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Abstract
Objectives: This study is centered on the potential use of a dynamic 
seasonal climate forecast for informing climate risk management in 
Central Luzon, Philippines to improve rice productivity and resilience. 
Specifically, we seek to test the downscalibility of the seasonal 
climate forecasts in the region using a multi-variate spatio-temporal 
downscaling technique, understand and assess the predictability of 
rice yield at selected growing areas in the Philippines, and provide 
guidance on how to develop agricultural risk management strategies. 
Methods/statistical analysis:  The coupled Global Circulation Model 
(GCM) CFSv2 was used to evaluate the utility of MJJA (May-June-July-
August) rainfall forecasts for risk management of rice production in 
Central Luzon, Philippines. We used a non-homogeneous hidden 
Markov model (NHMM) to downscale and simulate the GCM 
forecasts to selected weather stations in the region. On the other 
hand, we evaluated the skill of the climate forecasts for predicting 
crop yields. The simulated rainfall was used to drive the rice models 
set up in DSSATv4.5. Other weather variables needed by DSSAT were 
generated and conditioned on the occurrence of rainfall based on 
NHMM rainfall simulation. Simulated rice yields obtained from these 
models using observed (i.e., simulated by observed weather) and 
conditioned rainfall (i.e., NHMM downscaling) serve as a baseline 
for evaluating yields. We also performed a sensitivity analysis to 
assess appropriate planting windows for the target season for 
risk management. Findings: Inter-annual variability of rainfall is 
moderately simulated, with a skill (r) of 0.41, suggesting that NHMM 
was fairly successful downscaling rainfall from the regional scale 
given the predictive nature of the predictor, at three months lead-
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time. The observed MJJA mean rainfall from the six stations falls at 
around 56% within the interquartile ranges of simulated rainfall, 
which indicates reasonable skill of the NHMM downscaling CFSv2’s 
MJJA rainfall hindcasts. Simulated yield was found comparable with 
the observed at 5% level of significance using t-test (p > 0.05). The 
correlations between observed and predicted yields are equal to 
0.56. This indicates that the models can represent about 31.36% of 
the inter-annual variability of the yields of rice, albeit of the three 
months lead-time of the CFSv2 hindcasts. It suggests a reasonable 
performance of the models in simulating rice yield using the NHMM 
generated climate information. Climatologically, the best planting 
and sowing windows for rice in the study area is on the first week 
of May. This can be adjusted by using seasonal climate forecasts 
information. Harvest period should not cross over in the month 
of September to avoid exposure to heavy typhoons. Application/
improvements: Sensitivity analysis showed that planting rice 
earlier than the usual planting windows practiced by the farmers 
could improve resilience to climate risks. Managing the variance of 
this management window, however, is of paramount importance, 
which can be informed by skillful climate forecasts. 

Keywords: Seasonal Climate Forecast, Downscaling, Non-
homogenous Hidden Markov Model, Crop Model, Climate Risks 
Management, Yield Prediction.

1.  Introduction
The persistent exposure of the Philippines to climate extremes contributes to its 
developmental problems. Agriculture, being the primary development sector contributing 
more than 20% to the gross domestic product (GDP), is particularly sensitive to climate. 
The impacts of climate-related hazards, such as droughts and floods, have enormous social 
and economic consequences at the farmer’s level and to the national economy. 

Climate variability and extremes are very much a part of life in the Philippines. Where 
people are poor and vulnerable, as in farming communities, these climatic factors add to 
the challenges of life. If crops fail due to climatic shocks, smallholder farmers have few or 
no alternative means of providing the basic needs for their families. Climate presents risks 
at the individual, and national level. However, it also presents opportunities that can be 
exploited [1].

Managing impacts of climate variability and extremes in agriculture is of utmost 
importance not only to minimize the risk associated with the bad years, but also to 
maximize opportunities during the good years. The bad years potentially threatens 
established aspects of farming systems and may require adjustments to current practices 
in order to maintain productivity. Many studies focus on the negative impacts of extreme 
events (e.g., super-typhoons). Nonetheless, it can also bring benefits. In semi-arid regions 
of the Philippines, such as in Northern Luzon, a large portion of the annual rain comes 
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from cyclones. Cyclones provide relief from dry-spells, replenishes the groundwater, and 
prevents potential salt water intrusion. 

In order to manage better climate-related risks in agriculture, one must be equipped 
with useful information in advance to plan ahead in time. Advances in climate science 
using advanced earth system models combined with statistical models have paved the 
way to predict climate in advance of the growing season [2–3]. This advanced climate 
information could help farmers make better decisions to minimize climate risks and 
exploit climate opportunities, although it poses a lot of challenges [4].

Forecasting, however, does not always guarantee a desired outcome. It encompasses 
predictable variability as well as inherent uncertainty. For example, the rainy season 
is a predictable occurrence, but the amount, timing, and distribution of the rains is 
uncertain. Nonetheless, advances in climate science are improving the predictability of 
climate variability, which is beneficial to protecting societies against unfavorable climate 
events. Weather forecasts have had major advances in helping plan appropriately at  
the shorter time scales. Moreover, seasonal forecasts are potentially very useful for 
planning agricultural activities and as a starting point for early warning and response 
planning [5].

Much of the theoretical basis of seasonal climate predictions is predicated on 
predictability of large-scale tropical sea surface temperature (SST) anomalies at seasonal 
lead times. Climate forecasts are very much associated in varying tropical ocean conditions; 
measurements of SST in the tropical pacific ocean are especially useful. By measuring 
these conditions, it is possible to predict climate variability up to several months into the 
future [6–7]. 

The El Niño Southern Oscillation (ENSO), which is in the form of El Niño (warmer 
temperatures) or La Niña (cooler ones), represents one of the most important sources 
of predictability for climate forecasting, whose effects are very predictable, which on the 
average, happen every three to seven years. Fluctuations in temperatures can create large 
changes in evaporation of the sea surface. ENSO event then starts and propagates a process 
that affects rainfall patterns in the particular region. ENSO is the most significant source 
of seasonal climate variability globally [3]. The rainfall over the Philippines is strongly 
influenced by ENSO [8].

Limited work has been done regarding the usage of seasonal climate forecasts and crop 
models over the Philippines, particularly in northern and central Luzon [9–10]. Crop 
models can simulate the responses of the crops to climate, environmental conditions, and 
management practices [11]. There is a significant opportunity to reduce production risks 
inherent to rainfed rice growing by means of the timely disseminations of seasonal climate 
forecasts and crop yield predictions to farmers as well as to local government officers. 
When reliable climate forecasts are available, farmers may appropriately decide when, how, 
and where to plant accordingly. They could also use this information to decide on the type 
of management practices to be applied. This, in turn, is expected to lower the production 
risks imposed by climate variability and could result in increased agricultural outputs. 

For the 100 million people in the Philippines, rice provides more than half of their 
caloric intake. Rice is very vulnerable to climate, and in particular to the risk of flooding, 
especially during the end of the growing season. The annual occurrence of flash floods 
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and typhoons results in heavy production losses in paddy rice. In the Philippines, 
farmers experience high risk of crop losses (40–80%) during the typhoon months of 
June to December (https://www.agriskmanagementforum.org/blog/flood-tolerant-rice-
managing-production-risk-philippines). Drought can devastate rice production as well. 

2.  Materials and Methods

2.1.  Study Area
Central Luzon (Figure 1) is a large producer of rice in the country. Here we highlight 
Nueva Ecija only as they the main producer of rice in the region.

Nueva Ecija is a landlocked province in central Luzon made up of low lying alluvial 
plains in the west, central, and southwestern parts and rolling uplands in the northern, 
eastern, and southeastern parts. Nueva Ecija is a first-class province, earning PhP 450 
million ($9 million) or more annually, made up of five cities and 27 municipalities. The 
primary product of Nueva Ecija is rice. In 2007, it produced around 942,613 metric tons 
of milled rice (http://countrystat.bas.gov.ph) while in 2014 it produced 953,292 metric 
tons. Temperatures in Nueva Ecija range from a minimum average of 22 °C during the 
cooler months of November to March to a maximum average of about 32 °C, occurring 
between April and July. Three climatic types are found in the province; Type I, with two 

FIGURE 1.  Study region and locations of selected weather stations for downscaling.

https://www.agriskmanagementforum.org/blog/flood-tolerant-rice-managing-production-risk-philippines
https://www.agriskmanagementforum.org/blog/flood-tolerant-rice-managing-production-risk-philippines
http://countrystat.bas.gov.ph
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pronounced seasons, wet and dry; Type III, with seasons not very pronounced; and Type 
IV, with rainfall evenly distributed throughout the year (www.pagasa.dost.gov.ph). 

2.2.  Downscaling Climate Forecasts and Crop Simulations
Figure 2 shows the general framework followed in this study. Climate forecasts can come 
from SST-based approach or by using directly GCM rainfall as predictor of the forecast. 
Here, we present the use of a dynamic seasonal climate forecast for informing agricultural 
risk management at the policy or farmer level. A crop model was used to ingest the 
downscaled seasonal climate forecasts to predict yields.

The stochastic simulations of daily rainfall were used as inputs to the crop models, 
simulating the crop growth for each of the 100 NHMM simulations, over the period 
1982–2013. Specifically, we focused on Nueva Ecija (station 6). Daily maximum and 
minimum temperatures and solar radiation are set at their monthly climatological means, 
conditioned on the occurrence or non-occurrence of rainfall. We used the properties of 
the dominant soil type and crop cultivars in the study sites. The resulting observed yields 
are then compared with observed yields simulated with observed weather. 

2.2.1.  GCM Forecasts
Rainfall forecasts (here, hindcasts) for the period May-June-July-August (MJJA) were 
derived from the “NOAA-National Centers for Environmental Protection” Climate 
Forecast System Version 2 (CFSv2 – coupled GCM) using a 3-month lead-time, i.e., derived 
from predictions initialized in February 1 [12]. The selected model domain encompassed 
latitudes 14N–20N and longitudes 118E–124E (56-grids) for the period 1982–2013. The 
extracted seasonal time series is comprised of the mean of 24 CFSv2 ensemble members 
within this domain. 

FIGURE 2.  General framework of the study.

http://www.pagasa.dost.gov.ph
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2.2.2.  Non-homogenous Hidden Markov Model
We used the Non-homogenous Hidden Markov Model (NHMM; Figure 3) to downscale 
predicted CGM-CFSv2 rainfall in space and time. NHMM is a multivariate, stochastic 
simulation model that simulates stochastic local-scale daily time series (R) based on a 
small set of “hidden” states (S) defined from daily rainfall observations at a network of 
stations [13–15]. It factorizes the joint distribution of historical daily rainfall amounts by 
making two assumptions: first, that the rainfall on a given day only depends on the state 
active on that day, and second, that the state active on a given day depends only on the 
previous day’s state. The latter assumption corresponds to the Markov property, while the 
fact that the states themselves are not directly observable accounts for the “hidden” in 
the model description. Downscaling is achieved by allowing the Markovian transition 
probabilities between the states to vary non-homogeneously over time, according to a set of 
predictors (X). Once the NHMM’s parameters have been learned, stochastic simulations of 
rainfall can be generated at all the stations on the network [16]. We assumed a conditional 
independence (C.I.) between or among stations (R) when we generated rainfall amounts 
for each station once a rainfall event is simulated. The selected rainfall stations in the 
region are not too far from each other (Figure 1). 

2.2.3.  Observed Climate Data
To calibrate the NHMM, 32-year (1982–2013) daily rainfall amounts (from May 1st to 
August 31st) from six PAGASA (Philippine Atmospheric Geophysical and Astronomical 
Services Administration) agro-meteorology and synoptic weather stations in northern 
Philippines were used (Figure 1). A difference in the temporal distributions of rainfall is 
apparent among the selected stations (Figure 4a). The Batac, Laoag, Baguio, and Nueva 
Ecija stations have two pronounced seasons: dry from November to April and wet during 
the rest of the year. Isabela and Tuguegarao stations are more or less with evenly distributed 
rainfall, with a relatively dry climate from January to April. Generally, rainfall frequency 

FIGURE 3.  Schematic of NHMM (adopted from Kirshner, 2005; Robertson et al., 2007).
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 (a)

(b)

(c)

FIGURE 4.  (a) Monthly rainfall amounts of each station (n = 32 years). (b) The mean sea-
sonal cycle of rainfall frequency (days/decade) computed using decade block means. (c) 
The mean seasonal cycle of rainfall intensity (mm/day) at each station, computed using 
decade block means.
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increases from May, reaches a peak in July and recedes in August (Figure 4b). As shown in 
Figure 4c, rainfall intensity is fairly uniform for the Nueva Ecija, Isabela, and Tuguegarao 
stations, while in Baguio, Batac, and Laoag stations it tends to increase from May, reaching 
a peak in August. The differences in climate are attributed to the presence of a central 
mountain range and their exposure to the southwest and northeast monsoons.

2.2.4.  GCM Data Bias Correction and Modulation
Monthly CFSv2 rainfall downloaded from the International Research Institute for 
Climate and Society – IRI Library (www.iridl.ldeo.columbia.edu)was bias corrected using 
a quantile-to-quantile mapping technique [17–19]. Then, the bias-corrected monthly 
GCM rainfall was converted to daily intensities (Figure 5a). This time series was used as 
a predictor of the NHMM. When the uniform rainfall intensity was used as a predictor, 
NHMM runs showed that the simulated seasonal rainfall tends to follow a flat pattern (not 
shown). Because of this, we applied a modulation technique to the monthly uniform rainfall 
intensities as shown in Figure 5b (sample, 1982); monthly GCM rainfall was multiplied 
with a modulation daily factor estimated from observed climatology. Modulation was 
necessary to closely mimic the temporal pattern of the observed station rainfall. 

2.2.5.  Training the NHMM
The rainfall model parameters for each station, number of large-scale hidden “weather” 
states, and transition probability matrix of these “weather” states, are the major NHMM 
parameters that need to be calibrated before downscaling. The rainfall model for each 

FIGURE 5.  GCM hindcasts, lead time 3-months: a) uniform rainfall intensity, MJJA 1982; 
b) modulated rainfall intensity, MJJA 1982.

http://www.iridl.ldeo.columbia.edu)
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station was characterized by a combination of Dirac-delta function, for rainfall occurrence, 
and hyper-exponential distribution, for rainfall intensity. The Expectation–Maximization 
(EM) was used by NHMM to learn and estimate those statistical model parameters using 
the patterns of daily rainfall data (1982–2013) from the selected weather stations (Figure 
1). First, we assumed a number of hidden states, and run the calibration. EM maximized 
the likelihood function. We repeated this process until we found the optimal number of 
states, with optimized statistical model parameters; Bayesian Inference Criterion (BIC) 
was used to measure the performance of the best statistical model for northern and central 
Luzon, Philippines.

2.2.6.  Downscaling and Linking Climate Forecasts with a Crop Model
The calibrated NHMM model was used to downscale large-scale GCM data. But first, we 
examined the ability of the NHMM to downscale rainfall in space and time. A perfect 
prognosis analysis was conducted using monthly time series of observed rainfall as a 
predictor. The monthly rainfall time series were averaged from the selected stations in 
the region, and then modulated to daily intensities before we used them as a predictor. 
We measured NHMM performance based on downscaled daily rainfall in each station, 
and across the region. Then, we conducted the downscaling of actual GCM data using the 
predicted CFSv2 MJJA seasonal rainfall in northern and central Luzon (1982–2013).

The simulated rainfall was used to drive the rice models set up in DSSATv4.5 [20–
21]. Other weather variables needed by DSSAT were generated and conditioned on the 
occurrence of rainfall based on NHMM rainfall simulation. Simulated rice yields obtained 
from these models using observed (i.e., simulated by observed weather) and conditioned 
rainfall (i.e., NHMM downscaling) serve as a baseline for evaluating yields. We also 
performed a sensitivity analysis to assess appropriate planting windows for the target 
season for risk management.

2.3.  Analysis of Results
We used Pearson’s correlation (r) to quantify the performance of NHMM in replicating 
monthly and seasonal rainfall in northern and central Luzon. T-test was also used to 
evaluate the difference between observed and simulated rainfall and yields at 5% level of 
significance. 

Simulated yields using observed weather from 1982 to 2013 were correlated with 
simulated annual yields using NHMM downscaling of GCM forecasts. 

3.  Results and Discussions

3.1.  NHMM Hidden Weather States
Figure 6 shows the BIC values optimized by the EM algorithm for every tested NHMM 
model with corresponding number of hidden states. A six-hidden-state NHMM best 
described the climate and weather patterns in northern and central Luzon. 
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FIGURE 6.  BIC of NHMM for northern and central Luzon as a function of number of states

The patterns of rainfall intensity (mm/wet-day) and rainfall occurrence (wet-day/day), 
of each station, for each hidden state, are shown in Figure 7a and b. State 6 is a “dry” 
state with very small rainfall probabilities. State 5 is a very “wet” state, which implies the 
occurrences of big storms, uniformly at all stations. This state may be associated with 
typhoons in the region. States 1 and 4 are characterized by mean rainfall intensities, 10 
mm to 20 mm/day, and appear to be like complimentary states. States 2 and 3 exhibit 
“semi-wet” states with rainfall intensities <10 mm/day. When state 3 occurs, its occurrence 
of rainfall is slightly more than that of state 2.

A most-likely state sequence for a six-hidden-state NHMM was generated using Viterbi 
algorithm (Viterbi, 1967). These sequences of rainfall states provide a synoptic view of 
large-scale weather conditions across the study region on a daily basis (Figure 8a). It 
allows the interpretation of the 32-yr rainfall record by assigning to each day the state 
that was most probable on that day, based on a six-hidden-state Hidden Markov Model. 
The average normal frequencies of the six states are 22.5%, 23.5%, 15.2%, 16.4%, 9.0%, 
and 13.5%, respectively. The state sequence suggests a strong seasonality, with the very 
dry state (state 6) dominating on the first week of May and continuous to decline as the 
wet season progresses. The month of May is where the onset of wet season occurs. June is 
dominated by states 2 and 3 (semi-wet) while July is dominated by a normal and fairly wet 
states (1 and 4). State 5 is the wettest state that occurs mostly in the month of August, the 
peak of the typhoon season (Figure 8b). 

3.2.  NHMM Rainfall Simulations
3.2.1.  Diagnostic Runs
Once the statistical model parameters have been estimated, the model was used to simulate 
rainfall. The ability of NHMM to simulate and downscale rainfall was diagnosed first by 
downscaling observed regional rainfall (1982–2013) to the selected stations. Here, we 
set 100 realizations, which produced 100 datasets of 32 sequences of 123 days. NHMM 
simulated MJJA rainfall was comparable with observed MJJA regional rainfall (r = 0.93; 
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not shown) suggesting that the model is working reasonably well for the region. A scatter 
plot of July rainfall from the six weather stations and NHMM simulations is shown in 
Figure 9. 

 Mean Rainfall Intensity, mm/day 

(a)

 Rainfall Occurrence, wet-day/day 

(b)

FIGURE 7.  (a) Hidden state’s rainfall intensity patterns at each station. (b) Hidden state’s 
wet day probability patterns at each station.
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3.2.2.  Downscaling GCM Hindcasts
The box-plot of NHMM rainfall made from downscaling CFSv2 MJJA hindcasts is shown 
in Figure 10. Inter-annual variability of rainfall is moderately simulated, with a skill (r) of 
0.41, suggesting that NHMM was fairly successful downscaling rainfall from the regional 
scale given the predictive nature of the predictor, at three months lead-time. 

The observed MJJA mean rainfall from the six stations falls at around 56% within the 
interquartile ranges of simulated rainfall, which indicates reasonable skill of the NHMM 
downscaling CFSv2’s MJJA rainfall hindcasts (Figure 10).

Summary of monthly and season correlations between observed and NHMM simulated 
rainfall. As mentioned above, the overall correlation for the region for MJJA season is 

.
(a)

(b)

FIGURE 8.  (a) Estimated state sequence for a six-state NHMM for northern and central 
Luzon, Philippines (May 1-Aug 31, x-axis; 1982–2013, y-axis). (b) Summary of state occur-
rences for the six-hidden-state NHMM for northern and central Luzon, Philippines.
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0.41. The target areas, Nueva Ecija (station 3) and Isabela (station 4), exhibited adequate 
correlation of 0.43 and 0.49, respectively. At monthly level, t-test indicated significant 
correlations only in July at three locations, Batac (station 2), Nueva Ecija, and Isabela. 
This is true also for the MJJA season, with relatively increased skills (r = 0.46, 0.43, 0.49, 
respectively). Regional predictive skill (r = 0.41) is statistically significant. These values 
indicate a reasonable basis for its utility to drive crop models such as the DSSATv4.5 for 
risk management in agriculture.

FIGURE 9.  Sample scatter plot of observed and simulated July rainfall from six weather 
stations and NHMM simulations.

 
r=0.41 

FIGURE 10.  Observed (average from six stations) and NHMM simulated MJJA rainfall 
(box-plots, 100 realizations).



Downscaling Seasonal Climate Forecasts for Risks Management of Rice Production in the 
Philippines

36 / 39 Indian Journal of Science and Technology� Vol 13(01), DOI: 10.17485/ijst/2020/v13i01/147074, January 2020

3.3.  Yield Simulations
3.3.1.  Downscaled Yields
We used DSSATv4.5 [20] to generate simulated yields of rice (with CSM-Rice) and maize 
(with CSM-Maize) using the climate information produced by NHMM. For comparison, 
we used yields simulated using observed weather as “observed yields”. 

Figure 11 shows the box-plot of the simulated station level rice yield from 100 
simulations. Simulated yield was found comparable with the observed at 5% level of 
significance using t-test (p > 0.05). The correlations between observed and predicted yields 
are equal to 0.56. This indicates that the models can represent about 31.36% of the inter-
annual variability of the yields of rice, albeit of the three months lead-time of the CFSv2 
hindcasts. It suggests a reasonable performance of the models in simulating rice yield 
using the NHMM generated climate information. Meanwhile, lower yields were associated 
with warm ENSO events. Seasonal predictions of precipitation made with general 
circulation models (GCMs) are often skillful for some regions and seasons, particularly 
during El Niño–Southern Oscillation (ENSO) events [3], and Philippines’ climate has a 
strong teleconnection with ENSO [8,22]. The increased correlations in predicted yields as 
compared with the predicted rainfall could be attributed to the non-linearity of the soil–
plant–weather relationships, suggesting further the usability of dynamic crop models for 
yield predictions and climate risk management.

3.3.2.  Analysis of Planting Windows
We examined the best sowing window for rice in the study area. Focusing on Nueva Ecija 
(station 6), we run DSSATv45 for 32 years using observed weather as inputs to the crop 
models. Figure 12 shows the box-plot of yields of rice as a function of sowing windows. 
Depending on the risk-aversion level of the farmer, for example, based on climatology, the 
best planting windows for rice is on the first week, and on the last week of May, respectively. 
Seasonal climate forecasts could inform this decision for an upcoming season. Based on 
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the climate forecast, farmers could adjust planting windows or even decide on which crop 
variety or varieties to plant for the growing season to minimize risk.

4.  Summary and Conclusions
We have used a nonhomogeneous hidden Markov model (NHMM) in conjunction with 
a crop model to investigate spatial and temporal disaggregation of seasonal rainfall for 
simulating rice yield in Central Luzon, Philippines. The CFSv2 MJJA rainfall with 3-months 
lead-time, averaged over 56 grids across 32 years of record was used as the predictor of the 
NHMM to investigate its ability to downscale rainfall forecasts to station-scale conditions. 
Stochastic simulations reveal that NHMM is able to recover the inter-annual variability of 
station scale rainfall modestly (r = 0.41). This indicates a reasonable downscaling of CFSv2 
regional-scale rainfall to the station scale, given the predictive nature of the predictor data, 
as well as the imperfect capability of the NHMM. Diagnostics of the NHMM show a skill, 
r = 0.93, which may be attributed to unpredictable station scale noise. 

With the reasonable skill of the NHMM in the study region established, the downscaled 
rainfall simulations were then used to drive a crop model (CSM-Rice) in the DSSATv4.5, 
to evaluate the performance of the NHMM’s rainfall simulations in terms of simulating 
rice yield. Simulated yields were found to be moderately correlated with observed yields 
with r = 0.56. Moreover, simulated yields were found comparable with observed at 5% 
level of significance using t-test (p > 0.05). In principle, the results of this study suggest that 
regional rice yields over the study area could be predicted by CFSv2 rainfall at 3-month 
lead-time. 

FIGURE 12.  Rice yields as affected by sowing dates simulated by DSSAT-CSM-Rice in 
Nueva Ecija (station 6).
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The main goal of this study is to provide seasonal yield forecast for the upcoming wet 
growing season for rice in Nueva Ecija, Philippines. Climatologically, the best planting and 
sowing windows for rice in the study area is on the first week of May. This can be adjusted 
by using seasonal climate forecasts information. Harvest period should not cross over in 
the month of September to avoid exposure to heavy typhoons.
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