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Abstract
Objectives: To study the trigonometric shear deformation 
theory for the evolution of displacements and stresses of cross-
ply simply supported laminated beam subjected to varying load. 
Methodology: A trigonometric shear deformation is used. The in-
plain displacement field uses a sinusoidal function in terms of the 
thickness coordinate to include the shear deformation effect. The 
theory satisfies the shear stress free boundary conditions on the 
top and bottom surfaces of the plate. The present theory obviates 
the need of a shear correction factor. Governing equations and 
boundary conditions of the theory are obtained using the principle 
of virtual work. Finding: Stresses and displacements for orthotropic, 
single-layer, three-layer symmetric square cross-ply laminated beam 
subjected to varying load. Novelty: The numerical results of the 
present theory for displacement and stresses are compared with 
those of classical (ETB), first-order (FSDT), and higher-order shear 
deformation beam theories.

Keywords: Layerwise Composite Beam, Trigonometric Shear 
Deformation Theory, Varying Load, Simply Supported Beam.

1. � Introduction
Nowadays, composite materials are widely used in worldwide. Composite material is 
a material made up with the help of two or more different properties of materials. The 
composite material gives more strength to structural components. The composite 
material having advantage in its life span. Generally, composite material having more 
uses in aircraft and ships. In previous works, we studied the isotropic beam with 
different loading condition as well as different supports. Thick beams and plates, either 
isotropic or anisotropic, basically form two- and three-dimensional problems of elasticity 
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theory. Reduction of these problems to the corresponding one- and two-dimensional 
approximate problems for their analysis has always been the main objective. The shear 
deformations in beams and plates with the three-dimensional nature of these problems 
further intensified the research interest in their accurate analysis. The shear deformation 
effects are more pronounced in the thick beams when subjected to transverse loads 
than in the thin beams under similar loading. The shear deformation effects are more 
significant in the thick beams. These effects are neglected in Elementary Theory of 
Beam (ETB). In order to describe the correct bending behavior of thick beams including 
shear deformation effects and the associated cross sectional warping, shear deformation 
theories are required. This can be accomplished by selection of proper kinematic and 
constitutes models. The worked on a higher request discrete-layer hypothesis and stated 
that a limited component is displayed for foreseeing the damping of overlaid composite 
sandwich beams wherein quadratic and cubic terms for guess of the in-plane relocation 
in each discrete layer considered. Model frequencies and damping of sandwich composite 
beam are estimated and associated with anticipated qualities [1]. The displayed another 
reverse digression shears twisting hypothesis for the statics and free vibration and clasping 
investigation of covered composite and sandwich plates. Shear stresses are evaporated at 
top and base surfaces of the plate and shear amendment factors are never again required 
[2]. The bar assembles into three arrangements, which are Euler–Bernoulli column theory, 
first solicitation shear deformation speculation and higher solicitation shear twisting 
hypotheses [3]. The equations governing the dynamic response of laminated structures 
are derived by using Hamilton’s principle. However, equations of equilibrium for buckling 
problems are given by employing the principle of virtual displacements. Moreover, using 
Navier’s technique and solving the eigenvalue equations, analytical solutions based on the 
global–local higher-order theory used in this article are first presented in present study. 
At the same time, the effect of the order number of higher-order shear deformation as 
well as interlaminar continuity of transverse on the global response of both laminated 
beams and soft-core sandwiches has been also studied [4]. Previous studies [5] examined 
extended reason limits and higher solicitation shear distortion theories in the examination 
of secured composite beams and plates. The built-up a general definition for nothing and 
transient vibration investigations of composite overlaid beams with subjective lay-ups and 
limit conditions [6]. The shear cure factor displayed is difficult to decisively for overlaid 
composite beams, as it dependants on layer bearing, geometric parameters and point of 
confinement conditions [7]. The structure articulation to decide the compelling flexural 
modulus of a covered shaft is created and this powerful flexural modulus is applied to the 
bowing and free vibration reaction of by and large overlaid composite beams with different 
limit bolsters [8]. The blended limited component conditions which depend on a useful are 
gotten by utilizing Gateaux differential for overlaid beams [9]. The variationally relentless 
refined hyperbolic shear distortion theory for flexure and free vibration of thick isotropic 
beam. This theory considers transverse shear deformations impacts [10]. The refined beam 
theories are required to describe the correct thermal response of plates as well as shear 
deformation effects. Three variables are used in displacement field, to represent the effect 
of shear deformation [11]. It proposes a hyperbolic shear deformation for thick isotropic 
cantilever beam. A higher-order beam theory which takes into account shear curvature, 
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transverse stresses and rotatory inertia is presented. The displacement field of the present 
theory was based on a two variable, in which the transverse displacement is partitioned 
into the bending and shear parts [12]. 

2. � Methodology
Consider simply supported laminated composite beam with varying load as shown in 
Figure 1. The beam is made of many unidirectional plies stacked up in different orientations 
with respect to the x-axis. In the right-handed Cartesian coordinate system, the x-axis is 
coincident with the beam axis and the origin is on the mid-plane of the beam. The length, 
breadth, and height of the beam are represented by L, b, and h, respectively.  

The displacement field for overlaid composite beam dependent on the trigonometric 
shear deformation theory (TSDT), higher-order shear deformation theory (HSDT), and 
hyperbolic shear deformation theory (HYSDT) can be given as follows

(1) (2) (3)
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where u(1) is the removal along x headings. u(2) is the uprooting along y headings, u(3) is the 
relocation along z bearings of a point in the beam. u is the removal in the x course and w 
is transverse dislodging in the y heading of a point on the bar in midplane.

The strain–displacement relations between strain–displacement corresponding to the 
displacement field are given by 

2
0 0 2 2

2,  k ,  k ,  k       x x x xz
u w h
x xx

φε φ
π

∂ ∂ ∂
= = − = =
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FIGURE 1.  Geometry of simply supported laminated composite beam with varying load. 
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Using the trigonometric shear deformation theory, the constitution equations of the 
laminates are
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where Nx , N y , and Nxy are the in-plane forces, Mx , My , and Mxy  the bending and 
twisting moments, Px , Py , and Pxy the refine bending and twisting moments, 0

xε , 0
yε , and 

0
xyε the mid-plane strains, 0
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yk , and 0

xyk the bending and twisting curvatures  2
xk , 2

yk
, and 2

xyk the refines bending and twisting curvatures, ij ij ij ij ij ijA ,B ,D ,E ,F ,H  (i,j=1,2,6)
are the stiffness coefficient. In the above theory, the constitutive equations of laminated 
composite beam which accounts for the Poisson effect are considered as follows. Assume 
N y , Nxy , My , Mxy , Py , and Pxy equal to zero while 0
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The laminated stiffness coefficients ij ij ij ij ij ijA ,B ,D ,E ,F ,H  (i,j=1,2,6)  and the transverse 
shear stiffness F55, which are capacity of overlay handle direction, material property, and 
stack succession, are given by
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The transformed reduced stiffness constants ijQ  (i,j=1,2,6)  and 55Q   are given by
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where θ  is the angle between the fiber direction and longitudinal axis of the beam and 
reduced stiffness constants 11Q , 22Q , 12Q , and 66Q can be obtained in terms of constant 

1 12 2 21 1
11 12 22 66 12

12 21 12 21 12 21 12 21

2,  , ,    
1 1 1 1

E E E EQ Q Q Q G
υ υ

υ υ υ υ υ υ υ υ
= = = = =

− − − −

All laminates made same orthotropic material, which properties are assumed
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The force and the moment resultants are defined in the following form

/2 /2 /2 /2

/2 /2 /2 /2

,   , ( ) ,   ( )  
h h h h

k k k k
x x x zx

h h h h

N dz M z dz P f z dz Q g z dzσ σ σ τ
− − − −

= = = =∫ ∫ ∫ ∫ 	 (7)

Where N and Q are the force resultant; M and P are the moment’s resultants. The 
principle of virtual work is used to obtain the governing equations and boundary 
conditions associated with the present theory. The principle of virtual work is given as
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where δ is the variational administrator. Coordination by parts and gathering the 
coefficients of δu, δw, and δϕ, one can acquire the administering conditions and limit 
states of the pillar related with the present hypothesis utilizing major lemma of analytics 
of varieties. The variationally reliable administering conditions of the present hypothesis 
regarding power and minute resultants are as per the following
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Associated boundary condition is as follows
Along edges x = 0 and x = L
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Example: Simply supported beam with varying load 0
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3. � Numerical Result and Discussion
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The removals and stresses are determined for essentially bolstered covered composite 
bar for fluctuating stacking. The relationship of the maximum transverse deflection ( )w  to 
aspect ratio (AS) is shown for different angle ply in Table 1a and 1b. As would be expected 
Euler–Bernoulli (ETB) underestimates the beam deflections and gives poor estimates for 
relatively low value of aspect ratio (AS). The relationship of the maximum axial deflection 
( )u to aspect ratio (AS) is shown for different angle ply in Table 1c and 1d. The axial 
deflection increases when the aspect ratio (AS) increases. The distribution bending stress 
( )σ of by the five theories is represented in Table 1e and 1f for aspect ratio 4 and 10. The 
stresses are maximum at top and zero at centre. The distribution of transverse shear stresses 
according to constitutional relationship and equilibrium equations are presented in Table 
1g, 1h, 1i, and 1j. The angle proportion aspect ratio (AS) are considered as 4 and 10. Figure 
2a–d shows the transverse deflection, bending stresses by means of condition of harmony 
and constitutive relationship. As the aspect ratio (AS) increases the transverse deflection 
becomes constant as shown in Figure 2a. Figure 2b and c shows the through thickness 
distribution of axial displacement which is maximum at the top and bottom surface of 
the beam. From Figure 2d, it is seen that as viewpoint proportion expands the estimations 
of transverse removal got steady, in-plane dislodging and in-plane ordinary burdens are 
most extreme at top and base surface of the bar and those are zero at nonpartisan hub. The 
transverse shear pressure is zero at top and base surfaces of the beam while most extreme 
at nonpartisan pivot. Figure 2 represents non-dimensional (a) transverse deflection, (b) 
axial deflection for AS 4 for three-layer symmetric (0°/90°/0°), (c) axial deflection for 
AS 10 for three-layer symmetric (0°/90°/0°), (d) bending stresses for AS 4 for three-layer 
symmetric (0°/90°/0°).
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TABLE 1.  Examination of non-dimensional (a) transverse displacement ( )w  for single, 
three and four layer laminated beam for aspect ratio (AS) 4, (b) transverse displacement 
( )w  for single, three and four layer laminated  beam for aspect ratio (AS) 10, (c) axial 
displacement ( )u  for single, three and four layer laminated  beam for aspect ratio (AS) 4, 
(d) axial displacement ( )u  for single, three and four layer laminated beam for aspect ratio 
(AS) 10, (e) bending stresses ( )σ  for single, three and four layer laminated beam for aspect 
ratio (AS) 4, (f ) bending stresses ( )σ  for single, three and four layer laminated  beam  
for aspect ratio (AS) 10, (g) transverse shear stress CR

zxτ 
 
 

 for single, three and four layer 
laminated beam for aspect ratio (AS) 4, (h) transverse shear stress CR

zxτ 
 
 

 for single, three 
and four layer laminated beam for aspect ratio (AS) 10, (i) transverse shear stress EE

zxτ 
 
 

for single, three and four layer laminated beam for aspect ratio (AS) 4, (j) transverse shear 
stress EE

zxτ 
 
 

for single, three and four layer laminated beam for aspect ratio (AS) 10

a. 
AS Theory/

angle ply
0° 90° 0°/90°/0° 90°/0°/90° 0°/90°/90°/0° 90°/0°/0°/90°

4 Present TSDT 2.679 20.934 2.678 14.091 2.706 10.497
HYSDT [10] 3.094 21.913 3.083 15.219 3.116 11.701
HSDT [7] 3.104 21.928 3.096 14.613 3.118 11.666
FSDT [5] 2.498 20.281 2.990 11.376 3.386 6.574
ETB [3] 0.625 15.631 0.647 8.261 0.710 3.899

b.
AS Theory/

angle ply
0° 90° 0°/90°/0° 90°/0°/90° 0°/90°/90°/0° 90°/0°/0°/90°

10 Present 
TSDT 0.945 16.457 0.966 7.859 1.025 4.944

HYSDT [10] 1.011 16.620 1.028 7.976 1.088 5.140
HSDT [7] 1.013 16.619 1.032 7.942 1.089 5.126
FSDT [5] 0.923 16.343 1.021 8.751 1.137 4.324
ETB [3] 0.625 15.631 0.647 8.261 0.710 3.899

c.
AS Theory/

angle ply
0° 90° 0°/90°/0° 90°/0°/90° 0°/90°/90°/0° 90°/0°/0°/90°

4 Present TSDT 1.964 20.457 1.917 15.263 1.832 10.836
HYSDT [10] 2.121 20.790 2.071 16.066 1.995 11.509
HSDT [7] 2.126 20.817 2.074 16.229 1.991 11.422
FSDT [5] 0.682 17.072 0.706 9.023 0.776 4.259
ETB [3] 0.682 17.072 0.706 9.023 0.776 4.259

d.
AS Theory/

angle ply
0° 90° 0°/90°/00 90°/0°/90° 0°/90°/90°/0° 90°/0°/0°/90°

10 Present 
TSDT 13.790 274.889 14.020 133.925 14.718 82.945

HYSDT [10] 14.184 275.823 14.377 135.084 15.098 84.675
HSDT [7] 14.204 275.841 14.407 136.354 15.103 84.359
FSDT [5] 10.665 266.752 11.046 140.992 12.127 65.548
ETB [3] 10.665 266.752 11.046 140.992 12.127 66.548
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e.
AS Theory/

angle ply
0° 90° 0°/90°/0° 90°/0°/90° 0°/90°/90°/0° 90°/0°/0°/90°

4 Present 
TSDT 0.972 13.277 0.9606 8.146 0.947 5.493

HYSDT [10] 1.033 13.404 1.0215 8.483 1.011 5.741
HSDT [7] 1.034 13.414 1.0216 8.512 1.010 5.721
FSDT [5] 0.750 18.757 0.7767 9.914 0.852 4.679
ETB [3] 0.750 18.757 0.7767 9.914 0.852 4.679

f.
AS Theory/

angle ply
0° 90° 0°/90°/0° 90°/0°/90° 0°/90°/90°/0° 90°/0°/0°/90°

10 Present 
TSDT 3.453 76.197 3.542 35.048 3.790 21.163

HYSDT [10] 3.512 76.353 3.590 35.076 3.842 21.431
HSDT [7] 3.516 76.348 3.599 35.414 3.845 21.365
FSDT [5] 3.000 75.030 3.107 39.657 3.411 18.718
ETB [3] 3.000 75.030 3.107 39.657 3.411 18.718

g.
AS Theory/

angle ply
0° 90° 0°/90°/0° 90°/0°/90° 0°/90°/90°/0° 90°/0°/0°/90°

4 Present 
TSDT 1.015 1.0306 1.011 1.237 0.9981 1.194

HYSDT [10] 1.047 1.0662 1.039 1.229 1.0297 1.214
HSDT [7] 1.049 1.0660 1.043 1.237 1.0292 1.210
FSDT [5] 0.558 13.972 0.579 7.393 0.6351 3.490
ETB [3] – – – – – –

h.
AS Theory/

angle ply
0° 90° 0°/90°/0° 90°/0°/90° 0°/90°/90°/0° 90°/0°/0°/90°

10 Present 
TSDT 2.540 2.5766 2.529 3.093 2.495 2.986

HYSDT [10] 2.620 2.6655 2.598 3.075 2.575 3.035
HSDT [7] 2.625 2.6651 2.612 3.093 2.573 3.026
FSDT [5] 8.727 2.1801 9.050 115.52 9.918 54.545
ETB [3] – – – – – –

i.
AS Theory/

angle ply
0° 90° 0°/90°/0° 90°/0°/90° 0°/90°/90°/0° 90°/0°/0°/90°

4

Present 
TSDT 1.4000 5.408 1.3873 5.6030 1.3714 4.7293

HYSDT 
[10] 1.2580 4.991 1.2417 5.1752 1.2264 4.3649

HSDT [7] 1.2570 4.990 1.2405 5.1629 1.2251 4.3524
FSDT [5] 0.0800 2.000 0.8285 1.0575 0.0909 0.4991
ETB [3] 0.0800 2.000 0.8285 1.0575 0.0909 0.4991
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j.
L/h Theory/

angle ply
0° 90° 0°/90°/0° 90°/0°/90° 0°/90°/90°/0° 90°/0°/0°/90°

10 Present 
TSDT 

1.5189 8.404 1.5103 6.884 1.5068 5.4755

HYSDT 
[10]

1.6213 8.612 1.6080 7.1569 1.6069 5.7913

HSDT [7] 1.6201 8.600 1.5955 7.1454 1.5954 5.7799
FSDT [5] 0.2000 5.002 0.2071 2.6438 0.2274 1.2478
ETB [3] 0.2000 5.002 0.2071 2.6438 0.2274 1.2478
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FIGURE 2. A.  Non-dimensional transverse deflection. b. Non-dimensional axial deflection 
for AS 4 for three-layer symmetric (0°/90°/0°). c. Non-dimensional axial deflection for AS 
10 for three-layer symmetric (0°/90°/0°). d. Non-dimensional bending stresses for AS 4 for 
three-layer symmetric (0°/90°/0°)

AQ2



1199 / 1199

D.H. Tupe, A.G. Dahake and G.R. Gandhe

Indian Journal of Science and Technology� Vol 13(10), DOI: 10.17485/ijst/2020/v13i10/149907, March 2020

4. � Conclusions
This paper builds up the static firmness grid for essentially upheld composite overlaid beams 
dependent on the trigonometric shear distortion hypothesis. The static solidness network 
is inferred by straightforwardly illuminating overseeing differential condition of movement 
of the beam. The use of static strength system to get shirking and stresses of fundamentally 
maintained beam with different aspect ratio. The numerical outcomes got from the present 
technique show great concurrence with the accessible arrangements in the writing.
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