
A Survey on Flash Translation Layer for NAND Flash
Memory

Shailesh Kumar*, Kumkum Dubey and P. K. Singh

Computer Science and Engineering, Madan Mohan Malaviya University of Technology,
Gorakhpur - 273016, Uttar Pradesh, India;

shailesh23jan@gmail.com, dubeykumkum0607@gmail.com

Abstract

The requirement for storage performance and capacity are increasing rapidly. NAND flash-based SSDs have
been proposed as a reliable and speedy and low power consumption storage device. An important part of each
SSDs is its flash translation layers (FTL). Flash translation layer is highly impact overall performance and it man-
ages the internal data layout for storage. There are many different trade-offs involved in FTL implementation.
This survey focuses on address translation technologies and provides a broad overview of existing schemes. In
flash memory, flash translation layer is a very important structure and so many techniques have been proposed.

*Author for correspondence

1.  Introduction
Flash technology has been in use for a long period. Before
being used for main system storage, they have been use
in embedded system as well as in small-size NVRAM.
Today’s multimedia storage servers provide online access
to large collections of delay-sensitive data such as audio
and video with various playback requirements1-3. In the
recent advance in semiconductor technology has allowed
the implementation of NAND flash-based main stor-
age with a lower cost with a much higher density. One
basic hardware characteristics of flash memory is that it
has an erase- before- write architecture4. In order to use
flash memory as a storage device, a flash translation layer
(FTL) is widely used5. The key role of an FTL is to redirect
each write request to ant the empty area of flash memory,
thereby avoiding the “erase -before write” limitation of
flash memory6. FTL supports address translation as well

Indian Journal of Science and Technology, Vol 11(23), DOI: 10.17485/ijst/2018/v11i23/125641, June 2018

ISSN (Print) : 0974-6846
ISSN (Online) : 0974-5645

as provides other useful component like garbage collec-
tor and wear-leveler, maintain the same level of wear for
each block in NAND flash and optimize the space utiliza-
tion. Therefore in NAND flash management, FTL plays
an important role.

2. FTL Functionalities
An FTL should give the following functionalities:

•	 Logical to physical address mapping: most impor-
tant functionality of an FTL is to change logical
address from the file system to physical address in
flash memory.

•	 Power off recovery: during FTL operation, when
a sudden power-off event occurs then FTL data
structures should be saved and data consistency
should be maintained.

Keywords: Address Mapping, Bast, Fast, Ram Table

A Survey on Flash Translation Layer for NAND Flash Memory

Indian Journal of Science and TechnologyVol 11 (23) | June 2018 | www.indjst.org2

•	 Wear-leveling: flash translation layer should
include a wear leveling function to wear down
memory blocks.

2.1 Architectures
There are two methods to implement FTL in the system.
In embedded system, FTL is generally implemented in
the system shown in Figure 1.

2.3 Matrices
Before further introduction, we provide some important
matrices that are helpful to understand the pros and cons
of different FTL design. Some of them depend on the
mapping granularity whereas other rest with the selection
of data structures and algorithms.

2.4 Distributions
Most early FTL implemented for NOR-type flash only,
which is widely to replace older on-board chips and also
makes the basis of early flash-based removable media,
such as Compact-flash [Wikipedia 2012a]. Therefore,
some of early FTLs may not work with NAND flash
because NAND flash is not byte addressable. In the early
2000s, NAND started to lead the market [Samsung 2003],
and recent FTLs are mostly implemented for NAND flash
memory.

3. Taxonomy for FTL Algorithm
In this section, taxonomy for FTL algorithm is proposed
according to features that contain address mapping, map-
ping information management, and the size of Ram table.

3.1 Address Mapping

3.1.1 Sector Mapping Scheme
In this scheme, every logical sector is mapped to corre-
sponding physical sector. Therefore if there is no logical
sector in the file system the row size of the logical to
physical mapping table is n. In the below Figure (2), it is
consider that a block is composed of four pages, where
each page consist of data sector and spare area. In another
case, the FTL determine the address of an empty physical
sector, writes data to it, and maintain the mapping table.
If an empty sector does not exist, the FTL will choose a
victim block from flash memory, copy the valid data in
the victim block and update the mapping table. After that,
it will remove the victim block, which will become the
spare block.

Figure 1. 

2.2 Data Structure
There are two important data structures to implement
address translation: a direct map and an inverse map
[Gal and Toledo 2005]. In the direct map logical address
is map to physical address and this map is fundamental
data structure of an FTL. The address procedure can be
as easy as an array lookup, although it may also include
searching a tree.

Shailesh Kumar, Kumkum Dubey and P. K. Singh

Indian Journal of Science and Technology 3Vol 11 (23) | June 2018 | www.indjst.org

3.1.2 Block Mapping Scheme
The sector mapping needs a huge amount of memory
space and it is feasible for tiny embedded system. To

remove this problem, block mapping schemes are pro-
posed. In the block mapping, the logical sector offset
is mapped to physical sector offset. The block mapping

Figure 2.  Sector Mapping.

Figure 3.  Block Mapping.

A Survey on Flash Translation Layer for NAND Flash Memory

Indian Journal of Science and TechnologyVol 11 (23) | June 2018 | www.indjst.org4

requires a less amount of mapping information when
compared to sector mapping.

If SSD drive have 236 pages per block. That’s mean
block-level mapping requires 236 times less memory
than page-level mapping, which is great improvement for
space utilization. The mapping still needs to be persisted
on disk in case of power failure and workloads with a lot
of small updates and full blocks of flash memory will be
written whereas pages would have been enough. Since
this increases the write amplification and makes block-
level mapping widely inefficient12.

3.1.3 Hybrid Mapping Scheme
In the above two subsection, both sector and block map-
ping have some disadvantages, therefore hybrid mapping
schemes were proposed. The trade-off between page-level
mapping and block-level mapping is the one of perfor-
mance versus space. Some researcher have tried to get the
best of both worlds, giving birth to the so called “hybrid”
approaches11. In this approach, obtain the physical block
via a block mapping approach. After that, locate an avail-

able empty sector within the physical block via sector
mapping approach. Hybrid-level FTL has been widely
used for large scale flash storage system13. Hybrid policy
has huge improvement on the performance of FTL14.

3.1.4 Log Block Based Approach
Kawaguchi et al. First present using a log based struc-
tured FTL to give a block interface to flash with a cleaner
same as LFS’s16. The major objective of this approach is
to efficiently manage access patterns efficiency. To obtain
this purpose, the log block approach manage most of the
physical blocks at the block addressing level - data block
and a compact fixed number of physical blocks at the sec-
tor addressing level-log blocks.

3.1.4.1 BAST

BAST10 gives the permission to each data block to have
at most one dynamically allocated log block containing
overwrites of that data block. If allocated log block cannot
contain the current write, it is merge with its data block.
This FTL have log block thrashing problem such as fre-

Figure 4.  Hybrid Mapping.

Shailesh Kumar, Kumkum Dubey and P. K. Singh

Indian Journal of Science and Technology 5Vol 11 (23) | June 2018 | www.indjst.org

quent deletion of log block with low utilization and one of
them is the high miss ratio in direct mapped associativity.
Kim et al. Present the BAST FTL scheme for small dense
flash devices. Using an overflow strategy that chains log
block off the primary data storage same as the range stor-
age overflow containers10.

3.1.4.2 FAST

FAST is the part of the FTLs in several studies. Hybrid-
mapped FTL is called as the Fully Associative Sector
Translation (FAST) FTL and it gives good performance in
random writes. FAST FTL divides the whole flash mem-
ory into a large area containing data area and log area.
Page overwrites are reconnected to the log area and that
contain sequential write log block and random write log
block. Sequential write log block (SW) and random write
log block (RW) are reserved for sequential and random
overwrites respectively. The SW log block corresponds
to a single data block whereas RW log block correspond
to multiple data block. If sequential overwrite cannot be
fulfilled by current SW log block then the SW log block
is combine with its corresponding data block. On other
hand if a random overwrites cannot be fulfilled by the
RW log block then FAST choose a victim RW log block
by using round robin technique and combine the victim
with its corresponding data block.

3.2 � Maintaining Address Mapping
Information

When implementing an FTL algorithm, it is compulsory
to consider an approach to store mapping information.
To be able to restore the mapping table during a power-
on process, mapping should not be miss during sudden
power-off event. Therefore this information should perse-
vering kept somewhere in flash memory. The scheme for
storing mapping detail in flash memory can be organized
into two classes: the map block method and per block
method. A map block method reserve mapping informa-
tion into some dedicated blocks of flash memory (map
block). Map block can store all mapping detail in the case
of block mapping. Deletion on map block occurs very
regularly when one map block is used. Therefore some

map blocks are used to make such regular deletion. In Per
Block Method, Mapping information can be maintained
to each physical block of flash memory. In this method
hybrid mapping is being used.

3.3 Size of RAM Table
To design FTL algorithm, The size of RAM is very impor-
tant factor because overall system cost are depend on it.
If the systems have lower cost than size of RAM is small.
Although if system has enough RAM, the performance
can be raised FTL algorithm can be categorized according
to their RAM construction. The following information of
FTL algorithms are store in RAM.

•	 Logical to physical mapping information: The
main usage of RAM is to store the logical to physi-
cal mapping information.

•	 Free memory space information: After free mem-
ory space information in flash memory is stored in
RAM, FTL algorithm can maintain the memory
space without again flash memory accesses.

•	 Information for wear-leveling: RAM stored wear
leveling information such as deletion count of
flash memory blocks may be stored in RAM.

4. � Importance of FTL Mapping
Schemes in Flash Memory

FTL schemes use an out-of place update procedure to
avoid the erase-before-write limitation of NAND flash
memory. When flash translation layer receives write/read
request along with logical sector address to physical sector
address form the file system, then it maps the logical sec-
tor address to physical sector address in the flash memory.
But if there is any update request arrives in the FTL the
previous page is invalidated and requested data is written
to an available free page. Therefore, updated request can
be adopted without any block erase mechanism. However
flash translation layer is essential to conduct garbage col-
lection, which delete the block that hold invalid pages in
order to make them present to use. Yoo et al.15 present a
petric-net based parametric framework that can imple-

A Survey on Flash Translation Layer for NAND Flash Memory

Indian Journal of Science and TechnologyVol 11 (23) | June 2018 | www.indjst.org6

ment the correct sequence of FTL scheme to be executed
for employ an incoming FTL request. This derived
sequence is transparent to FTL operation and it can be
perform to many FTL operation to calculate the WCET of
the request at runtime. FTL deigns can be mainly catego-
rized into three types7, page-level mapping8, block-level
mapping9 and hybrid-level mapping10. In the page-level
FTL maps a logical page number into corresponding
physical page number in NAND flash. This mapping
policy offers good address translation time, less garbage
collection overhead and high space utilization but having
some major drawback is that mapping table requires a lot
of RAM, which can significantly increase the manufac-
turing costs. A solution to that would be to map blocks
instead of pages, block-level mapping.

5. Comparison
FTL’s performance levels are compared in terms of read/
write performance and mapping information. The read/
write performances are calculated by the number of flash
operation such as read, write and erase operation. The
mapping table is managing in RAM and that access cost
of the mapping table is zero.

Another way of comparison is the memory require-
ment for saving mapping information. Mapping detail
should be store in persistent storage, and it can be remove
in Ram for best performance. Some FTL use integration
of sector, block and hybrid mapping. Hybrid mapping
approach has higher read cost as compared to the sector
and the block mapping approach, where as in sector map-

ping the read operation can be determined directly from
the mapping table. In sector mapping, the probability of
requiring deletion operation per write is relatively low.
Write operation have three cases. First, the write opera-
tion may be carry out in the in-place location directly.
Second, the write operation should be carry out after
scanning the empty position in a block. Third the write
operation may sustain an erase operation.

6.  References
1. Yu H, Zheng D, Zhao BY and Zheng W. Understanding user

behavior in large-scale video-on-demand systems. ACM
SIGOPS Operating Systems Review. 2006; 40(4):333-44.
Crossref.

2. Cha M, Kwak H, Rodriguez P, Ahn Y-Y and Moon S. I tube,
youtube, everybody tubes: Analyzing the world’s largest
user generated content video system. Proceedings of the
7th ACM SIGCOMM conference on Internet measure-
ment. 2007; p. 1-14.	

3. Huang C, Li J and Ross KW. Can internet video-on-demand
be profitable? Proceedings of the 2007 conference on
Applications, technologies, architectures, and protocols for
computer communications. 2007; p. 133-44. Crossref.

4. Samsung Electronics. Nand Flash Memory & Smartmedia
Data Book. 2007.	

5. Ban A. Flash File System. U.S. Patent 5 404 485. 1995; Apr
4.	

6.	 Lee S, Moon B, Park C, Kim J and Kim S. A case for flash
memory SSD in enterprise database applications. ACM
SIGMOD. 2008; p. 1075-86. Crossref.	

7.	 Chung T-S, Park D-J, Park S, Lee D-H, Lee S-W and Song
H-J. A survey of flash translation layer. Journal of Systems
Architecture. 2009; 55(5-6):332-43. Crossref.

Table 1. Comparison of FTL algorithms

https://doi.org/10.1145/1218063.1217968.%0D
https://doi.org/10.1145/1282380.1282396
https://doi.org/10.1145/1376616.1376723.
https://doi.org/10.1016/j.sysarc.2009.03.005.

Shailesh Kumar, Kumkum Dubey and P. K. Singh

Indian Journal of Science and Technology 7Vol 11 (23) | June 2018 | www.indjst.org

8.	 Ban A. Flash file system. US patent 5,404,485, 1995; April
4.	

9.	 Ban A. Flash file system optimized for page-mode flash
technologies. US patent 5,937,425, 1999; August 10.	

10.	 Kim J, Kim JM, Noh S, Min SL and Cho Y. A space-effi-
cient flash translation layer for Compact Flash systems.
IEEE Transactions on Consumer Electronics. 2002 May;
48(2):366-75. Crossref.

11. Park et al. A Reconfigurable FTL (Flash Translation
Layer) Architecture for NAND Flash-Based Applications.
2008.	

12.	 Kim et al. Parameter-Aware I/O Management for Solid
State Disks (SSDs). 2012.	

13.	 Chang L-P and Kuo T-W. An efficient management scheme
for large-scale flash-memory storage systems. Proceedings

of the 2004 ACM symposium on Applied computing (SAC
‘04). 2004; p. 862-8. Crossref. PMid:15530111.	

14.	 Memory Technology Device (MTD) Subsystem for Linux.
2010. Available from: http://www.linux-mtd.infradead.
org/.	

15. Yoo J, Lee J and Hong S. Petri net-based FTL architecture for
parametric WCET estimation via FTL operation sequence
derivation. IEEE Transactions on Computers. 2013 Nov;
62(11):2238-51. Crossref.

16.	 Rosenblum M and Ousterhout JK. The design and imple-
mentation of a log-structured file system. ACM Transactions
on Computer Systems. 1992; 10(1):26-52. Crossref.

17.	 Lim SP, Lee SW and Moon B. Faster FTL for enterprise-
class flash memory SSDs. Proceedings of SNAPI. 2010; p.
3-1. Crossref.

https://doi.org/10.1109/TCE.2002.1010143.
https://doi.org/10.1145/967900.968076.%0D
https://doi.org/10.1109/TC.2012.114.
https://doi.org/10.1145/146941.146943.
https://doi.org/10.1109/SNAPI.2010.9.

