2.56E-06 2.54E-06 2.79E-06 2.78E-06 3.33E-06 3E-06
0.0082 2.98E-06 2.97E-06 3.25E-06 3.24E-06 3.89E-06 3.5E-06
0.0088 3.20E-06 3.18E-06 3.48E-06 3.47E-06 4.17E-06 3.8E-06

Th e strand twisting moment and str and force values 
are given below in Table 1 and the comparison graph for 
the values is plotted in Figure 5. Th e values for Strand 
Axial Strain and Strand twisting moment are given in 
Table 2 and the comparison graph plotted in Figure 6. 
Th e values for Strand Axial Strain and Contact Stresses 
are given in Table 3 and the comparison graph plotted 
in Figure 7

Figure 5. Strand twisting moment vs. strand force. Figure 6. Strand axial strain vs. strand twisting moment.
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Table 2.  Strand axial strain and strand twisting moment

Strand Axial 
Strain 

Strand  
Twisting 

Moment - 
Matlab

(N-mm)

Strand  
Twisting 

Moment -
Costello  
Model

(N-mm)

Strand  
Twisting 

Moment - 
Matlab

(N-mm)

Strand  
Twisting 

Moment -
Costello  
Model

 (N-mm)

Strand  
Twisting 

Moment – 
Matlab 

(N-mm)

Strand  
Twisting 

Moment -
Costello  
Model

(N-mm)

Helix Angle (82.53°/-75.62°) Helix Angle (73.29°/-62.36°) Helix Angle (62.24°/-71.02°)

4.2E-07 4.6E-07 2.39E-07 5.56E-07 2.20E-07 0.0003 0.0002

8.4E-07 9.2E-07 4.79E-07 1.11E-06 4.41E-07 0.0006 0.0005

1.2E-06 1.3E-06 7.18E-07 1.67E-06 6.61E-07 0.0009 0.0008

1.6E-06 1.8E-06 9.57E-07 2.22E-06 8.81E-07 0.0012 0.0011

2.1E-06 2.3E-06 1.20E-06 2.78E-06 1.10E-06 0.0016 0.0014

2.5E-06 2.7E-06 1.44E-06 3.33E-06 1.32E-06 0.0019 0.0017

2.9E-06 3.2E-06 1.68E-06 3.89E-06 1.54E-06 0.0022 0.0020

3.1E-06 3.4E-06 1.79E-06 4.17E-06 1.65E-06 0.0024 0.0021

Table 3.  Contact stress and strand axial strain

Contact  
Stress

(MPa)

Strand  
Axial  

Strain -  
Matlab

Strand  
Axial  
Strain 

-Costello
Model

Strand  
Axial  

Strain - 
Matlab

Strand  
Axial  
Strain 

-Costello
Model

Strand  
Axial  

Strain - 
Matlab

Strand  
Axial  

Strain - 
Costello
Model

Helix Angle  
(82.53° /-75.62°)

Helix Angle  
(73.29°/-62.36°)

Helix Angle  
(62.24°/-71.02°)

0 0 0 0 0 0 0

231.98 4.26E-07 4.24E-07 4.64E-07 2.39E-07 5.56E-07 2.20E-07

328.07 8.53E-07 8.47E-07 9.28E-07 4.79E-07 1.11E-06 4.41E-07

401.81 1.28E-06 1.27E-06 1.39E-06 7.18E-07 1.67E-06 6.61E-07

463.97 1.71E-06 1.69E-06 1.86E-06 9.57E-07 2.22E-06 8.81E-07

518.73 2.13E-06 2.12E-06 2.32E-06 1.20E-06 2.78E-06 1.10E-06

568.24 2.56E-06 2.54E-06 2.79E-06 1.44E-06 3.33E-06 1.32E-06

613.77 2.98E-06 2.97E-06 3.25E-06 1.68E-06 3.89E-06 1.54E-06
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Figure 7. Contact stress vs. strand axial strain.

3. Results and Discussions

All the wires in the layers maintain combined con-
tact mode arrangement. Th e helical wires maintain line 
contact with the centre straight wire. To explain the impli-
cation of the present model, the comparisons are made 
for all the stages explained in MATLAB soft ware as fol-
low: Contraction of the helical wires due to Poisson’s 
eff ects and sliding due to friction, at the contact interfaces 
are considered.

4. Conclusion

Analytical expressions to examine the prevailing geom-
etry and to identify the proper contact mode during 
extension of a strand are derived with due consideration 
of Poisson’s eff ects on the wires, the core and its eff ects on 
the geometry of the wire and hence for the revised con-
tact mode using MATLAB. Th e cable changes its contact 

mode at critical stress levels from one form to the other 
have been evaluated. Th e axial and the torsional response 
of the cables are evaluated under the prevailing contact 
modes for cardiac lead cables. Consideration of frictional 
eff ects at the contact interfaces, redefi ned expressions for 
wire bending and twisting by adopting generalised strain 
theory and Poisson’s eff ects and its inclusion in the bend-
ing, twisting and contact forces are studied.

5. Suggestions for Future Work

Th e axial response of cardiac lead cable assemblies is stud-
ied in this paper, under displacement condition. Extension 
of the present model to consider the eff ects of impact in 
the cardiac lead cable is future concern. Understanding 
the suitable modelling of the fatigue phenomena of wires 
at their contact interfaces is of prime importance to pre-
dict the wire breakages or wear pattern.
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