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1.  Introduction

In imaging applications such as video surveillance, 
region of interest (ROI) processing, displaying of 
standard definition (SD) video onto a high definition 
(HD) display, remote sensing, and medical diagnosis it 
is always desirable to acquire an image/video with best 
possible resolution. Due to distortions introduced by 
the imaging sensor, zoom optics, and many physical 
constraints limit the captured image quality. By sensor 
manufacturing techniques, the spatial resolution of the 
images can be increased and has reached a limit. However, 
computational SRR has emerged as an alternative cost-
effective approach and unifies de-noising, de-blurring, 
and scaling-up tasks. The SRR problem was first proposed 
in frequency domain1, and these methods are theoretically 
simple, computationally efficient and have lessened 
applications due to their inability to accommodate prior 
knowledge. To overcome this drawback, many spatial 
domain approaches2-5 have been proposed.

Multi-frame SRR problem consists of (i) registering 
a set of LR frames in a common coordinate system, (ii) 
solving the inverse problem of reconstruction. Many of 

the recently proposed algorithms for registration6 exhibit 
various degrees of errors. The recent SRR algorithms 
depend on robust data fusion such as Lp norm, (1≤ p≤ 
2)7 for Gaussian and Poisson noise contributions. In 
the case of real images with unknown noise models, Lp 
norm, (1≤ p≤ 2) may degrade the reconstructed image 
quality. To tackle this many approaches were proposed in 
the literature8-11. A SRR results depend on (i) accuracy of 
image registration, (ii) robustness of reconstruction and 
are interrelated.

In this paper, Lorentzian norm12,14,15 is adopted, which 
is robust than Lp norm, (1≤ p≤ 2) with superior outlier 
rejection capability as a data fidelity cost function and 
Laplacian regularization as a prior function. The role of 
regularization parameter (λ) is decisive to control the 
trade-off between the data fidelity and prior term, and 
in many situations λ is calculated manually based on 
subjective measurements. In order to overcome such 
shortcomings, many approaches have been proposed in 
the literature, such as L-curve method16, generalized cross 
validation (GCV) method17, and Bayesian framework 
method18. U-curve method was proposed for discrete 
inverse problems19 and extended to adaptive SRR 
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problems20. In this paper, we deviate from the existing 
methods by adopting Lorentzian norm as a data fidelity 
cost function, regularization parameter (λ) is selected 
using the U-curve method, and step size (b) through 
simultaneous over relaxation (SOR) approach.

The remainder of the paper is organized as follows. 
Section II describes the forward data model. Section III 
illustrates robust reconstruction including selection of 
λ using U-curve method. Simulations on synthetic and 
real data sequences are demonstrated in Section IV, and 
Section V concludes this paper.

2.  Forward Data Model

The first step in SRR is to formulate an observation model 
to replicate the physical process of imaging conditions 
including various degradation factors and depict the 
original HR image with recorded LR frames. The 
degradation process includes geometric transformation 
(Mk), blurring (Bk), sub-sampling (Dk) and AWGN (nk) 
term. The forward model is given as,
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where, k is the number of LR images (images are 
lexicographically ordered) and equation (1) can be 
written as,

1
k k k k kY D B M X n= + 			   (2)

In imaging applications (digital photography 
and surveillance), Bk combines both camera blur and 
atmospheric turbulence and cam

kB is dominant. As the 
frames are down-sampled and blurred by same amount, 
i.e.,∀Dk = D, ∀Bk = B, and forward model can be rewritten 
as,

k k kY DBM X n= + 				   (3)

The problem tackled in this paper is to estimate the 
HR image X (matrix dimensions are listed in7) from  

kY . It is assumed that the system is square and optical 
blur functions are uniform, already known or estimated. 
The down sampling is implemented using an average 
strategy. To have a more realistic model for Mk, consisting 
of both translation (∆x, ∆y) and rotation (θ), Taylor series 

approximation method13 is used to estimate the motion 
parameters. The contributions in this paper are listed 
below:
•	 To reduce the outliers, adopted Lorentzian error 

norm with Laplacian regularization as a prior. 
U-curve method provides a suitable search interval 
for λ to increase the computational efficiency of SRR 
problems.

•	 The proposed approach is tested with static 
monochrome/colour images and frames extracted 
from the video sequences.

3.  Robust Reconstruction

The statistical problem of estimating unknown X is not 
exclusively based on kY and depends on some prior 
information about the noise and motion models that 
maps the HR scene to the recorded LR images. The 
estimator performance degrades due to outliers and 
mismatch of prior information with the measurement 
data. Finding the inverse solution to the ill-posed problem 
is unstable due to minute changes in kY resulting 
enormous change inX .

3.1 Error Norm and Regularization
In M-estimators, SRR can be considered as the following 
minimization problem:
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where ρ measures the distance between the model and 
actual measurements. The LS approach for equation (4) 
is given as,


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where, 2
2|| ||k kDBM X Y−  is data fidelity term. 

Regularization compensates for the missing measurement 
information with prior knowledge, constraints the 
solution space, provides a stable solution by means of prior 
information, removes artifacts fromX , improves rate of 
convergence and is implemented as a penalty function in 
minimization of the cost function, and equation (5) can 
be written as,
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γ(X) is the prior term and λ is a scalar quantity, weights 
data fidelity term against the regularization cost 
function. Higher values of λ brings over smoothing i.e., 
reconstructed signal will become blurry and small λ 
reduces noise ineffectively.

Lp (1≤p≤ 2) norm is used as robust estimators to 
reduce the outliers. L2 norm is broadly sensitive to outliers 
because the influence function escalates linearly without 
having an upper bound. Also, L2 norm infers that the extra 
resolution content is equally distributed in all kY  and the 
resulting X  is an average of the contributions from kY . 
In case of L1 norm, the pixel-wise median minimizes the 
cost function and it is robust against outliers. Here the 
influence function is bounded, and it characterizes the 
bias. From the robust statistics theory, Lorentzian norm is 
adopted due to its outlier rejection capability, and is given 
below.
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where, T is Lorentzian constant parameter which is 
soft threshold value. The Lorentzian norm assigns zero 
or calculated weight to outliers depending on their 
magnitude. In equation (7), the Tikhonov regularization 
function (γ( X )) is replaced with 2D Laplacian kernel 
(Γ), and the cost function to the inverse problem i.e., 
equation (7) can be written as,
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By steepest descent method, the solution to the cost 
function is computed by differentiating equation (9) with 
respect to X  and HR image is iteratively estimated.
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βn is the nth iteration step size, plays an important role in 
the convergence of steepest descent method. If the step 
size is too large, divergence will occur, and smaller step 

size results a slower rate of convergence. For Lorentzian 
error norm, simultaneous over-relaxation (SOR) 
method21 provides a better constant step size.

The iteration is terminated when,
2
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where, d is the specified error.

3.2 �Estimation of λ based on U-Curve 
Method

The SRR problem depends on trade-off between the data 
fidelity term and prior term, and is totally controlled 
by the λ. The model in this paper is similar to that of 
traditional Tikhonov regularization with Laplacian prior 
and additive white Gaussian noise (AWGN). The cost 
function in equation (7) can be rewritten as Tikhonov 
regularization by considering the matrices DBMk as A 
and is given below.
  { }2 2|| || || ||X ArgMin y AX Xλ= − + ⋅ Γ 	 (12)

By applying singular value decomposition (SVD) least 
squares (LS) method to A, i.e.,

 0
0 0

A U V
 ∑  
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where U is left SVD of A, V is right SVD of A and is ∑ is 
singular values of A and the details are in20.
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The U-curve is the plot of U(λ) and provides an interval 
where the optimal λ exists, and reduces the manual search 
and increases the computational time. λ is selected at 
curvature of the U-curve for a local maximum close to 
the left part of the U-curve, and an optimal λ is obtained.

4.  �Experimental Results and 
Discussions

The proposed approach is validated using 



Vol 10 (16) | April 2017 | www.indjst.org Indian Journal of Science and Technology4

Adaptive Super-Resolution Image Reconstruction with Lorentzian Error Norm

MATLAB by employing three different data sets 
and the results are presented. Mean square error  
(MSE = 

21 ( )X X
N Ω

−∑ ) is used as an objective measurement. 
To appraise the performance of the proposed approach, 
the results are compared with interpolation method and 
L1 norm with Laplacian regularization14 (L1LR) with β= 
0.05. In numerical experiments, Bcam is Gaussian kernel 
of size 5x5 with variance of 0.5 is used.

4.1 Synthetic Experiment
In the first set of experiment, standard monochrome 
images are used and are shown in Figure 1. The second 
set of experiment is performed on colour images (car 
image of size 896x592x3, downloaded from website and 
acknowledged) and is shown in Figure 2. From these HR 
images ( X ), created a sequence of LR images ( kY ). In 
these experiments, X  blurred by Hcam, down-sampled by 
a factor of 2 in horizontal and vertical directions, warped 
(randomly in ∆x, ∆y, θ), AWGN is added, and kY  with k 
= 1...6 are generated.

Figure 1.    (a) Cameraman, size 512x512x1, (b) Aerial, 
size 256x256x1, (c) Boat, size 512x512x1, (d) Lena, size 
512x512x1, (e) Peppers, size 512x512x1, (f) Finstones, size 
512x512x1.

Figure 2.    Original car image of size 896x592x3.

Steps involved in the SRR are the estimation of motion 
parameters (∆x, ∆y, θ) from ( kY ), projection of LR images 
onto a common HR grid, and robust reconstruction. The 
reconstructed image (cameraman) and the corresponding 
ROI are shown in Figure 3 and Figure 4.

Figure 3.    (a) HR image of size 512 x512x1, (b) One of 
LR image of size 256x256x1, reconstructed by (c) bi-cubic 
interpolation, (d) L1norm with Laplacian regularization 
method, (e) Proposed method.

Figure 4.    ROI of (a) HR image, (b) LR image, reconstructed 
by (c) bi-cubic interpolation, (d) L1norm with Laplacian 
regularization method, (e) Proposed method.

The MSE plot for all the test images is shown in Figure 
5. From this plot, it is evident that the proposed approach 
performs better in comparison with interpolation and L1 
norm with Laplacian regularization method.
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For clarity, a section of the colour image ( ), LR 
image ( 1Y ) and reconstructed images (X ) are shown in 
Figure 6. The ROI of the colour image i.e., the number plate 
is shown in the Figure 7. From the reconstructed images, 
it is evident that the proposed method rejects outliers and 
reduces discontinuities because of the influence function. 
The outliers fetch a constant weight of one in L1 norm, 
and zero/one in Lorentzian norm. Hence, Lorentzian 
norm produces sharper boundaries than the L1 norm. The 
reconstructed images by the proposed approach sustain 
edges/finer details and thereby increase spatial resolution.

Figure 6.    ROI of (a) HR image, (b) one of LR image, 
reconstructed by (c) bi-cubic interpolation, (d) L1norm with 
Laplacian regularization method, (e) Proposed method.

Figure 7.    ROI of (a) HR image, (b) One of LR image, 
reconstructed by (c) bi-cubic interpolation, (d) L1norm with 
Laplacian regularization method, (e) Proposed method.

4.2 Real Experiment
In the second set of experiment, to demonstrate the 
potential of the proposed method under realistic 
imaging conditions, applied to a real video sequence 
(viplanedeparture.avi, duration 11.2 seconds, 30 frames 
per second, 24 bits per pixel, 337 frames, size 360 x240x3, 
copied from MATLAB and acknowledged), consisting of 
multiple independently moving objects for frame freezing 
and ROI enhancing applications. Here, Bcam (motion blur 
is not considered) is assumed as 5x5 with σ= 0.7 The 
reconstructed image (only a part of the frame is shown) 
and ROI with an up-sampling factor of 2 is also shown in 
the bottom right hand corner of Figure 8.

Figure 8.    ROI of (a) Original frame, reconstructed by 
(b) bi-cubic interpolation, (c) L1 norm with Laplacian 
regularization method, (d) Proposed method.

4.3 Applicability Issues 
The proposed method has limitation in registering 
multiple moving objects in a scene. This restraint the 
applicability in real world scenarios, and conditions 
where simultaneous changes in scale, pan/tilt occurs. 
Since the human visual system (HVS) is more sensitive 
to luminance part, in colour image/video processing, 
only the luminance channel is considered for registration, 

Figure 5.    Mean square error.
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reconstruction, and finally colour channels are added. 
In this paper, the correlation between the chrominance 
channels and compression effects are not considered, 
which results colour, blocking artifacts in the 
reconstructed image and needs to be addressed.

5.  Conclusion

Computational efficiency of the super resolution 
reconstruction problem based on MAP framework is 
improved by locating an interval for λ based on the 
U-curve method, and β is calculated using SOR technique. 
The proposed approach is tested with monochrome 
test images and extended to colour images, and frames 
extracted from the video. The experimental results of the 
proposed approach provide an enhanced result with less 
artifacts, blur, noise, discontinuities in the reconstructed 
image/video frames and increase the spatial resolution. 
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