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1.  Introduction

Reinforcement Learning (RL) falls into realms of machine 
learning, wherein the agent learns how to act by the rewards 
or punishments that it gets from the environment1,2. A 
reward could be a point scored, as in the game of table-
tennis, and a punishment could be negative score or an 
opponent getting a point over the agent. RL agent learns 
by experiencing in the environment – what is a good 
action and what is not. The goal is to perform actions that 
gives it best long-term and short term rewards and lessen 
punishments. RL has very good connections with human 
and animal learning behaviors. This section briefly 
touches on the different types of reinforcement learning 
algorithms, classifications, their benefits and limitations. 
This section gives a recap of hitherto known and popular 
learning algorithms. However we don’t intend to explain 
every algorithm listed here. Instead, we give pointers to 
the legacy algorithms and their classification, while do 
more briefing on the latest algorithms.

1.1 Model-Based and Model-Free RL
Under Reinforcement Learning it is very well known, 
there are 2 broad classifications as Model-based and 
Model-free RL 3. Model-based RLs have the knowledge 
about the environment in which the agent acts, and about 
the agent, per se, as well. The state transition-action 
mapping combined with the reward model is available 
a-priori. That means the agent knows the environment 
in which it is acting; it knows the state transitions very 
well –that is P(s ‘|s, a). It also has the reward matrix 
available. The agent’s job is to find an optimal policy 
from a given state to the goal-state – that is expected total 
reward. Whichever path has the best overall utility that is 
considered as the optimal policy. Some of the governing 
equations in model-based RLs are:
Utility Eq.: U = E [∑γtR(St)]
Bellman’s Eq.: Uπ(s) = R(s) + γ ∑s’P(s’|s, π(s)) Uπ(s’)

Where γ is the discount factor.
While in model-based RLs, the environment could 
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be fully observable or partially observable. There can be 
environments that are Markovian Decision Problems 
(MDP) or non-Markovian. Thus we have a combination 
based on “observability of environment” and “behavior 
of the environment”. To be more specific, we can say a 
model is MDP, or Partially Observable MDP (POMDP), 
or a non-MDP, etc.

Many algorithms have evolved in the last couple of 
decades; and some of the most popular, legacy, model 
based RL algorithms are1, 4,5:
•	 Policy evaluation
•	 PEGASUS
•	 RL for POMDPs

Model-free RLs do not have any knowledge about 
the environment in which the agent acts3.The agent only 
acts in any given state, but doesn’t know where it leads 
to. So they rely on the instantaneous reward obtained by 
taking an action in a state, and then evaluate the utility 
of that state. Utility is defined as the expected total 
reward from the current state to the goal-state.  Once 
all the paths are traversed they then evaluate the utilities 
of each of the states experienced. As always, the action 
sequence that yields the maximum utility is considered as 
the optimal policy. So they learn the utilities by trial-and-
error method. We can imagine this as a situation giving 
directions to a blind man: “take a right, a left, and then 
right, and then you hit the door!!”

The governing equations remain the same as of 
Model-based RL algorithms.

Some of themost popular, legacy model-free RL 
algorithms are1, 6, 7, 8, 9:
•	 Q-learning
•	 SARSA
•	 Dyna-Q
•	 Temporal Difference (TD)

To summarize, model-based RL algorithms look for 
learning the best policy that leads to the goal. On the other 
hand, model-free RL algorithms look for the best overall 
utility that of course, lead to the goal. In fact, Nathaniel D. 
Daw10, in his paper puts the difference between Model-
free and Model-based as similar to goal directed and 
habitualinstrumental behaviors.

2.  �Problems that Plague Mode-
based and Model-free RLs 
discussed thus far

•	 Memory intensive: Model-based algorithms need 
a look-up table for storing state-transition maps or 
probabilistic state transitions P(s, a,s’) in case of MDP 
or POMPD environments. 

•	 While model-free RLs need a look-up table to store 
state-action pairs Q(s, a).

•	 Long convergence time:  Both the models need long 
time to converge to an optimized policy or utility.

•	 Cannot be adjusted in the event of a goal change, 
reward change or state change10.

•	 Another subtle, yet important aspect of these 
algorithms are they are greedy in nature – they try to 
find a policy or a path that can maximize the reward. 
But in doing so they often shun treading some of 
the paths which tend to have lower rewards initially 
(short term), but may have better long-term rewards.  
This is akin to human’s taking short-cuts to reach 
their goal faster – getting rich overnight, lawn chair 
millionaire!! But it may turn out that the so called 
optimal policy chosen may be far from reality!

Value Function Approximation: When the state space 
is very large (infinite), or when it is a continuous space (e.g. 
helicopter navigation), many of the methods discussed 
above will not be able to converge to optimal policy 
within reasonable time. Thus emerged a powerful way of 
generalizing (or abstracting out) the state space, called 
as value function approximations. George Konidaris, et 
al11, state this as “the value function is represented as a 
weighted aggregation of a set of features, computed from 
the state variables”. 

Some of the different types of function approximations 
could be listed here11-14:
•	 Linear function approximation
•	 Neural network
•	 Fourier based
•	 Nearest neighbor based.
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There have been several good works in this area over 
the years. But one thing that strikes is all these methods 
are bit mathematically intensive, and getting a good 
representation of the value function approximation is a 
big challenge. Also some of the researchers have opined 
that learning gets unstable when neural networks is used 
to represent the Q values12.

2.1 Relational RL (RRL) 
Improvisations to model-free RLs, more specifically 
Q learning, came in the form of Relational RRL. To 
overcome the curse of dimensionality, RRL brought a 
new light, with possibly overcoming the challenges of 
function approximations. Tadepalli, et al15, argue that 
function approximations do not work well in relational 
domains. RRL brings in an insightful way of exploiting 
the relation between objects, and thus creating a relation 
based Q-values (in direct alluding to Q learning). It is 
also argued that such an RRL can be more effective than 
function approximations such as neural n/w based or 
Fourier based etc. 

There are several approaches that have been devised 
in RRL – TG algorithm, Gaussian based algorithm15, and 
instance based RRL. Relation b/w states could as well be 
the distance b/w states or nearest neighbors etc.

Interestingly Tadepalli, et al15, propose, very 
emphatically, RRL as the panacea for machine learning 
in AI, in general!However, we will see in the next sections 
how the algorithms evolved and what challenges still 
remain.

2.2 Active and Passive RLs
Another classification of RL algorithms is based on the 
way learning happens. Learning can be achieved either 
by observing the utilities as the agent interacts with the 
world and while having fixed policy (Passive RL) OR 
by acting in the world (Active RL), and learning which 
actions are best in a given state1.

In passive learning the agent already knows what 
action it has to take in any given state. So it has to only 
find out what is the reward, and hence the utility. While 
in active learning, the agent doesn’t have any fixed action 
in any state. It has to find out what action it can take, get 
the reward, and then estimate the utility.

An agent can be any combination of Active/Passive 
RL and model-based/model-free. This combination, 
however, does not give it any distinction or significance 

with respect to convergence or learning challenges 
discussed earlier.

Some of the well-known Active RL algorithms are 
Q learning, RMax, ε-greedy, etc. Similarly, Monte-Carlo 
Direct estimations, Adaptive Dynamic Programming, 
Temporal Difference learning are some of the Passive RL 
algorithms.

2.3 Exploration v/s Exploitation
A very important consideration with respect to 
approaches in policy evaluation, or utility evaluation, 
etc. is exploration v/s exploitation. This is already hinted 
undersec 1.1, under “problems plaguing RL”. Consider 
a state-space being very large and the agent has still 
not explored all possible routes yet. But with whatever 
exploration it has so far done it has found an optimal route 
– it has exploited an optimal route within its experienced 
landscape. However, it is possible that there may exist 
better routes in the unexplored routes. So to avoid being 
stuck to the “rut”, exploration of new routes is a very 
important consideration for an agent. Many exploration 
mechanisms have been evolved in the last as many years1, 

16.
•	 GLIE
•	 Policy gradient
•	 Least Mean squares

However all the above approaches stated so far suffer 
from a major setback when the state-space dimension is 
very large – the curse of dimensionality.

3.  �Some of the Recent 
Developments in RL

3.1 Topological Q-learning
It uses the topological ordering of the states as and when 
the agent experiences the environment. This algorithm 
consists of 2 phases called task learning and exploration 
optimization. In “task-learning phase the agent builds the 
topological ordering of the states, and in the exploration-
optimization an internal reward function is used to guide 
the exploration”17. So this algorithm tries to achieve a 
guided exploration based on an intrinsic or internal 
reward mechanism. Guided-exploration apparently 
sounds better than any of the randomized exploration 
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strategies – because there is a clear purpose behind 
exploration. Topology of states is built using Instantaneous 
Topological Map(ITM) model. State values are updated 
in a backward fashion, but the update is restricted only 
to the states that have been visited/traversed by the agent 
thus far – and not the entire network of states. This looks 
to be a reasonable principle, as updating non-traversed 
states’ value may result in over or underestimations.

Also, the internal reward function will give a negative 
reward for paths that lead to no change in policy values. 
This means when a path does not lead to an increase in 
value, it instigates the agent to explore non-treaded paths 
– thus the rationale for exploration is sound.

3.2 Epoch-Incremental RL	
The algorithm evaluates and improves an agent’s policy by 
combining conventional TD(0) or TD(ʎ) and the novel 
Epoch mode. TD(0) or TD(ʎ) will build the environmental 
model (by directly experiencing the environment), and 
after reaching the terminal state it gets into the Epoch 
mode. In this mode, the distances from the explored 
nodes to the terminal state is computed and the shortest 
distance from any initial state S0 to the terminal state is 
adjudged the best policy. So the Epoch mode, somewhat, 
is akin to a Breadth-First-Search algorithm18.

3.3 Multi-scale RL
Makes an abstract of the state-space graph by using certain 
mathematical functions. It creates levels of abstractions 
as shown in Figure 1. So on the reduced abstraction-
map, the action selection is performed using multi-scale 
Softmax selection19.

This can be comprehended as akin to simplified 
mathematical modeling of real-world problems. As with 
any such simplified models there do exist problems of 
over-simplification, ignoring nitty-gritty’s and it might 
lead to bad performance in real-world.

However, the advantages of simplified models can 
never be overlooked nor underestimated. Striking a 
balance between over-simplification and retention of 
abstraction seems to be the key trick in such models.

3.4 Hierarchical RL (HRL)
A larger goal is sub-divided into a hierarchy of sub-goals. 
Each subtask could still be decomposed to sub-, tasks, and 
the lowest level of tasks, typically, are primitive actions20. 

This approach shifts the focus of RL problem form being 
a state-to-state or action-to-action oriented towards sub-
goals to larger-goal oriented. HRL can be summarized as 
an approach that abstracts and divides the state space into 
key landmarks, from start to the final goal. Thus tackling 
large dimensions of state-space could be easier. 

Figure 1.    Multi-scale Value Functions. Courtesy19.

This algorithm can be drawn as parallel to Work 
Breakdown Structure, which is followed in many of the 
software project management processes and elsewhere 21.

3.5 Deep RL
This algorithm, from DeepMind labs22, was evaluated 
on a game called Atari 2600, and several other computer 
games. The same, single architecture was used in all these 
games and this algorithm showed much better results 
than any other RL methods available!

Deep RL is a combination of Deep-learning 
(convolutional neural network) and Reinforcement 
learning (Q-learning).Deep learning enables high level 
abstraction of data by multi-layer graph processing. By 
this we can get to know what data is useful for the current 
objective/Goal. While Q-learning evaluates the best 
utility.

The algorithm uses 2 key ideas – 
•	 Experience replay mechanism that removes the 

correlations between consecutive observations.
•	 Iterative update mechanism that adjusts Q values 

towards the target value. But this is done at some 
specified periods only; so that correlation with the 
target is reduced.



N. R. Ravishankar and M. V.  Vijayakumar 

Vol 10 (1) | January 2017 | www.indjst.org Indian Journal of Science and Technology 5

Experience replay mechanism is a biologically inspired 
mechanism. A stunning aspect of this algorithm is its 
ability to learn and play 40+ different games, and with 
better dexterity than humans or any other RL algorithms, 
so far!!

3.6 RL in the realms of Game theory
Gaming theory finds its applications in several competitive 
market scenarios such as trading of goods and services23. 
Gaming theory proposes a unique challenge when it 
comes to autonomous learning aspects. The primary 
challenge being that it is a non-stationary environment. 
As many agents interact with the environment the 
world changes at every instance– complexity increases. 
Secondly an agent will interact with other agents too (be 
it cooperative or non-cooperative), so its action selection 
might be constrained, have to be re-planned, probably at 
every instance. It can be cited from bowling and veloso 24 
that “an agent’s optimal behavior depends on the behavior 
of other agents, and vice versa”. A simple example being 
“Rock Scissor Paper” game played by kids. 

Gaming problems can be broadly divided as Stochastic 
and Matrix games24. In both these categories there is a set 
of actions available to each agent, and then there is a joint 
action space, as every agent’s action has an impact on 
other agents’ actions. However in stochastic games, the 
agent’s policy shall also be stochastic – which means it’s 
a probability distribution of states-to-action. Key aspect 
of all gaming theories is the “Nash equilibrium (NE)”25 
– which is a collection of strategies of all players/agents. 
Every player/agent strives to its equilibrium – in other 
words, best possible outcomes for themselves; but that 
which cannot be achieved independent of other agents! 
Now this is what we need to remember from the game 
theory perspective.

Consequently, we can see two orthogonal dimensions 
in solving gaming problem, one arising out of gaming 
theory to achieve Nash equilibrium; and the other arising 
out of Reinforcement learning. Both these aspects have 
to amalgamate in such a way as to get the best possible 
outcome for the agents involved in the game.

Bowling and Veloso’s paper has examined a number 
of algorithms that solve multiagent RLs for Stochastic 
games, and it is noted that most of these algorithms, 
namely Shapely, PollatschekandAvi-Itzhak, Van der Wal, 
Fictitious play, etc make use of variations of Temporal 
difference learning aspect of RL.

Hu and Littman26 use a multi-agent Q-learning 
method under stochastic framework to obtain Nash 
equilibrium. Here each agent maintains two tables of Q 
values, one for its own Q values while the other table for 
Q values of the other agent, obtained by observing the 
other agent’s action. The update of Q values thus has two 
equations:
Q1

t+1 (s, a1, a2) = (1- αt) Q1
t (s, a1, a2) + αt [rt

1 + βπ1(s’) Q1
t(s’) 

π2(s’)]	 					        (1)
In order to find the other agent’s policy this agent 

must observe his actions, and learn as
Q2

t+1 (s, a1, a2) = (1- αt) Q2t (s, a1, a2) + αt [rt
2 + βπ1(s’) Q2

t(s’) 
π2(s’)]						          (2)

Thus it needs to maintain two table of Q values! Also, 
it is assumed that the game has a unique equilibrium; 
which however is not true in many of the stochastic 
games. There could exist multiple equilibrium states.

Vishnu and Tapas27 propose a RL algorithm to solve 
an n-player matrix game, of course a non-cooperative 
one. The paper describes a new approach to obtain 
Nash equilibrium of n-player matrix games using a 
differentiated value-iteration algorithm one for pure 
strategy and the other for mixed strategy. R-values are 
selected based on 2 criteria: Greedy action selection for 
pure strategy Nash Equilibrium26 and a probabilistic 
action selection for mixed strategy.

Though there is no mathematical proof for the 
convergence of their learning algorithm, they tend to 
give reasonably good results (equilibrium attainment), 
and rewards for the agents. However, the NEs did differ 
when they compared their results with that of an openly 
available software called GAMBIT. 

4. The Journey so Far

We would summarize Reinforcement Learning as a 3 
dimensional problem, and try to get a bird’s eye view of 
the journey in all 3 dimensions, and represent it as in 
Figure 2. It would be, at the least, incorrect to say that 
our subjecting of RL to a 3-D problem is the best way 
to summarize the RL journey. But rather we attempt to 
give a perspective as to how we can look at this learning 
mechanism, and how the journey proceeded over the 
years in these 3 dimensions. We hope this can show some 
seeds of thoughts in a serious onlooker:
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Figure 2.    The 3-D view of RL problem.

4.1 State-space Dimensionality
The journey can be seen as a progression from brute force 
methods(explore all states) to
•	 Making approximations of the state-space and 

exploring to 
•	 Choosing only related state-spaces(RRL) to 
•	 Creating thumb-nail version (similar to mathematical 

models of a natural Phenomenon) of the state space   
and thus shrinking the whole environment itself, to

•	 Using past experience to guide the next moves

4.2 �Utility Estimation Dimensionality–
Direct Estimation, TD Estimation, 
Epoch Estimations, etc.

In this dimension, the journey can be summarized as 
one from a tactical to strategic/goal oriented. Direct 
estimations and TDs are mostly tactical, where they are 
more worried about the current state rather than the end 
goal. So short-term changes and deviations seem more 
probable. When it comes to Epoch learning we see the 
utility estimations are End-goal oriented. Thus they also 
factor the long term implications of taking an action – 
that’s what we call Strategic.Another important aspect 
in the utility dimension, in the wake of absence of any 
rewards,or very few if any, from the external world a 
mechanism called “Inverse Reinforcement Learning” has 
been proposed28 to find a suitable reward function. So 
here we have an action policy, and need to determine the 
rewards for such action policy – reverse engineering! 

4.4.3 Exploration/Exploitation dimensionality
To arrive at an optimal policy within the purview of above 
2 dimensions (State space and Utility), we need to have 
a right balance or make right choice of exploration v/s 
exploitation.

The initial days of GLIE, random exploration, or 
time-based exploration, were focused on ad-hoc ways 
to take-time off the usual rut, and do some exploration. 
It then evolved to greedy-techniques, to interval based 
techniques29. But later techniques like Topological RL 
and Curiosity factors are more rational in taking the un-
treaded path.

So the journey can be summarized as a one from 
random or ad-hoc to rational based.

5.  Conclusions

Applications of RL have been diverse and growing in the 
recent past. From lab experiments as hover-crafts to game 
playing to operations research, it has found its place, and 
seem to be growing. 

In commercial space, such as power and energy30,31, 
RL has found applications relating to dynamic pricing23 
of electric energy in the micro grid. B-G Kim, et al, have 
shown by numerical results how RL has helped improve 
dynamic pricing and energy scheduling in a multi-
customer environment(pricing is a factor of electricity 
cost and the load demand.)

Interestingly, gaming theories have also adopted 
RL methods to obtain optimal solutions. It needs a 
special mention about gaming theory, as this domain 
has a more complex problem to solve, and the problem 
representation itself adds another dimension – for e.g. 
Matrix games, Stochastic games, and the solution lying in 
finding Nash Equilibrium state. Considering the fact the 
gaming theory have huge impact in operations research, 
stock trading, goods trade, etc. RL provides a very huge 
opportunity for commercial success. RL has seen very 
good real world success in solving MDPs32, 1, 33. Deep RL 
algorithm 22 seems to be more promising and provokes 
thoughts as “can it be a panacea?!”

Another interesting and upcoming area of research is 
the confluence of RL and Cognitive and neurosciences area 
34.Recent studies in Psychology and Neurosciences about 
the dopamine response of the human brain to stimulus, 
and the brain’s action choice has been studied in relation 
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to RL algorithms10, 35, 36 – more so with respect to model-
based and model-free RLs. Though the research in this 
aspect of cognitive search and planning is still in infancy, 
there are parallels drawn to attribute the dopaminergic 
response and search planning of the brain akin to model-
based RLs. Thus RL holds a potential research problem 
and a commercial utility in more than one ways.

Now getting backto the 3-D view of RL problem, as can 
be seen in the previous section there has been significant 
evolution in all the dimensions of the RL problem. 
We are seeing more optimizations and strategy based 
approaches, moving away from Brute-force or ad-hoc 
approaches. The rationale are stronger and approaches 
are more compulsive. However, it apparently seemsstate-
space dimensionality has evolved a lot more and a lot 
faster than compared to the other two dimensions. Make 
no mistake, despite there being several algorithms in, for 
e.g. Utility estimation, they all fall into similar categories. 
As an e.g., there are several algorithms propounded 
pertaining to the inverse RL. But they all solve the same 
problem in a different way. So they don’t carve out a new 
category on the evolution scale.

It would be interesting to see if future research can 
balance all the 3 orthogonal aspects and achieve, what can 
be fancily called, “Learning Equilibrium”.
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