Note on Contranano Semipre Continuous Functions

K. Rajalakshmi¹, C. Vignesh Kumar², V. Rajendran² and P. Sathishmohan²

¹Science and Humanities, Sri Krishna College of Engineering and Technology, Competency-based Education-08, Coimbatore - 641008, Tamil Nadu, India; rajalakshmikandasamy@gmail.com ²Department of Mathematics, Kongunadu Arts and Science College, Coimbatore - 641029, Tamil Nadu, India; vigneshkumarcvk@gmail.com, rajendrankasc@gmail.com, iiscsathish@yahoo.co.in

Abstract

This study is devoted to introducing and also it looks into the properties of nano semipre-cont, nano semipre-open funcs, nano semipre-closed funcs, Contranano semiprecont.funcs and obtains some relationship between the existing sets.

Keywords: Almost Nβ-cont, Contranano β-cont, Nano β-cont, Nano β-closed, Nano β-open, NP-β-open, Nβ-regular

1. Introduction and Preliminaries

In¹ introduced generalized closed sets in topological spaces. The notion of Nano topology was introduced by². The basic definitions are referred from the following study²⁻⁹. Throughout this study, func represents the function, image as ima, continuous as cont, inverses as invrs.

2. Nano Semiprecont, Nano semipreopen and Nano semipreclosed Funcs

In this section, we study some additional properties of N\beta-cont.func, N\beta-open and N\beta-closed funcs.

Definition 2.1. A func k is called N β -open if the ima of each nano open set A of U is N β -open in V.

Definition 2.2. A func is called N\beta-closed if the ima of nano closed set A of U is N\beta-closed in V.

Theorem 2.2. Let be a N β -contand N α -open func then the invrsima of each nano open set in V is N β -open in U.

Theorem 2.3. Let be a N β -contand nano open mapping then the following statements hold.

- (a) The invrsima of each NP-open set in V is N\beta-open in U $% \beta$
- (b) The invrsima of each NS-open set in V is N β -open in U

Theorem 2.4. Let be bijective N β -contand l: V \rightarrow W be bijectiven anocont.funcs then lok: U \rightarrow W is N β -cont. func.

Prook: Let V be any nano open subset of Z then $l^{-1}(V)$ benano open in Y and as f is $N\beta$ -cont $k^{-1}(l^{-1}(V))$ is $N\beta$ -open in X i.e., $(lok)^{-1}(V)$ is $N\beta$ - open in X implies lok is $N\beta$ -cont.func.

Theorem 2.5. Each NS-open (NP-open) func is N β -open but not conversely.

Let k: U \rightarrow V be NS-open (NP-open) and A be any nano open subset of U then (A) is NS-open (NP-open) in Y, as every NS-open (NP-open) set is N β -open, k(A) is N β -open in X. Hence f is N β -open function.

Theorem 2.6. A bijective func is N β -open iff it is N β -closed.

Theorem 2.7. Let k: $U \rightarrow V$ be bijective N β -open (N β -closed) func. $W \subset V$ and $F \subset U$ is a nanoclosed(nanoopen) set containing k⁻¹ (W) then N β -closed (N β -open) set H of V containing W such that k⁻¹(H) \subset F.

3. Contranano Semipre Contfunctions

In this section, we study a new class of func s called Contranano semi pre cont. funcs and its related properties.

Definition 3.1. A funck: $U \rightarrow V$ is called Contranano semi pre (or Contranano- β) cont. func if the invrsima of each nano open set of V is N β -closed set in U.

Definition 3.2. A funck: $U \rightarrow Vis$ called nano almost β -cont, if the invrsima of each NRO (U,X) A of a space (V, $\tau_R'(Y)$) is N β O(U,X) in (U, $\tau_R(X)$) and it is denoted by almost N β -cont.

Definition 3.2. A funck: $U \rightarrow Vis$ said to be nano presemipre (or NP β) open if the f(B) is N β -open in V for eachN β -open set B in U.

Definition 3.3. A subset A of U is said to be nano semipre regular, if it is both N β -open and N β -closed set and set of all N β regular sets of U is denoted by N β R(U).

Lemma 3.5. In aNTSU, $N\beta cl(A) \subset Npcl(A) \cap Nscl(A)$ and hence we have $N\beta cl(A) \subset Npcl(A), N\beta cl(A) \subset Nscl(A)$.

Lemma 3.6. EachN β -open and N α -closed is nano-closed and N β -closed and N α -open is nano-open.

Lemma 3.7. A funck: $U \rightarrow V$ is nano open and nanocont then for any nano open subset A of U then i) f(Nint(A)) $\subset Nintf(A)$ ii) f(Ncl(A)) = Ncl(f(A)).

Theorem 3.8. If a funck: $U \rightarrow V$ is NP- β -open, contra N β -cont and V is nano extremely disconnected then f is Almost N β -cont.

Theorem 3.9. The set of all points x of U at which k: U \rightarrow V is not contraN β -cont is identical with the union of the N β frontier of the invrsimas of nanoclosed sets of V containing f(x).

Theorem 3.10. If a funck: $U \rightarrow V$ is N α contand contra N β -contthen f is nanocont.

Theorem 3.11. If a funck: $U \rightarrow Vis N\alpha$ -open and contranano β -open func then f is nano openfunc.

Theorem 3.12. If a funck: $U \rightarrow V$ is Naclosed and contranano β closed func then f is nanoclosed func.

Theorem 3.12. If a funck: $U \rightarrow V$ Contranano β -open, l: $V \rightarrow W$ is NP- β -closed then lok: $U \rightarrow W$ is contranano pre-open func.

Theorem 3.13. A subset of U in nano topological space U be N β regular then a funck: U \rightarrow Vis contraN β -contif and only if f is N β -cont.

Proof: Let a subset of U be Nβ regular and let k: U → Vbe contra Nβ-cont then for each nano open set A of V, $k^{-1}(A)$ is Nβ-closed in U and hence it is Nβ-open as it is Nβ regular. Thus, invrsima of nano open set is Nβ-open implies f is Nβ cont.

Conversely: Let a subset of U be N β regular and let k: U \rightarrow Vbe N β -contthen for each nano open set A of V, k⁻¹(A) is N β - open in U and hence it is N β -closed as it is N β regular. Thus, invrsima of nano open set is N β -closed implies f is N β -cont.

Theorem 3.15. Each Contrananosemicont (contranano pre-cont) func is $N\beta$ -cont.

But converse of the above theorem need not be true in general.

Theorem 3.16. If the space U is nanoextremally disconnected, then each contra $N\beta$ -cont. func is contranano pre-cont.

Lemma 3.17. Let A be a subset of a nano topological space U. Then each N β -open (N β -closed) set is nano semi-open ((nano semi-closed) if Nint (Ncl(A)) \subset Ncl(Nint(A)).

4. Conclusion

The properties of nano semiprecont, nano semipreopenfuncs, nano semipre closed funcs, Contranano semiprecont.funcs are investigated.

5. References

- Levine N. Generalized closed sets in topology. Rendiconti del Circolo Matematico di Palermo. 1970; 19(1):89-96. https://doi.org/10.1007/BF02843888
- Thivagar ML, Richard C. On nano forms of weekly open sets. International Journal of Mathematics and Statistics Invention (IJMSI). 2013; 1(1):31-7.
- On New Class of Contra Continuity in Nano Topology. Available from: https://www.researchgate. net/profile/Saeid_Jafari3/publication/315892547_On_ new_class_of_contra_continuity_in_nano_topology/ links/590dadad4585159781859589/On-new-class-of-contracontinuity-in-nano-topology.pdf. Date accessed: 2016.
- Khalaf MM, Nimer KN. Nano PS open sets and Nano PS - continuity. International Journal of Contemporary Mathematical Sciences. 2015; 10(1):1-11. https://doi. org/10.12988/ijcms.2015.4545

- Theoretical Aspects of Reasoning about Data. Available from: https://www.springer.com/in/book/9780792314721. Date accessed: 1991.
- Revathy A, Illango G. On nanoβ-open sets. International Journal of Contemporary Mathematical Sciences. 2015; 1(2):1-6.
- Sathishmohan P, Rajendran V, Devika A, Vani R. On nano semi-continuity and nanoprecontinuity. International Journal of Advanced Research. 2017; 3(2):76-9.
- Sathishmohan P, Rajendran V, Dhanasekaran PK, Vignesh Kumar C. More on preneighbourhoods in NTS. Journal of Applied Science and Computations. 2018; 5(10):899-907.
- Sathishmohan P, Rajendran V, Vignesh Kumar C, Dhanasekaran PK. On nano semipreneighbourhoods on NTS. Malaya Journal of Mathematik. 2018; 6(1):294-8. https://doi.org/10.26637/MJM0601/0034