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Abstract
This study is devoted to introducing and also it looks into the properties of nano semipre-cont, nano semipre-open funcs, 
nano semipre-closed funcs, Contranano semiprecont.funcs and obtains some relationship between the existing sets.
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1.  Introduction and Preliminaries
In1 introduced generalized closed sets in topological 
spaces. The notion of Nano topology was introduced 
by2. The basic definitions are referred from the following 
study2-9. Throughout this study, func represents the func-
tion, image as ima, continuous as cont, inverses as invrs.

2. � Nano Semiprecont, Nano 
semipreopen and Nano 
semipreclosed Funcs

In this section, we study some additional properties of 
Nβ-cont.func, Nβ-open and Nβ-closed funcs.

Definition 2.1. A func k is called Nβ-open if the ima of 
each nano open set A of U is Nβ-open in V.

Definition 2.2. A func is called Nβ-closed if the ima of 
nano closed set A of U is Nβ-closed in V.

Theorem 2.2. Let be a Nβ-contand Nα-open func then 
the invrsima of each nano open set in V is Nβ -open in U.

Theorem 2.3. Let be a Nβ-contand nano open mapping 
then the following statements hold.

(a) �The invrsima of each NP-open set in V is Nβ-open 
in U

(b) �The invrsima of each NS-open set in V is Nβ-open 
in U

Theorem 2.4. Let be bijective Nβ-contand l: V → W be 
bijectivenanocont.funcs then lok: U → W is Nβ-cont.
func.
Prook: Let V be any nano open subset of Z then l−1(V) 
benano open in Y and as f is Nβ-contk−1(l−1(V)) is 
Nβ-open in X i.e., (lok)−1(V) is Nβ- open in X implies lok 
is Nβ-cont.func.
Theorem 2.5. Each NS-open (NP-open) func is Nβ-open 
but not conversely.

Let k: U → V be NS-open (NP-open) and A be any nano 
open subset of U then (A) is NS-open (NP-open) in Y, 
as every NS-open (NP-open) set is Nβ-open, k(A) is 
Nβ-open in X. Hence f is Nβ-open function.

Theorem 2.6. A bijectivefunc is Nβ-open iff it is Nβ-closed.
Theorem 2.7. Let k: U → V be bijective Nβ-open 
(Nβ-closed) func. W ⊂ V and F ⊂ U is a nanoclosed(nano-
open) set containing k−1 (W) then Nβ-closed (Nβ-open) 
set H of V containing W such that k−1(H) ⊂ F.
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3. � Contranano Semipre 
Contfunctions

In this section, we study a new class of func s called 
Contranano semi pre cont. funcs and its related  
properties.
Definition 3.1. A funck: U → V is called Contranano semi 
pre (or Contranano-β) cont. func if the invrsima of each 
nano open set of V is Nβ-closed set in U.
Definition 3.2. A funck: U → Vis called nano almost 
β-cont, if the invrsima of each NRO (U,X) A of a space 
(V, τR’(Y )) is NβO(U,X) in (U,τR(X)) and it is denoted by 
almost Nβ-cont.
Definition 3.2. A funck: U → Vis said to be nano pre-
semipre (or NPβ) open if the f(B) is Nβ-open in V for 
eachNβ-open set B in U.
Definition 3.3. A subset A of U is said to be nano semipre 
regular, if it is both Nβ-open and Nβ-closed set and set of 
all Nβ regular sets of U is denoted by NβR(U).
Lemma 3.5. In aNTSU, Nβcl(A) ⊂Npcl(A) ∩ Nscl(A) and 
hence we have Nβcl(A) ⊂Npcl(A),Nβcl(A) ⊂Nscl(A).
Lemma 3.6. EachNβ-open and Nα-closed is nano-closed 
and Nβ-closed and Nα-open is nano-open.
Lemma 3.7. A funck: U → V is nano open and nanocont 
then for any nano open subset A of U then i) f(Nint(A)) 
⊂Nintf(A) ii) f(Ncl(A)) = Ncl(f(A)).
Theorem 3.8. If a funck: U → V is NP-β-open, contra 
Nβ-cont and V is nano extremely disconnected then f is 
Almost Nβ-cont.
Theorem 3.9. The set of all points x of U at which k: U 
→ V is not contraNβ-cont is identical with the union of 
the Nβ frontier of the invrsimas of nanoclosed sets of V 
containing f(x).
Theorem 3.10. If a funck: U → V is Nαcontand contra 
Nβ-contthen f is nanocont.
Theorem 3.11. If a funck: U → Vis Nα-open and 
contrananoβ-open func then f is nano openfunc.
Theorem 3.12. If a funck: U → V is Nαclosed and 
contrananoβclosed func then f is nanoclosedfunc.
Theorem 3.12. If a funck: U → V Contranano β-open, l: 
V → W is NP-β-closed then lok: U → W is contranano 
pre-open func.
Theorem 3.13. A subset of U in nano topological space U 
be Nβ regular then a funck: U → Vis contraNβ-contif and 
only if f is Nβ-cont.

Proof: Let a subset of U be Nβ regular and let k: U → 
Vbe contra Nβ-cont then for each nano open set A of V, 
k−1(A) is Nβ-closed in U and hence it is Nβ-open as it is 
Nβ regular. Thus, invrsima of nano open set is Nβ-open 
implies f is Nβ cont.
Conversely: Let a subset of U be Nβ regular and let k: 
U → Vbe Nβ-contthen for each nano open set A of V, 
k−1(A) is Nβ- open in U and hence it is Nβ-closed as it is 
Nβ regular. Thus, invrsima of nano open set is Nβ-closed 
implies f is Nβ-cont.
Theorem 3.15. Each Contrananosemicont (contranano 
pre-cont) func is Nβ-cont.

But converse of the above theorem need not be true in 
general.

Theorem 3.16. If the space U is nanoextremally 
disconnected, then each contra Nβ-cont. func is 
contranano pre-cont.

Lemma 3.17. Let A be a subset of a nano topological space 
U. Then each Nβ-open (Nβ-closed) set is nano semi-open 
((nano semi-closed) if Nint (Ncl(A)) ⊂Ncl(Nint(A)).

4.  Conclusion
The properties of nano semiprecont, nano 
semipreopenfuncs, nano semipre closed funcs, 
Contranano semiprecont.funcs are investigated.
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